In [258]:
%reset -f

In [282]:
from IPython.display import display, HTML
from sklearn import metrics
from sklearn import cross_validation
from scipy import interp
import pandas as pd
import numpy as np
import os

import sys
sys.path.insert(1, "/home/aegle/projects/myosa/src/")
from TypeFeatImputer import TypeFeatImputer
from i_score_parallel import i_score
from TypeFeatFS import DiscreteFS, ContinuousFS
from TypeFeatFilter import DiscreteFilter, ContinuousFilter
from OutlierFiltering import OutlierFiltering
from typeFeat_score import typeFeat_score

from pylab import *
import seaborn as sns
import matplotlib.pyplot as plt


np.set_printoptions(suppress=True)
pd.options.display.float_format = '{:,.2f}'.format
plt.style.use('classic')

%matplotlib inline

In [298]:
folder = "equal_more_four" #"more_than_four"

In [302]:
dfAll =[]
datasets = [0,1,2]
for ds in datasets:
    pathDir = os.path.join('resources','results',folder,'ds_' + str(ds)) 
    path, dirs, files = os.walk(pathDir).next()
    file_count = len(files)

    for num_exp in range(file_count):
        ddf = pd.read_pickle(os.path.join('resources','results',folder,'ds_' + str(ds),'results_pipe_' 
                                         + str(ds) + '_' + str(num_exp) + '.pkl'))
    ddf["ds"] = ds
    print ddf.shape
    dfAll.append(ddf)


(76, 23)
(76, 23)
(76, 23)

In [303]:
dfs = pd.DataFrame(np.vstack(dfAll), columns=ddf.columns)

dfs.cv_f1_mean = pd.to_numeric(dfs.cv_f1_mean)
dfs.cv_rec_mean = pd.to_numeric(dfs.cv_rec_mean)
dfs.cv_prec_mean = pd.to_numeric(dfs.cv_prec_mean)

dfs.cv_f1_std = pd.to_numeric(dfs.cv_f1_std)
dfs.cv_prec_std = pd.to_numeric(dfs.cv_prec_std)
dfs.cv_rec_std = pd.to_numeric(dfs.cv_rec_std)
dfs.exp = pd.to_numeric(dfs.exp)

dfs["cv_f1"] = dfs["cv_f1_mean"].round(2).astype(str).str.cat(dfs["cv_f1_std"].round(2).astype(str), sep="+/-")
dfs["cv_prec"] = dfs["cv_prec_mean"].round(2).astype(str).str.cat(dfs["cv_prec_std"].round(2).astype(str), sep="+/-")
dfs["cv_rec"] = dfs["cv_rec_mean"].round(2).astype(str).str.cat(dfs["cv_rec_std"].round(2).astype(str), sep="+/-")
dfs["num_nones"] = np.sum(np.hstack(((dfs.sm == "none").reshape(-1,1),(dfs.fs == "none").reshape(-1,1))), axis=1)

print dfs.columns.tolist()
print dfs.shape


['exp', 'out', 'fs', 'sm', 'cls', 'metric', 'params', 'tr_f1', 'tr_prec', 'tr_rec', 'cv_f1_mean', 'cv_f1_std', 'cv_prec_mean', 'cv_prec_std', 'cv_rec_mean', 'cv_rec_std', 'test_f1', 'test_prec', 'test_rec', 'test_auc', 'time', 'pipeline', 'ds', 'cv_f1', 'cv_prec', 'cv_rec', 'num_nones']
(228, 27)
         cv_f1      cv_prec       cv_rec
0  0.52+/-0.19  0.54+/-0.22  0.54+/-0.18
1  0.55+/-0.14   0.58+/-0.2  0.59+/-0.12
2  0.47+/-0.17   0.48+/-0.2   0.5+/-0.16
3  0.47+/-0.17   0.48+/-0.2   0.5+/-0.16
4   0.5+/-0.19  0.52+/-0.19  0.51+/-0.19
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/ipykernel/__main__.py:15: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead

1. All timepoints and all pipelines

a) Show performances of best pipelines


In [346]:
idx = []
for ds in datasets:
    dfTmp = dfs[dfs.ds == ds].sort_values(["cv_f1_mean","exp"], ascending=False)
    idx.extend(dfTmp.iloc[:1].index.tolist())

print idx    
dfs.ix[idx][["exp","ds","sm","fs","metric","cls","params","cv_f1_mean","cv_f1_std","test_f1"]]


[50, 126, 206]
Out[346]:
exp ds sm fs metric cls params cv_f1_mean cv_f1_std test_f1
50 50 0 none none f1_weighted svmRBF [0.001, None, 50] 0.71 0.18 0.76
126 50 1 none none f1_weighted svmRBF [0.001, None, 30] 0.83 0.08 0.84
206 54 2 after none f1_weighted logReg [None, 0.5, 3, l1] 0.90 0.12 0.85

In [325]:
#Plot performances best classifier algorithms
plt.figure(figsize=(15,6))
w = 0.20
thr = 1

errs = dfs.ix[idx]["cv_f1_std"].values
errs = np.vstack((errs, np.array([0,0,0]))).T

for i,ds in enumerate(datasets):
    ax = plt.subplot(1,3,ds+1)
    dfTmp = dfs[dfs.ds == ds].sort_values("cv_f1_mean", ascending=False)
    dfTmp.iloc[:thr][["cv_f1_mean","test_f1"]].plot(kind="bar", yerr=[[errs[i,0]],[0.0]], rot=0, ax=ax, alpha=0.5)
    print dfTmp.iloc[:thr].index.values, dfTmp.iloc[:thr]["exp"].values, dfTmp.iloc[:thr]["ds"].values
    ax.set_xticks([])
    ax.set_xlabel("D"+str(ds))
    ax.set_ylim(0.4,1.08)
    
plt.legend()
plt.show()


[50] [50] [0]
[126] [50] [1]
[206] [54] [2]

b) Compute for each timepoint performances of best pipelines grouped by algorithm type


In [347]:
tmp = []
for d in dfs.ds.unique():
    for c in dfs.cls.unique():
        tmp.append(dfs[np.logical_and(dfs.ds == d,dfs.cls == c)]
                   [["exp","ds","sm","fs","metric","cls","params","cv_f1_mean","cv_f1_std","cv_f1","test_f1", "pipeline"]].
                   sort_values(["cv_f1_mean","exp"], ascending=False).iloc[0].values)        

dfTmp = pd.DataFrame(tmp, columns=["exp","ds","sm","fs","metric","cls","params","cv_f1_mean","cv_f1_std","cv_f1","test_f1", "pipeline"])
dfTmp.sort_values(["ds","cv_f1_mean"], ascending=True)[["exp","ds","sm","fs","metric","cls","params","cv_f1","test_f1"]]


