In [2]:
import matplotlib.pyplot as plt
import numpy as np
In [3]:
%matplotlib inline
In [7]:
full_data = np.load("../data/combined_runs.npy")
In [10]:
full_data.shape
Out[10]:
In [5]:
mask50k = np.load("../brain_mask/sm_mask55468.npy")
In [7]:
mask50k.shape
Out[7]:
In [8]:
mask50k
Out[8]:
In [10]:
~mask50k
Out[10]:
In [ ]:
mask50k_3d = mask50k.reshape((full_data.shape[0],full_data.shape[1],full_data.shape[2]))
In [19]:
mask50k_3d.shape
Out[19]:
In [22]:
mask17k = np.load("../brain_mask/sm_mask17887.npy")
mask17k_3d = mask17k.reshape((full_data.shape[0],full_data.shape[1],full_data.shape[2]))
In [23]:
mask9k = np.load("../brain_mask/sm_mask9051.npy")
mask9k_3d = mask9k.reshape((full_data.shape[0],full_data.shape[1],full_data.shape[2]))
In [24]:
masked_data_50k = full_data[mask50k_3d,:]
np.save("../data/masked_data_50k.npy",masked_data_50k)
In [25]:
masked_data_50k.shape
Out[25]:
In [28]:
masked_data_17k = full_data[mask17k_3d,:]
np.save("../data/masked_data_17k.npy",masked_data_17k)
In [29]:
masked_data_9k = full_data[mask9k_3d,:]
np.save("../data/masked_data_9k.npy",masked_data_9k)
In [ ]: