[{'mean_precision': 0.69314216782224825,
'mean_recall': 0.54143947489662647,
'metrics_for_OK': (0.95641838351822506,
0.92234215302321143,
0.93907123753950905,
None),
'metrics_for_attack': (0.36548223350253806,
0.088452088452088448,
0.14243323442136496,
None),
'metrics_for_spam': (0.84326064686082247,
0.8130379568223508,
0.82787356321839078,
None),
'metrics_for_vandalism': (0.6074074074074074,
0.34192570128885519,
0.43754547659471255,
None),
'model': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=64,
oob_score=False, random_state=None, verbose=0,
warm_start=False),
'name': 'RandomForestClassifier',
'params': {'bootstrap': True,
'class_weight': None,
'criterion': 'gini',
'max_depth': None,
'max_features': 'auto',
'max_leaf_nodes': None,
'min_samples_leaf': 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'n_estimators': 10,
'n_jobs': 64,
'oob_score': False,
'random_state': None,
'verbose': 0,
'warm_start': False}},
{'mean_precision': 0.72271138618009134,
'mean_recall': 0.56430114789910635,
'metrics_for_OK': (0.94545629758118921,
0.93714776960550195,
0.94128369951069757,
None),
'metrics_for_attack': (0.47340425531914893,
0.10933660933660934,
0.17764471057884232,
None),
'metrics_for_spam': (0.83568269762299618,
0.85325243403414708,
0.84437617817496347,
None),
'metrics_for_vandalism': (0.63630229419703099,
0.35746777862016682,
0.45776699029126211,
None),
'model': GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
presort='auto', random_state=None, subsample=1.0, verbose=0,
warm_start=False),
'name': 'GradientBoostingClassifier',
'params': {'init': None,
'learning_rate': 0.1,
'loss': 'deviance',
'max_depth': 3,
'max_features': None,
'max_leaf_nodes': None,
'min_samples_leaf': 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'n_estimators': 100,
'presort': 'auto',
'random_state': None,
'subsample': 1.0,
'verbose': 0,
'warm_start': False}},
{'mean_precision': 0.66753987287151406,
'mean_recall': 0.46079958644687213,
'metrics_for_OK': (0.97944630872483218,
0.66911834941255133,
0.79507405936098963,
None),
'metrics_for_attack': (0.47058823529411764,
0.0098280098280098278,
0.01925391095066185,
None),
'metrics_for_spam': (0.5693312966734555,
0.946662903908565,
0.7110381007895713,
None),
'metrics_for_vandalism': (0.65079365079365081,
0.21758908263836241,
0.32613636363636367,
None),
'model': SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),
'name': 'SVC',
'params': {'C': 1.0,
'cache_size': 200,
'class_weight': None,
'coef0': 0.0,
'decision_function_shape': None,
'degree': 3,
'gamma': 'auto',
'kernel': 'rbf',
'max_iter': -1,
'probability': False,
'random_state': None,
'shrinking': True,
'tol': 0.001,
'verbose': False}},
{'mean_precision': 0.30001932908522894,
'mean_recall': 0.75231439950948586,
'metrics_for_OK': (0.51765943590000496,
0.98700926545037726,
0.67913243509694365,
None),
'metrics_for_attack': (0.042308902170493864,
0.99140049140049136,
0.081154465004022527,
None),
'metrics_for_spam': (0.34347976478727082,
0.98080993368138847,
0.50878348704435672,
None),
'metrics_for_vandalism': (0.29662921348314608,
0.050037907505686124,
0.085630879013947434,
None),
'model': GaussianNB(),
'name': 'GaussianNB',
'params': {}}]