Out[347]:
exp ds sm fs metric cls params cv_f1 test_f1
1 59 0 after none f1_weighted rf [gini, None, None, 150, 5] 0.61+/-0.18 0.84
0 69 0 none rfe_rf_fs f1_weighted knn [21, uniform, 5, 0.1] 0.66+/-0.2 0.60
3 45 0 none none precision_weighted logReg [None, 30, l2] 0.7+/-0.16 0.76
2 50 0 none none f1_weighted svmRBF [0.001, None, 50] 0.71+/-0.18 0.76
4 48 0 none none f1_weighted nn [(30, 30), 0.01] 0.71+/-0.18 0.76
5 6 1 none combine_fs f1_weighted knn [uniform, 1, 20] 0.62+/-0.22 0.46
6 1 1 none combine_fs precision_weighted rf [100, gini, 4, balanced, 20] 0.7+/-0.1 0.54
8 55 1 after none precision_weighted logReg [None, 0.5, 3, l2] 0.76+/-0.15 0.84
9 58 1 after none f1_weighted nn [(100, 100), 4, 0.01] 0.8+/-0.11 0.84
7 50 1 none none f1_weighted svmRBF [0.001, None, 30] 0.83+/-0.08 0.84
10 16 2 after combine_fs f1_weighted knn [distance, 11, 5, 3] 0.77+/-0.09 0.85
12 53 2 after none precision_weighted svmRBF [0.001, None, 3, 30] 0.83+/-0.11 0.77
14 58 2 after none f1_weighted nn [(100,), 5, 1e-05] 0.85+/-0.08 0.84
11 39 2 none lasso_fs precision_weighted rf [entropy, 1, None, None, 500] 0.87+/-0.12 0.84
13 54 2 after none f1_weighted logReg [None, 0.5, 3, l1] 0.9+/-0.12 0.85

Compute significance test among best classifiers (grouped by type)


In [355]:
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.stats.multicomp import MultiComparison
from statsmodels.stats.libqsturng import psturng
import scipy.stats as stats

all_cvs = []
for ds in dfTmp.ds.unique():
    
    print "\nDS:", ds
    datafilenames = []
    datafilenames.append(os.path.join('resources','data_partition_cl0_short_no_monit_14012016.pkl'))
    datafilenames.append(os.path.join('resources','data_partition_cl0_short_1m_monit_14012016.pkl'))
    datafilenames.append(os.path.join('resources','data_partition_cl0_short_3m_1m_monit_14012016.pkl'))


    #Load Train & test data
    f = file(datafilenames[ds],"rb")
    X_train = np.load(f).astype(float)
    y_train = np.load(f).astype(int)
    X_test = np.load(f).astype(float)
    y_test = np.load(f).astype(int)
    cols = np.load(f)
    tr_codes = np.load(f)
    ts_codes = np.load(f)
    feat_types = np.load(f)
    feat_types = dict(feat_types.tolist())
    f.close()

    #Join data
    X_all = np.vstack((X_train,X_test))
    y_all = np.hstack((y_train, y_test)).reshape(-1,1)
    all_codes = np.hstack((tr_codes,ts_codes))

    #CV data
    cv_outer = cross_validation.StratifiedShuffleSplit(y_train, n_iter=10, test_size=0.30, random_state=42) 
    
    #Compute all k-fold cv
    cvs = []
    for exp in dfTmp[dfTmp.ds == ds].exp.values:
        dt = dfTmp[np.logical_and(dfTmp.ds == ds, dfTmp.exp == exp)]
        cls = dt["pipeline"].values[0]
                
        cv = cross_validation.cross_val_score(cls, X_train, y_train, cv=cv_outer, scoring='f1_weighted', n_jobs=-1)   
        for c in cv:
            cvs.append([ds, exp, c])
    
    
    #Compute significance (anova)
    cvs = np.array(cvs)        
    all_cvs.append(cvs)
    st, p = stats.f_oneway(*[cvs[cvs[:,1] == i,1] for i in np.unique(cvs[:,1])])
    
    print "Pipelines:", dfTmp[dfTmp.ds == ds].exp.values
    print "stat:",st, "p-value:", p
    print "Means:",[np.mean(cvs[cvs[:,1] == i,1]) for i in np.unique(cvs[:,1])]
    print "std:",[np.std(cvs[cvs[:,1] == i,1]) for i in np.unique(cvs[:,1])]

    #Posthoc pair-wise significance tests        
    # http://cleverowl.uk/2015/07/01/using-one-way-anova-and-tukeys-test-to-compare-data-sets/
    # https://stackoverflow.com/questions/16049552/what-statistics-module-for-python-supports-one-way-anova-with-post-hoc-tests-tu
    # http://jpktd.blogspot.com.es/2013/03/multiple-comparison-and-tukey-hsd-or_25.html    
    mc = MultiComparison(cvs[:,2], cvs[:,1])
    
    #Tukey test
    #result = mc.tukeyhsd()
    #print
    #print(result)
    #print(mc.groupsunique)        

    #T-test with bonferroni correction:
    print
    print mc.allpairtest(stats.ttest_rel, method='b')[0]


DS: 0
Pipelines: [69 59 50 45 48]
stat: -4.73504682502e+16 p-value: nan
Means: [45.0, 48.0, 50.0, 59.0, 69.0]
std: [0.0, 0.0, 0.0, 0.0, 0.0]

Test Multiple Comparison ttest_rel 
FWER=0.05 method=b
alphacSidak=0.01, alphacBonf=0.005
=============================================
group1 group2   stat   pval  pval_corr reject
---------------------------------------------
 45.0   48.0   0.4535 0.6609    1.0    False 
 45.0   50.0   0.4535 0.6609    1.0    False 
 45.0   59.0   1.9171 0.0875   0.8746  False 
 45.0   69.0   1.4525 0.1803    1.0    False 
 48.0   50.0    nan    nan      nan    False 
 48.0   59.0   1.8263 0.1011    1.0    False 
 48.0   69.0   1.0345 0.3279    1.0    False 
 50.0   59.0   1.8263 0.1011    1.0    False 
 50.0   69.0   1.0345 0.3279    1.0    False 
 59.0   69.0  -0.7602 0.4666    1.0    False 
---------------------------------------------

DS: 1
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
Pipelines: [ 6  1 50 55 58]
stat: inf p-value: 0.0
Means: [1.0, 6.0, 50.0, 55.0, 58.0]
std: [0.0, 0.0, 0.0, 0.0, 0.0]

Test Multiple Comparison ttest_rel 
FWER=0.05 method=b
alphacSidak=0.01, alphacBonf=0.005
=============================================
group1 group2   stat   pval  pval_corr reject
---------------------------------------------
 1.0    6.0    0.6406 0.5378    1.0    False 
 1.0    50.0  -3.5115 0.0066   0.066   False 
 1.0    55.0  -1.3913 0.1976    1.0    False 
 1.0    58.0  -2.9769 0.0155   0.1553  False 
 6.0    50.0  -2.5225 0.0326   0.3263  False 
 6.0    55.0  -1.7542 0.1133    1.0    False 
 6.0    58.0  -2.3683 0.042    0.4203  False 
 50.0   55.0   2.1989 0.0554   0.5544  False 
 50.0   58.0   0.8964 0.3934    1.0    False 
 55.0   58.0  -1.8321 0.1002    1.0    False 
---------------------------------------------

DS: 2
Pipelines: [16 39 53 54 58]
stat: inf p-value: 0.0
Means: [16.0, 39.0, 53.0, 54.0, 58.0]
std: [0.0, 0.0, 0.0, 0.0, 0.0]

Test Multiple Comparison ttest_rel 
FWER=0.05 method=b
alphacSidak=0.01, alphacBonf=0.005
=============================================
group1 group2   stat   pval  pval_corr reject
---------------------------------------------
 16.0   39.0  -0.8621 0.411     1.0    False 
 16.0   53.0  -0.4694 0.6499    1.0    False 
 16.0   54.0  -1.8384 0.0992   0.9917  False 
 16.0   58.0  -1.3349 0.2147    1.0    False 
 39.0   53.0   0.5372 0.6041    1.0    False 
 39.0   54.0  -0.2644 0.7975    1.0    False 
 39.0   58.0  -0.0591 0.9542    1.0    False 
 53.0   54.0  -0.9216 0.3808    1.0    False 
 53.0   58.0  -1.1036 0.2984    1.0    False 
 54.0   58.0   0.3319 0.7475    1.0    False 
---------------------------------------------

