In [1]:
from pyCHX.chx_packages import *
%matplotlib notebook
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams.update({ 'image.origin': 'lower'   })
plt.rcParams.update({ 'image.interpolation': 'none'   })
import pickle as cpk
from pyCHX.chx_xpcs_xsvs_jupyter_V1 import *

Give the uid here


In [3]:
uid  = 'bbf77e12'

In [4]:
# unfortunately databroker has not good way of retrieving filenames
# here's a qiuck work around
# find the time
hdr = db[uid]
import time
time.ctime(hdr.start['time'])


Out[4]:
'Thu Mar 14 21:48:53 2019'

In [10]:
sud = get_sid_filenames(db[uid])
print(sud)


(6308, 'bbf77e12-2cf1-43a2-b2f0-cb1e6497f441', [])

Here you have to manually give the fullapath of the raw data


In [11]:
# once the time is found, search directory to find the filename
# once filename found, open the handler with the correct filename
 
DDIR = "/XF11ID/data/2019/03/14"
prefix = '9f15f53c-ea6b-4551-ac91_6764_master.h5'

filename = DDIR + "/"

In [12]:
# finally use EigerImages to get the images
from eiger_io.fs_handler import EigerImages
imgs = EigerImages(DDIR + "/" + prefix, images_per_file=100)
len(imgs)


Out[12]:
3833

In [13]:
imgs


Out[13]:
<Frames>
Length: 3833 frames
Frame Shape: 2167 x 2070
Pixel Datatype: uint32

Show one image


In [21]:
img_index = 2000
show_img( imgs[ img_index ],  vmin= 1e-4, vmax= 100, logs=True, aspect=1,
   image_name= uid + '_img_%s'%img_index,  save=False, path='',  cmap = cmap_albula )



In [ ]:


In [ ]:


In [ ]:


In [ ]: