Using dates with timeseries models


In [ ]:
import statsmodels.api as sm
import numpy as np
import pandas

Getting started


In [ ]:
data = sm.datasets.sunspots.load()

Right now an annual date series must be datetimes at the end of the year.


In [ ]:
from datetime import datetime
dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog))

Using Pandas

Make a pandas TimeSeries or DataFrame


In [ ]:
endog = pandas.TimeSeries(data.endog, index=dates)

Instantiate the model


In [ ]:
ar_model = sm.tsa.AR(endog, freq='A')
pandas_ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1)

Out-of-sample prediction


In [ ]:
pred = pandas_ar_res.predict(start='2005', end='2015')
print pred

Using explicit dates


In [ ]:
ar_model = sm.tsa.AR(data.endog, dates=dates, freq='A')
ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1)
pred = ar_res.predict(start='2005', end='2015')
print pred

This just returns a regular array, but since the model has date information attached, you can get the prediction dates in a roundabout way.


In [ ]:
print ar_res.data.predict_dates

Note: This attribute only exists if predict has been called. It holds the dates associated with the last call to predict.