Plot best classifiers by dataset


In [356]:
plt.figure(figsize=(10,4))
for i,colPerf in enumerate(["cv_f1_mean","test_f1"]):
    ax = plt.subplot(1,2,i+1)
    for c in dfTmp.cls.unique():
        dfTmp[dfTmp.cls==c].plot(x="ds",y=colPerf, ax=ax,label=c)    
    plt.xticks(dfs.ds.unique(), dfs.ds.unique())
    plt.ylim(0.4,1.0)
    plt.xticks(datasets,["DS0","DS1","DS3"])
    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
          fancybox=True, shadow=True, ncol=3)
    plt.xlabel("")
    ax.set_title(colPerf)



In [357]:
dfPivot = dfTmp.pivot_table(values="cv_f1_mean",index="ds",columns="cls").reset_index()[["knn","logReg","rf","nn","svmRBF"]]
display(dfPivot)
dfErr = dfTmp.pivot_table(values="cv_f1_std",index="ds",columns="cls").reset_index()[["knn","logReg","rf","nn","svmRBF"]]
display(dfErr)

print len(dfPivot), len(dfErr)
plt.figure(figsize=(15,8))
dfPivot.plot(kind="bar", y=dfPivot.columns, yerr=dfErr,figsize=(15,8), alpha=0.3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xticks(datasets,["DS0","DS1","DS3"])
plt.ylim(0.0,1.05)
plt.show()


cls knn logReg rf nn svmRBF
0 0.66 0.70 0.61 0.71 0.71
1 0.62 0.76 0.70 0.80 0.83
2 0.77 0.90 0.87 0.85 0.83
cls knn logReg rf nn svmRBF
0 0.20 0.16 0.18 0.18 0.18
1 0.22 0.15 0.10 0.11 0.08
2 0.09 0.12 0.12 0.08 0.11
3 3
<matplotlib.figure.Figure at 0x7f8794de2b50>

Statistical difference among best pipelines in cv classifiers for different datasets


In [370]:
best_exp = dfs.ix[idx]["exp"].values
print idx
print best_exp

cvs_best = []
for i,c in enumerate(all_cvs):
    #print best_exp[i]
    #print c[c[:,0] == best_exp[i],:]
    #print np.mean(c[c[:,0] == best_exp[i],1])
    cvs_best.extend(c[np.logical_and(c[:,0] == i, c[:,1] == best_exp[i]),:].tolist())    

cvs_best = np.array(cvs_best)
print cvs_best.shape
st, p = stats.f_oneway(*[cvs_best[cvs_best[:,0] == i, 2] for i in np.unique(cvs_best[:,0])])

print "stat:",st, "p-value:", p
print "Means:",[np.mean(cvs_best[cvs_best[:,0] == i,2]) for i in np.unique(cvs_best[:,0])]
print "std:",[np.std(cvs_best[cvs_best[:,0] == i,2]) for c in np.unique(cvs_best[:,0])]

#Posthoc pair-wise significance tests        
mc = MultiComparison(cvs_best[:,2], np.core.defchararray.add(cvs_best[:,0].astype(str),cvs_best[:,1].astype(str)),)

#T-test with bonferroni correction:
print
print mc.allpairtest(stats.ttest_rel)[0]


[50, 126, 206]
[50 50 54]
(30, 3)
stat: 3.70758492885 p-value: 0.0377821729389
Means: [0.70740259740259737, 0.82849687349687362, 0.86264790764790766]
std: [0.10265896056356723, 0.10265896056356723, 0.10265896056356723]

Test Multiple Comparison ttest_rel 
FWER=0.05 method=bonf
alphacSidak=0.02, alphacBonf=0.017
===============================================
 group1  group2   stat   pval  pval_corr reject
-----------------------------------------------
0.050.0 1.050.0 -2.4255 0.0383   0.1148  False 
0.050.0 2.054.0 -3.0156 0.0146   0.0437   True 
1.050.0 2.054.0 -0.7331 0.4821    1.0    False 
-----------------------------------------------

2. Pipelines by timepoint


In [386]:
ds = 1

In [387]:
df = dfs[dfs.ds == ds].sort_values("cv_f1_mean", ascending=False)
df.cv_f1_mean = pd.to_numeric(df.cv_f1_mean)
df.cv_rec_mean = pd.to_numeric(df.cv_rec_mean)
df.cv_prec_mean = pd.to_numeric(df.cv_prec_mean)

2.1 All pipelines


In [388]:
print "\nDS:", ds
datafilenames = []
datafilenames.append(os.path.join('resources','data_partition_cl0_short_no_monit_14012016.pkl'))
datafilenames.append(os.path.join('resources','data_partition_cl0_short_1m_monit_14012016.pkl'))
datafilenames.append(os.path.join('resources','data_partition_cl0_short_3m_1m_monit_14012016.pkl'))


#Load Train & test data
f = file(datafilenames[ds],"rb")
X_train = np.load(f).astype(float)
y_train = np.load(f).astype(int)
X_test = np.load(f).astype(float)
y_test = np.load(f).astype(int)
cols = np.load(f)
tr_codes = np.load(f)
ts_codes = np.load(f)
feat_types = np.load(f)
feat_types = dict(feat_types.tolist())
f.close()

#Join data
X_all = np.vstack((X_train,X_test))
y_all = np.hstack((y_train, y_test)).reshape(-1,1)
all_codes = np.hstack((tr_codes,ts_codes))

#CV data
cv_outer = cross_validation.StratifiedShuffleSplit(y_train, n_iter=10, test_size=0.30, random_state=42)


DS: 1

a) Avg all pipelines by classifier algorithm


In [389]:
df.boxplot(by="cls",column=["cv_f1_mean"],figsize=(10,6))
plt.ylim(0.4,1.0)
plt.suptitle("")
plt.xlabel("")
plt.title("")


Out[389]:
<matplotlib.text.Text at 0x7f8788f4cd10>

ROC curves


In [390]:
idx = df.groupby(['cls'])['cv_f1_mean'].transform(max) == df['cv_f1_mean']
print idx[idx==True].index.tolist()

dfDescIdx = df[idx]
dfDescIdx = dfDescIdx.groupby("cls").first()
print dfDescIdx.exp.values

dfDescIdx[["fs","sm","metric","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']]


[126, 119, 117, 134, 121, 131, 120, 77, 82]
[ 6 45 41  1 50]
Out[390]:
fs sm metric params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
cls
knn combine_fs none f1_weighted [uniform, 1, 20] 1.00 0.62+/-0.22 0.63+/-0.25 0.64+/-0.2 0.46 0.46 0.47
logReg none none precision_weighted [None, 30, l2] 1.00 0.76+/-0.11 0.8+/-0.11 0.77+/-0.1 0.84 0.85 0.88
nn none after precision_weighted [(100, 100), 4, 0.01] 1.00 0.8+/-0.11 0.82+/-0.11 0.8+/-0.11 0.84 0.85 0.88
rf combine_fs none precision_weighted [100, gini, 4, balanced, 20] 1.00 0.7+/-0.1 0.76+/-0.1 0.72+/-0.09 0.54 0.54 0.54
svmRBF none none f1_weighted [0.001, None, 30] 1.00 0.83+/-0.08 0.85+/-0.07 0.83+/-0.07 0.84 0.85 0.88

