In [1]:
import sys
sys.path.append('../src')
import settings
sys.path.append(settings.CAFFE_PYTHON_PATH)
import caffe
import dataset
import cub_utils
import utils
import rects
import parts
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
import sklearn.svm
import sklearn.metrics
import sklearn.grid_search
from datetime import datetime as dt
from storage import datastore
from deep_extractor import CNN_Features_CAFFE_REFERENCE, Berkeley_Extractor
In [2]:
cub = dataset.CUB_200_2011(settings.CUB_ROOT)
all_img_infos = cub.get_all_image_infos()
all_seg_infos = cub.get_all_segmentation_infos()
IDtrain, IDtest = cub.get_train_test_id()
cub_parts = cub.get_parts()
cub_bbox = cub.get_bbox()
In [3]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_1-60000')))
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
In [4]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_1-60000')))
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
In [9]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('ccr')))
Xtrain_r, ytrain, Xtest_r, ytest = cub.get_train_test(feature_extractor.extract_one)
In [10]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('ccc')))
Xtrain_c, ytrain, Xtest_c, ytest = cub.get_train_test(feature_extractor.extract_one)
In [5]:
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_1-60000'))).extract_one)
In [6]:
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_1-60000'))).extract_one)
In [7]:
Xtrain_c_ft_rf, ytrain, Xtest_c_ft_rf, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccrf_def_1-60000'))).extract_one)
In [15]:
Xtrain_final = Xtrain_r
Xtest_final = Xtest_r
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [16]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_1-60000')))
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
Xtrain_final = Xtrain_r_ft
Xtest_final = Xtest_r_ft
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [17]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_2-60000')))
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
Xtrain_final = Xtrain_r_ft
Xtest_final = Xtest_r_ft
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [18]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_3-60000')))
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
Xtrain_final = Xtrain_r_ft
Xtest_final = Xtest_r_ft
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [36]:
Xtrain_final = Xtrain_c
Xtest_final = Xtest_c
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [19]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_1-60000')))
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
Xtrain_final = Xtrain_c_ft
Xtest_final = Xtest_c_ft
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [20]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_2-60000')))
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
Xtrain_final = Xtrain_c_ft
Xtest_final = Xtest_c_ft
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [21]:
feature_extractor = CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_3-60000')))
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(feature_extractor.extract_one)
Xtrain_final = Xtrain_c_ft
Xtest_final = Xtest_c_ft
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [24]:
Xtrain_final = np.hstack((Xtrain_r, Xtrain_c))
Xtest_final = np.hstack((Xtest_r, Xtest_c))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [3]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_1-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_1-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [4]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_2-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_2-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [5]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_ccrftt_3-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(datastore(settings.storage('f_cccftt_3-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [9]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_1-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_1-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_1-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_1-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [10]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_2-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_2-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_2-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_2-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [11]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_3-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_3-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_3-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_3-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [31]:
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_h, Xtrain_b))
model = sklearn.grid_search.GridSearchCV(sklearn.svm.LinearSVC(), {'C': [1e0, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]}, n_jobs=3, cv=5)
model.fit(Xtrain_final, ytrain)
print model.best_params_
In [32]:
model.grid_scores_
Out[32]:
In [41]:
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft))
for c in [1e1, 1e0, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]:
model = sklearn.svm.LinearSVC(C=c)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print c, sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
The oracle head method is better than all the baseline methods, only using head
In [9]:
Xtrain_oh, ytrain, Xtest_oh, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('ccpheadft-100000'))).extract_one)
Xtrain_final = Xtrain_oh
Xtest_final = Xtest_oh
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [10]:
Xtrain_ob, ytrain, Xtest_ob, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('ccpbodyft-100000'))).extract_one)
Xtrain_final = Xtrain_ob
Xtest_final = Xtest_ob
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [6]:
Xtrain_oh, ytrain, Xtest_oh, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('ccpheadft-100000'))).extract_one)
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_1-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_1-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_oh))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_oh))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [7]:
Xtrain_oh, ytrain, Xtest_oh, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('ccpheadft-100000'))).extract_one)
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_2-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_2-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_oh))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_oh))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [8]:
Xtrain_oh, ytrain, Xtest_oh, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('ccpheadft-100000'))).extract_one)
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_3-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_3-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_oh))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_oh))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [12]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_1-60000'))).extract_one)
Xtrain_c_ft_rf, ytrain, Xtest_c_ft_rf, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccrf_def_1-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_1-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_1-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft_rf, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft_rf, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [14]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_2-60000'))).extract_one)
Xtrain_c_ft_rf, ytrain, Xtest_c_ft_rf, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccrf_def_1-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_2-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_2-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft_rf, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft_rf, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [15]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_3-60000'))).extract_one)
Xtrain_c_ft_rf, ytrain, Xtest_c_ft_rf, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccrf_def_1-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_3-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_3-60000'))).extract_one)
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft_rf, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft_rf, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [16]:
Xtrain_r_ft, ytrain, Xtest_r_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccrftt_1-60000'))).extract_one)
Xtrain_c_ft, ytrain, Xtest_c_ft, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_cccftt_1-60000'))).extract_one)
Xtrain_h, ytrain, Xtest_h, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccphrf_def_unif_1-60000'))).extract_one)
Xtrain_b, ytrain, Xtest_b, ytest = cub.get_train_test(CNN_Features_CAFFE_REFERENCE(
datastore(settings.storage('f_ccpbrf_def_unif_1-60000'))).extract_one)
In [19]:
Xtrain_final = np.hstack((Xtrain_c_ft, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_c_ft, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [20]:
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_h, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_h, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [21]:
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_b))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_b))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [22]:
Xtrain_final = np.hstack((Xtrain_r_ft, Xtrain_c_ft, Xtrain_h))
Xtest_final = np.hstack((Xtest_r_ft, Xtest_c_ft, Xtest_h))
model = sklearn.svm.LinearSVC(C=1e-4)
model.fit(Xtrain_final, ytrain)
preds = model.predict(Xtest_final)
print sklearn.metrics.accuracy_score(ytest, preds), utils.mean_accuracy(ytest, preds)
In [ ]: