In [87]:
import numpy as np
In [88]:
np.version.full_version
Out[88]:
In [89]:
%pwd
Out[89]:
In [90]:
a = np.array([0,1, 2, 3, 4, 5])
# a = np.array(range(0,6), dtype=np.int32)
a
Out[90]:
In [91]:
a.ndim
Out[91]:
In [92]:
a.shape
Out[92]:
In [93]:
a.dtype
Out[93]:
In [94]:
b = a.astype(np.float32)
print a.dtype
print b.dtype
In [95]:
b = a.reshape((3,2))
print b
print b.ndim
print b.shape
In [96]:
b[1][0] = 77
print b
In [97]:
print a
In [98]:
c = a.reshape((3, 2)).copy()
print c
c[0][0] = -99
print c
In [99]:
print a
In [100]:
d = a * 2
print d
In [101]:
e = a ** 2
print e
In [102]:
print [1,2,3,4,5] * 2
In [103]:
# print [1,2,3,4,5] ** 2
In [104]:
b = a[0:2]
b
Out[104]:
In [105]:
print a[[2,3,4]]
In [106]:
print a > 4
In [107]:
print a[a > 4]
In [108]:
idx = np.where(a > 4)
print idx
In [109]:
print a[~(a > 4)]
In [110]:
sum(a > 4)
Out[110]:
In [111]:
b = a.reshape((3,2))
np.where(b > 4)
Out[111]:
In [112]:
from scipy.stats import mode
a = np.array([3, 2, 3, 4, 5, 1, 0, 3, 7, 3])
print np.mean(a)
print np.median(a)
print mode(a)[0], mode(a)[1]
print np.std(a)
print np.var(a)
print np.ptp(a)
For mode function, if there is more than mode value, only the first is returned.
In [113]:
m = np.array([0,1, 77, 3, 4, 5, 3, 4])
mode(m)
Out[113]:
In [114]:
%timeit sum([x * x for x in xrange(1000)])
%timeit na = np.arange(1000); sum(na * na)
%timeit na = np.arange(1000); na.dot(na)