CV roc curves


In [391]:
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 9)

i = 0

plt.figure(figsize=(8,6))
ax = plt.subplot(1,1,1)
for exp in dfDescIdx.exp.values:
    
    cls_name = dfDescIdx[dfDescIdx.exp == exp].index.values
    cls = dfDescIdx[dfDescIdx.exp == exp].pipeline.iloc[0]

    for train, test in cv_outer:

        y_pred = cls.fit(X_train[train],y_train[train]).predict(X_train[test])

        # Compute ROC curve and area under the curve
        fpr, tpr, thresholds = metrics.roc_curve(y_train[test], y_pred)

        tprs.append(interp(mean_fpr, fpr, tpr))  
        tprs[-1][0] = 0.0
        roc_auc = metrics.auc(fpr, tpr)    

        aucs.append(roc_auc)
        i += 1

    #Plot auc mean line and shadow mean area
    mean_auc = np.mean(aucs)
    std_auc = np.std(aucs)

    mean_tpr = np.mean(tprs, axis=0)
    mean_tpr[-1] = 1.0
    display(mean_tpr)

    ax.plot(mean_fpr, mean_tpr,
             label=r'Mean ROC %s (AUC = %0.2f $\pm$ %0.2f)' % (cls_name,mean_auc, std_auc),
             lw=2, alpha=.8)
    
#Plot guess line
ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
         label='', alpha=.8)

plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for 10-fold CV')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()


array([ 0.        ,  0.54166667,  0.66333333,  0.725     ,  0.78666667,
        0.84833333,  0.91      ,  0.955     ,  1.        ])
array([ 0.        ,  0.50958333,  0.70916667,  0.76208333,  0.815     ,
        0.86541667,  0.91583333,  0.95791667,  1.        ])
array([ 0.        ,  0.51388889,  0.74111111,  0.78833333,  0.83555556,
        0.87944444,  0.92333333,  0.96166667,  1.        ])
array([ 0.        ,  0.47041667,  0.72583333,  0.79041667,  0.855     ,
        0.89333333,  0.93166667,  0.96583333,  1.        ])
array([ 0.        ,  0.47983333,  0.73966667,  0.80483333,  0.87      ,
        0.90416667,  0.93833333,  0.96916667,  1.        ])

Test roc curves


In [392]:
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()

plt.figure(figsize=(10,6))
ax = plt.subplot(1,1,1)
for exp in dfDescIdx.exp.values:
    
    cls_name = dfDescIdx[dfDescIdx.exp == exp].index.values
    cls = dfDescIdx[dfDescIdx.exp == exp].pipeline.iloc[0]

    y_pred = cls.predict(X_test)
    y_prob = cls.predict_proba(X_test)
    
    fpr_test, tpr_test, _ = metrics.roc_curve(y_test, y_prob[:,1])
    roc_auc = metrics.auc(fpr_test, tpr_test)

    #fpr_test_sc, tpr_test_sc, _ = metrics.roc_curve(y_test, y_score)
    #roc_auc_sc = metrics.auc(fpr_test, tpr_test)

    test_auc_w = metrics.roc_auc_score(y_test, y_pred, average='weighted')

    print
    print "DS:", ds
    print exp
    print cls    
    print y_test
    print y_pred
    print y_prob[:,1]    
    print roc_auc
    print test_auc_w
    print fpr_test
    print tpr_test

    ax.plot(fpr_test, tpr_test, label='ROC testSet %s (AUC = %0.2f)' % (cls_name, roc_auc),lw=2, alpha=.8)
    ax.legend(loc='lower right')

ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',label='', alpha=.3)    
plt.show()


DS: 1
6
Pipeline(steps=[('Imputer', TypeFeatImputer(allNameCols=array(['GENDER', 'ACTIVE', 'RETIRED', 'AGE', 'SMOKER', 'SMOKE_PACK_YEAR',
       'SMOKE_EX_YEAR', 'ALCOHOL', 'ALCOHOL_GR_DAY', 'CAFES_DAY',
       'DEPRESSION', 'ANXIETY', 'HTA', 'CARDIOPATHY', 'RESP_DIS',
       'DIABETES', 'OBESITY', 'DISLIPEMIA', 'OB...owski',
           metric_params=None, n_jobs=1, n_neighbors=1, p=2,
           weights='uniform'))])
[0 1 1 1 0 0 0 0 1 0 1 1 1]
[1 1 0 1 1 0 0 1 1 0 1 0 1]
[ 1.  1.  0.  1.  1.  0.  0.  1.  1.  0.  1.  0.  1.]
0.607142857143
0.607142857143
[ 0.   0.5  1. ]
[ 0.          0.71428571  1.        ]

DS: 1
45
Pipeline(steps=[('Imputer', TypeFeatImputer(allNameCols=array(['GENDER', 'ACTIVE', 'RETIRED', 'AGE', 'SMOKER', 'SMOKE_PACK_YEAR',
       'SMOKE_EX_YEAR', 'ALCOHOL', 'ALCOHOL_GR_DAY', 'CAFES_DAY',
       'DEPRESSION', 'ANXIETY', 'HTA', 'CARDIOPATHY', 'RESP_DIS',
       'DIABETES', 'OBESITY', 'DISLIPEMIA', 'OB...alty='l2', random_state=42, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False))])
[0 1 1 1 0 0 0 0 1 0 1 1 1]
[0 1 1 1 1 0 0 0 1 0 1 0 0]
[ 0.00247262  0.97558447  0.92307559  0.95686749  0.62644929  0.08257369
  0.05549734  0.02571307  0.71911365  0.00887739  0.99999671  0.00419745
  0.02033815]
0.785714285714
0.77380952381
[ 0.          0.          0.66666667  0.66666667  0.83333333  0.83333333
  1.        ]
[ 0.14285714  0.71428571  0.71428571  0.85714286  0.85714286  1.          1.        ]

DS: 1
41
Pipeline(steps=[('Imputer', TypeFeatImputer(allNameCols=array(['GENDER', 'ACTIVE', 'RETIRED', 'AGE', 'SMOKER', 'SMOKE_PACK_YEAR',
       'SMOKE_EX_YEAR', 'ALCOHOL', 'ALCOHOL_GR_DAY', 'CAFES_DAY',
       'DEPRESSION', 'ANXIETY', 'HTA', 'CARDIOPATHY', 'RESP_DIS',
       'DIABETES', 'OBESITY', 'DISLIPEMIA', 'OB...      solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
       warm_start=False))])
[0 1 1 1 0 0 0 0 1 0 1 1 1]
[0 1 1 1 1 0 0 0 1 0 1 0 0]
[ 0.00187182  0.99015314  0.97225311  0.98062276  0.61225805  0.0379287
  0.03211616  0.01722012  0.70515126  0.00405211  0.99998008  0.00182539
  0.01055821]
0.761904761905
0.77380952381
[ 0.          0.          0.66666667  0.66666667  1.          1.        ]
[ 0.14285714  0.71428571  0.71428571  0.85714286  0.85714286  1.        ]

DS: 1
1
Pipeline(steps=[('Imputer', TypeFeatImputer(allNameCols=array(['GENDER', 'ACTIVE', 'RETIRED', 'AGE', 'SMOKER', 'SMOKE_PACK_YEAR',
       'SMOKE_EX_YEAR', 'ALCOHOL', 'ALCOHOL_GR_DAY', 'CAFES_DAY',
       'DEPRESSION', 'ANXIETY', 'HTA', 'CARDIOPATHY', 'RESP_DIS',
       'DIABETES', 'OBESITY', 'DISLIPEMIA', 'OB...imators=100, n_jobs=-1,
            oob_score=False, random_state=42, verbose=0, warm_start=False))])
[0 1 1 1 0 0 0 0 1 0 1 1 1]
[0 1 1 1 0 1 0 1 1 0 1 1 0]
[ 0.31        0.82        0.74        0.88        0.48181818  0.57        0.4
  0.73        0.79        0.38        0.93        0.52        0.24      ]
0.809523809524
0.761904761905
[ 0.          0.          0.33333333  0.33333333  1.          1.        ]
[ 0.14285714  0.71428571  0.71428571  0.85714286  0.85714286  1.        ]

DS: 1
50
Pipeline(steps=[('Imputer', TypeFeatImputer(allNameCols=array(['GENDER', 'ACTIVE', 'RETIRED', 'AGE', 'SMOKER', 'SMOKE_PACK_YEAR',
       'SMOKE_EX_YEAR', 'ALCOHOL', 'ALCOHOL_GR_DAY', 'CAFES_DAY',
       'DEPRESSION', 'ANXIETY', 'HTA', 'CARDIOPATHY', 'RESP_DIS',
       'DIABETES', 'OBESITY', 'DISLIPEMIA', 'OB...bf',
  max_iter=-1, probability=True, random_state=42, shrinking=True,
  tol=0.001, verbose=False))])
[0 1 1 1 0 0 0 0 1 0 1 1 1]
[0 1 1 1 1 0 0 0 1 0 1 0 0]
[ 0.51181977  0.6468261   0.63357833  0.63786607  0.60179588  0.56306431
  0.55039371  0.54299657  0.60592509  0.52004931  0.73916563  0.51286223
  0.53535692]
0.785714285714
0.77380952381
[ 0.          0.          0.66666667  0.66666667  0.83333333  0.83333333
  1.        ]
[ 0.14285714  0.71428571  0.71428571  0.85714286  0.85714286  1.          1.        ]

Statistical significance test among all classifiers for the dataset


In [393]:
#Compute all k-fold cv
cvs = []
for exp in df.exp.values:
    dt = df[df.exp == exp]
    cls = dt["pipeline"].values[0]

    cv = cross_validation.cross_val_score(cls, X_train, y_train, cv=cv_outer, scoring='f1_weighted', n_jobs=-1)   
    for c in cv:
        cvs.append([exp, c])

#Compute significance (anova)
cvs = np.array(cvs)


/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)
/home/aegle/miniconda2/envs/myosa/lib/python2.7/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)

In [394]:
#Multiple tests
st, p = stats.f_oneway(*[cvs[cvs[:,0] == i,1] for i in np.unique(cvs[:,0])])
print "stat:",st, "p-value:", p


#Find pairwise adhoc significance of dependent tests
mc = MultiComparison(cvs[:,1], cvs[:,0])

#Tukey test
result = mc.tukeyhsd()
print(result)
print(mc.groupsunique)

#T-test with bonferroni correction:
print
print mc.allpairtest(stats.ttest_rel,method='b')[0]


stat: 2.07665146572 p-value: 1.16055190762e-06
Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 0.0    1.0    0.0808  -0.2854 0.447  False 
 0.0    2.0    -0.049  -0.4152 0.3172 False 
 0.0    3.0   -0.0193  -0.3855 0.3469 False 
 0.0    4.0    0.0722   -0.294 0.4384 False 
 0.0    5.0    0.0722   -0.294 0.4384 False 
 0.0    6.0    0.0205  -0.3457 0.3867 False 
 0.0    7.0   -0.0795  -0.4458 0.2867 False 
 0.0    8.0   -0.0588   -0.425 0.3074 False 
 0.0    9.0    0.0686  -0.2976 0.4348 False 
 0.0    10.0  -0.0548   -0.421 0.3114 False 
 0.0    11.0  -0.0548   -0.421 0.3114 False 
 0.0    12.0    0.05   -0.3162 0.4162 False 
 0.0    13.0   0.0291  -0.3371 0.3953 False 
 0.0    14.0   0.0093  -0.3569 0.3755 False 
 0.0    15.0   0.0332   -0.333 0.3995 False 
 0.0    16.0    0.0    -0.3662 0.3662 False 
 0.0    17.0   -0.057  -0.4232 0.3092 False 
 0.0    18.0  -0.0583  -0.4245 0.3079 False 
 0.0    19.0  -0.0574  -0.4237 0.3088 False 
 0.0    20.0  -0.0025  -0.3687 0.3638 False 
 0.0    21.0  -0.0508   -0.417 0.3154 False 
 0.0    22.0   0.0595  -0.3067 0.4257 False 
 0.0    23.0   0.0077  -0.3585 0.3739 False 
 0.0    24.0  -0.0351  -0.4013 0.3311 False 
 0.0    25.0  -0.0701  -0.4363 0.2961 False 
 0.0    26.0   0.0129  -0.3533 0.3791 False 
 0.0    27.0   0.0129  -0.3533 0.3791 False 
 0.0    28.0   -0.063  -0.4292 0.3033 False 
 0.0    29.0  -0.0052  -0.3714 0.361  False 
 0.0    30.0   0.0105  -0.3557 0.3768 False 
 0.0    31.0  -0.0257  -0.3919 0.3405 False 
 0.0    32.0   0.0242   -0.342 0.3905 False 
 0.0    33.0   0.0122   -0.354 0.3784 False 
 0.0    34.0  -0.0303  -0.3965 0.3359 False 
 0.0    35.0  -0.0278   -0.394 0.3384 False 
 0.0    36.0  -0.0295  -0.3957 0.3367 False 
 0.0    37.0  -0.0295  -0.3957 0.3367 False 
 0.0    38.0  -0.0025  -0.3687 0.3638 False 
 0.0    39.0  -0.0508   -0.417 0.3154 False 
 0.0    40.0   -0.034  -0.4002 0.3322 False 
 0.0    41.0   0.1955  -0.1707 0.5617 False 
 0.0    42.0   -0.034  -0.4002 0.3322 False 
 0.0    43.0   0.214   -0.1522 0.5802 False 
 0.0    44.0   0.1595  -0.2067 0.5257 False 
 0.0    45.0   0.1595  -0.2067 0.5257 False 
 0.0    46.0  -0.1184  -0.4846 0.2478 False 
 0.0    47.0  -0.0752  -0.4414 0.291  False 
 0.0    48.0   0.1469  -0.2193 0.5131 False 
 0.0    49.0   0.1812   -0.185 0.5474 False 
 0.0    50.0   0.214   -0.1522 0.5802 False 
 0.0    51.0   0.0591  -0.3071 0.4253 False 
 0.0    52.0   0.214   -0.1522 0.5802 False 
 0.0    53.0   0.214   -0.1522 0.5802 False 
 0.0    54.0   0.1373  -0.2289 0.5035 False 
 0.0    55.0   0.1473  -0.2189 0.5135 False 
 0.0    56.0  -0.1085  -0.4747 0.2577 False 
 0.0    57.0  -0.1085  -0.4747 0.2577 False 
 0.0    58.0   0.1955  -0.1707 0.5617 False 
 0.0    59.0   0.0591  -0.3071 0.4253 False 
 0.0    60.0  -0.1333  -0.4996 0.2329 False 
 0.0    61.0  -0.1333  -0.4996 0.2329 False 
 0.0    62.0   0.057   -0.3092 0.4232 False 
 0.0    63.0   0.0875  -0.2787 0.4537 False 
 0.0    64.0   0.0544  -0.3118 0.4206 False 
 0.0    65.0   0.0791  -0.2871 0.4453 False 
 0.0    66.0   0.0522   -0.314 0.4184 False 
 0.0    67.0   0.0334  -0.3328 0.3996 False 
 0.0    68.0  -0.0602  -0.4264 0.306  False 
 0.0    69.0  -0.0602  -0.4264 0.306  False 
 0.0    70.0   0.1034  -0.2628 0.4696 False 
 0.0    71.0   0.0544  -0.3118 0.4206 False 
 0.0    72.0   0.1045  -0.2617 0.4707 False 
 0.0    73.0   0.0531  -0.3131 0.4194 False 
 0.0    74.0   0.0522   -0.314 0.4184 False 
 0.0    75.0   0.059   -0.3072 0.4252 False 
 1.0    2.0   -0.1299  -0.4961 0.2363 False 
 1.0    3.0   -0.1001  -0.4664 0.2661 False 
 1.0    4.0   -0.0086  -0.3748 0.3576 False 
 1.0    5.0   -0.0086  -0.3748 0.3576 False 
 1.0    6.0   -0.0603  -0.4265 0.3059 False 
 1.0    7.0   -0.1604  -0.5266 0.2058 False 
 1.0    8.0   -0.1396  -0.5058 0.2266 False 
 1.0    9.0   -0.0122  -0.3784 0.354  False 
 1.0    10.0  -0.1356  -0.5018 0.2306 False 
 1.0    11.0  -0.1356  -0.5018 0.2306 False 
 1.0    12.0  -0.0308   -0.397 0.3354 False 
 1.0    13.0  -0.0518   -0.418 0.3144 False 
 1.0    14.0  -0.0716  -0.4378 0.2947 False 
 1.0    15.0  -0.0476  -0.4138 0.3186 False 
 1.0    16.0  -0.0808   -0.447 0.2854 False 
 1.0    17.0  -0.1378   -0.504 0.2284 False 
 1.0    18.0  -0.1391  -0.5053 0.2271 False 
 1.0    19.0  -0.1383  -0.5045 0.2279 False 
 1.0    20.0  -0.0833  -0.4495 0.2829 False 
 1.0    21.0  -0.1316  -0.4978 0.2346 False 
 1.0    22.0  -0.0213  -0.3875 0.3449 False 
 1.0    23.0  -0.0731  -0.4393 0.2931 False 
 1.0    24.0  -0.1159  -0.4821 0.2503 False 
 1.0    25.0  -0.1509  -0.5171 0.2153 False 
 1.0    26.0  -0.0679  -0.4342 0.2983 False 
 1.0    27.0  -0.0679  -0.4342 0.2983 False 
 1.0    28.0  -0.1438   -0.51  0.2224 False 
 1.0    29.0   -0.086  -0.4522 0.2802 False 
 1.0    30.0  -0.0703  -0.4365 0.2959 False 
 1.0    31.0  -0.1065  -0.4727 0.2597 False 
 1.0    32.0  -0.0566  -0.4228 0.3096 False 
 1.0    33.0  -0.0686  -0.4348 0.2976 False 
 1.0    34.0  -0.1111  -0.4773 0.2551 False 
 1.0    35.0  -0.1086  -0.4748 0.2576 False 
 1.0    36.0  -0.1103  -0.4765 0.2559 False 
 1.0    37.0  -0.1103  -0.4765 0.2559 False 
 1.0    38.0  -0.0833  -0.4495 0.2829 False 
 1.0    39.0  -0.1316  -0.4978 0.2346 False 
 1.0    40.0  -0.1148   -0.481 0.2514 False 
 1.0    41.0   0.1146  -0.2516 0.4808 False 
 1.0    42.0  -0.1148   -0.481 0.2514 False 
 1.0    43.0   0.1332   -0.233 0.4994 False 
 1.0    44.0   0.0787  -0.2875 0.4449 False 
 1.0    45.0   0.0787  -0.2875 0.4449 False 
 1.0    46.0  -0.1992  -0.5654 0.167  False 
 1.0    47.0  -0.1561  -0.5223 0.2101 False 
 1.0    48.0   0.066   -0.3002 0.4322 False 
 1.0    49.0   0.1004  -0.2659 0.4666 False 
 1.0    50.0   0.1332   -0.233 0.4994 False 
 1.0    51.0  -0.0217   -0.388 0.3445 False 
 1.0    52.0   0.1332   -0.233 0.4994 False 
 1.0    53.0   0.1332   -0.233 0.4994 False 
 1.0    54.0   0.0565  -0.3097 0.4227 False 
 1.0    55.0   0.0665  -0.2997 0.4327 False 
 1.0    56.0  -0.1894  -0.5556 0.1768 False 
 1.0    57.0  -0.1894  -0.5556 0.1768 False 
 1.0    58.0   0.1146  -0.2516 0.4808 False 
 1.0    59.0  -0.0217   -0.388 0.3445 False 
 1.0    60.0  -0.2142  -0.5804 0.152  False 
 1.0    61.0  -0.2142  -0.5804 0.152  False 
 1.0    62.0  -0.0238   -0.39  0.3424 False 
 1.0    63.0   0.0067  -0.3595 0.3729 False 
 1.0    64.0  -0.0264  -0.3926 0.3398 False 
 1.0    65.0  -0.0017   -0.368 0.3645 False 
 1.0    66.0  -0.0287  -0.3949 0.3376 False 
 1.0    67.0  -0.0475  -0.4137 0.3188 False 
 1.0    68.0   -0.141  -0.5073 0.2252 False 
 1.0    69.0   -0.141  -0.5073 0.2252 False 
 1.0    70.0   0.0226  -0.3436 0.3888 False 
 1.0    71.0  -0.0264  -0.3926 0.3398 False 
 1.0    72.0   0.0237  -0.3425 0.3899 False 
 1.0    73.0  -0.0277  -0.3939 0.3385 False 
 1.0    74.0  -0.0287  -0.3949 0.3376 False 
 1.0    75.0  -0.0218  -0.3881 0.3444 False 
 2.0    3.0    0.0297  -0.3365 0.3959 False 
 2.0    4.0    0.1213  -0.2449 0.4875 False 
 2.0    5.0    0.1213  -0.2449 0.4875 False 
 2.0    6.0    0.0695  -0.2967 0.4358 False 
 2.0    7.0   -0.0305  -0.3967 0.3357 False 
 2.0    8.0   -0.0097   -0.376 0.3565 False 
 2.0    9.0    0.1176  -0.2486 0.4839 False 
 2.0    10.0  -0.0058   -0.372 0.3604 False 
 2.0    11.0  -0.0058   -0.372 0.3604 False 
 2.0    12.0   0.0991  -0.2672 0.4653 False 
 2.0    13.0   0.0781  -0.2881 0.4443 False 
 2.0    14.0   0.0583  -0.3079 0.4245 False 
 2.0    15.0   0.0823  -0.2839 0.4485 False 
 2.0    16.0   0.049   -0.3172 0.4152 False 
 2.0    17.0   -0.008  -0.3742 0.3583 False 
 2.0    18.0  -0.0093  -0.3755 0.3569 False 
 2.0    19.0  -0.0084  -0.3746 0.3578 False 
 2.0    20.0   0.0466  -0.3196 0.4128 False 
 2.0    21.0  -0.0018   -0.368 0.3645 False 
 2.0    22.0   0.1086  -0.2576 0.4748 False 
 2.0    23.0   0.0567  -0.3095 0.423  False 
 2.0    24.0   0.014   -0.3522 0.3802 False 
 2.0    25.0   -0.021  -0.3872 0.3452 False 
 2.0    26.0   0.0619  -0.3043 0.4281 False 
 2.0    27.0   0.0619  -0.3043 0.4281 False 
 2.0    28.0  -0.0139  -0.3801 0.3523 False 
 2.0    29.0   0.0438  -0.3224 0.4101 False 
 2.0    30.0   0.0596  -0.3066 0.4258 False 
 2.0    31.0   0.0234  -0.3428 0.3896 False 
 2.0    32.0   0.0733  -0.2929 0.4395 False 
 2.0    33.0   0.0612   -0.305 0.4275 False 
 2.0    34.0   0.0188  -0.3475 0.385  False 
 2.0    35.0   0.0212   -0.345 0.3874 False 
 2.0    36.0   0.0196  -0.3466 0.3858 False 
 2.0    37.0   0.0196  -0.3466 0.3858 False 
 2.0    38.0   0.0466  -0.3196 0.4128 False 
 2.0    39.0  -0.0018   -0.368 0.3645 False 
 2.0    40.0   0.015   -0.3512 0.3812 False 
 2.0    41.0   0.2445  -0.1217 0.6107 False 
 2.0    42.0   0.015   -0.3512 0.3812 False 
 2.0    43.0   0.263   -0.1032 0.6292 False 
 2.0    44.0   0.2086  -0.1576 0.5748 False 
 2.0    45.0   0.2086  -0.1576 0.5748 False 
 2.0    46.0  -0.0694  -0.4356 0.2968 False 
 2.0    47.0  -0.0262  -0.3924  0.34  False 
 2.0    48.0   0.1959  -0.1703 0.5621 False 
 2.0    49.0   0.2302   -0.136 0.5964 False 
 2.0    50.0   0.263   -0.1032 0.6292 False 
 2.0    51.0   0.1081  -0.2581 0.4743 False 
 2.0    52.0   0.263   -0.1032 0.6292 False 
 2.0    53.0   0.263   -0.1032 0.6292 False 
 2.0    54.0   0.1864  -0.1799 0.5526 False 
 2.0    55.0   0.1964  -0.1699 0.5626 False 
 2.0    56.0  -0.0595  -0.4257 0.3067 False 
 2.0    57.0  -0.0595  -0.4257 0.3067 False 
 2.0    58.0   0.2445  -0.1217 0.6107 False 
 2.0    59.0   0.1081  -0.2581 0.4743 False 
 2.0    60.0  -0.0843  -0.4505 0.2819 False 
 2.0    61.0  -0.0843  -0.4505 0.2819 False 
 2.0    62.0   0.106   -0.2602 0.4722 False 
 2.0    63.0   0.1365  -0.2297 0.5028 False 
 2.0    64.0   0.1034  -0.2628 0.4696 False 
 2.0    65.0   0.1281  -0.2381 0.4943 False 
 2.0    66.0   0.1012   -0.265 0.4674 False 
 2.0    67.0   0.0824  -0.2838 0.4486 False 
 2.0    68.0  -0.0112  -0.3774 0.355  False 
 2.0    69.0  -0.0112  -0.3774 0.355  False 
 2.0    70.0   0.1525  -0.2137 0.5187 False 
 2.0    71.0   0.1034  -0.2628 0.4696 False 
 2.0    72.0   0.1536  -0.2126 0.5198 False 
 2.0    73.0   0.1022   -0.264 0.4684 False 
 2.0    74.0   0.1012   -0.265 0.4674 False 
 2.0    75.0   0.108   -0.2582 0.4742 False 
 3.0    4.0    0.0916  -0.2747 0.4578 False 
 3.0    5.0    0.0916  -0.2747 0.4578 False 
 3.0    6.0    0.0398  -0.3264 0.406  False 
 3.0    7.0   -0.0602  -0.4264 0.306  False 
 3.0    8.0   -0.0395  -0.4057 0.3267 False 
 3.0    9.0    0.0879  -0.2783 0.4541 False 
 3.0    10.0  -0.0355  -0.4017 0.3307 False 
 3.0    11.0  -0.0355  -0.4017 0.3307 False 
 3.0    12.0   0.0693  -0.2969 0.4355 False 
 3.0    13.0   0.0484  -0.3178 0.4146 False 
 3.0    14.0   0.0286  -0.3376 0.3948 False 
 3.0    15.0   0.0526  -0.3136 0.4188 False 
 3.0    16.0   0.0193  -0.3469 0.3855 False 
 3.0    17.0  -0.0377  -0.4039 0.3285 False 
 3.0    18.0   -0.039  -0.4052 0.3272 False 
 3.0    19.0  -0.0381  -0.4043 0.3281 False 
 3.0    20.0   0.0169  -0.3493 0.3831 False 
 3.0    21.0  -0.0315  -0.3977 0.3347 False 
 3.0    22.0   0.0789  -0.2874 0.4451 False 
 3.0    23.0   0.027   -0.3392 0.3932 False 
 3.0    24.0  -0.0158   -0.382 0.3505 False 
 3.0    25.0  -0.0508   -0.417 0.3155 False 
 3.0    26.0   0.0322   -0.334 0.3984 False 
 3.0    27.0   0.0322   -0.334 0.3984 False 
 3.0    28.0  -0.0436  -0.4098 0.3226 False 
 3.0    29.0   0.0141  -0.3521 0.3803 False 
 3.0    30.0   0.0299  -0.3363 0.3961 False 
 3.0    31.0  -0.0064  -0.3726 0.3599 False 
 3.0    32.0   0.0436  -0.3226 0.4098 False 
 3.0    33.0   0.0315  -0.3347 0.3977 False 
 3.0    34.0   -0.011  -0.3772 0.3552 False 
 3.0    35.0  -0.0085  -0.3747 0.3577 False 
 3.0    36.0  -0.0102  -0.3764 0.3561 False 
 3.0    37.0  -0.0102  -0.3764 0.3561 False 
 3.0    38.0   0.0169  -0.3493 0.3831 False 
 3.0    39.0  -0.0315  -0.3977 0.3347 False 
 3.0    40.0  -0.0147  -0.3809 0.3515 False 
 3.0    41.0   0.2148  -0.1514 0.581  False 
 3.0    42.0  -0.0147  -0.3809 0.3515 False 
 3.0    43.0   0.2333  -0.1329 0.5995 False 
 3.0    44.0   0.1789  -0.1874 0.5451 False 
 3.0    45.0   0.1789  -0.1874 0.5451 False 
 3.0    46.0  -0.0991  -0.4653 0.2671 False 
 3.0    47.0  -0.0559  -0.4221 0.3103 False 
 3.0    48.0   0.1662    -0.2  0.5324 False 
 3.0    49.0   0.2005  -0.1657 0.5667 False 
 3.0    50.0   0.2333  -0.1329 0.5995 False 
 3.0    51.0   0.0784  -0.2878 0.4446 False 
 3.0    52.0   0.2333  -0.1329 0.5995 False 
 3.0    53.0   0.2333  -0.1329 0.5995 False 
 3.0    54.0   0.1566  -0.2096 0.5228 False 
 3.0    55.0   0.1666  -0.1996 0.5328 False 
 3.0    56.0  -0.0892  -0.4554 0.277  False 
 3.0    57.0  -0.0892  -0.4554 0.277  False 
 3.0    58.0   0.2148  -0.1514 0.581  False 
 3.0    59.0   0.0784  -0.2878 0.4446 False 
 3.0    60.0   -0.114  -0.4802 0.2522 False 
 3.0    61.0   -0.114  -0.4802 0.2522 False 
 3.0    62.0   0.0763  -0.2899 0.4425 False 
 3.0    63.0   0.1068  -0.2594 0.473  False 
 3.0    64.0   0.0737  -0.2925 0.4399 False 
 3.0    65.0   0.0984  -0.2678 0.4646 False 
 3.0    66.0   0.0715  -0.2947 0.4377 False 
 3.0    67.0   0.0527  -0.3135 0.4189 False 
 3.0    68.0  -0.0409  -0.4071 0.3253 False 
 3.0    69.0  -0.0409  -0.4071 0.3253 False 
 3.0    70.0   0.1227  -0.2435 0.489  False 
 3.0    71.0   0.0737  -0.2925 0.4399 False 
 3.0    72.0   0.1239  -0.2424 0.4901 False 
 3.0    73.0   0.0725  -0.2937 0.4387 False 
 3.0    74.0   0.0715  -0.2947 0.4377 False 
 3.0    75.0   0.0783  -0.2879 0.4445 False 
 4.0    5.0     0.0    -0.3662 0.3662 False 
 4.0    6.0   -0.0517  -0.4179 0.3145 False 
 4.0    7.0   -0.1518   -0.518 0.2144 False 
 4.0    8.0    -0.131  -0.4972 0.2352 False 
 4.0    9.0   -0.0036  -0.3698 0.3626 False 
 4.0    10.0  -0.1271  -0.4933 0.2392 False 
 4.0    11.0  -0.1271  -0.4933 0.2392 False 
 4.0    12.0  -0.0222  -0.3884 0.344  False 
 4.0    13.0  -0.0432  -0.4094 0.323  False 
 4.0    14.0   -0.063  -0.4292 0.3032 False 
 4.0    15.0   -0.039  -0.4052 0.3272 False 
 4.0    16.0  -0.0722  -0.4384 0.294  False 
 4.0    17.0  -0.1292  -0.4954 0.237  False 
 4.0    18.0  -0.1305  -0.4968 0.2357 False 
 4.0    19.0  -0.1297  -0.4959 0.2365 False 
 4.0    20.0  -0.0747  -0.4409 0.2915 False 
 4.0    21.0   -0.123  -0.4892 0.2432 False 
 4.0    22.0  -0.0127  -0.3789 0.3535 False 
 4.0    23.0  -0.0645  -0.4307 0.3017 False 
 4.0    24.0  -0.1073  -0.4735 0.2589 False 
 4.0    25.0  -0.1423  -0.5085 0.2239 False 
 4.0    26.0  -0.0594  -0.4256 0.3068 False 
 4.0    27.0  -0.0594  -0.4256 0.3068 False 
 4.0    28.0  -0.1352  -0.5014 0.231  False 
 4.0    29.0  -0.0774  -0.4436 0.2888 False 
 4.0    30.0  -0.0617  -0.4279 0.3045 False 
 4.0    31.0  -0.0979  -0.4641 0.2683 False 
 4.0    32.0   -0.048  -0.4142 0.3182 False 
 4.0    33.0   -0.06   -0.4262 0.3062 False 
 4.0    34.0  -0.1025  -0.4687 0.2637 False 
 4.0    35.0    -0.1   -0.4663 0.2662 False 
 4.0    36.0  -0.1017  -0.4679 0.2645 False 
 4.0    37.0  -0.1017  -0.4679 0.2645 False 
 4.0    38.0  -0.0747  -0.4409 0.2915 False 
 4.0    39.0   -0.123  -0.4892 0.2432 False 
 4.0    40.0  -0.1062  -0.4725  0.26  False 
 4.0    41.0   0.1232   -0.243 0.4894 False 
 4.0    42.0  -0.1062  -0.4725  0.26  False 
 4.0    43.0   0.1417  -0.2245 0.508  False 
 4.0    44.0   0.0873  -0.2789 0.4535 False 
 4.0    45.0   0.0873  -0.2789 0.4535 False 
 4.0    46.0  -0.1906  -0.5569 0.1756 False 
 4.0    47.0  -0.1475  -0.5137 0.2187 False 
 4.0    48.0   0.0746  -0.2916 0.4408 False 
 4.0    49.0   0.1089  -0.2573 0.4752 False 
 4.0    50.0   0.1417  -0.2245 0.508  False 
 4.0    51.0  -0.0132  -0.3794 0.3531 False 
 4.0    52.0   0.1417  -0.2245 0.508  False 
 4.0    53.0   0.1417  -0.2245 0.508  False 
 4.0    54.0   0.0651  -0.3011 0.4313 False 
 4.0    55.0   0.0751  -0.2911 0.4413 False 
 4.0    56.0  -0.1808   -0.547 0.1854 False 
 4.0    57.0  -0.1808   -0.547 0.1854 False 
 4.0    58.0   0.1232   -0.243 0.4894 False 
 4.0    59.0  -0.0132  -0.3794 0.3531 False 
 4.0    60.0  -0.2056  -0.5718 0.1606 False 
 4.0    61.0  -0.2056  -0.5718 0.1606 False 
 4.0    62.0  -0.0152  -0.3815 0.351  False 
 4.0    63.0   0.0153  -0.3509 0.3815 False 
 4.0    64.0  -0.0178   -0.384 0.3484 False 
 4.0    65.0   0.0068  -0.3594 0.3731 False 
 4.0    66.0  -0.0201  -0.3863 0.3461 False 
 4.0    67.0  -0.0389  -0.4051 0.3273 False 
 4.0    68.0  -0.1325  -0.4987 0.2338 False 
 4.0    69.0  -0.1325  -0.4987 0.2338 False 
 4.0    70.0   0.0312   -0.335 0.3974 False 
 4.0    71.0  -0.0178   -0.384 0.3484 False 
 4.0    72.0   0.0323  -0.3339 0.3985 False 
 4.0    73.0  -0.0191  -0.3853 0.3471 False 
 4.0    74.0  -0.0201  -0.3863 0.3461 False 
 4.0    75.0  -0.0133  -0.3795 0.353  False 
 5.0    6.0   -0.0517  -0.4179 0.3145 False 
 5.0    7.0   -0.1518   -0.518 0.2144 False 
 5.0    8.0    -0.131  -0.4972 0.2352 False 
 5.0    9.0   -0.0036  -0.3698 0.3626 False 
 5.0    10.0  -0.1271  -0.4933 0.2392 False 
 5.0    11.0  -0.1271  -0.4933 0.2392 False 
 5.0    12.0  -0.0222  -0.3884 0.344  False 
 5.0    13.0  -0.0432  -0.4094 0.323  False 
 5.0    14.0   -0.063  -0.4292 0.3032 False 
 5.0    15.0   -0.039  -0.4052 0.3272 False 
 5.0    16.0  -0.0722  -0.4384 0.294  False 
 5.0    17.0  -0.1292  -0.4954 0.237  False 
 5.0    18.0  -0.1305  -0.4968 0.2357 False 
 5.0    19.0  -0.1297  -0.4959 0.2365 False 
 5.0    20.0  -0.0747  -0.4409 0.2915 False 
 5.0    21.0   -0.123  -0.4892 0.2432 False 
 5.0    22.0  -0.0127  -0.3789 0.3535 False 
 5.0    23.0  -0.0645  -0.4307 0.3017 False 
 5.0    24.0  -0.1073  -0.4735 0.2589 False 
 5.0    25.0  -0.1423  -0.5085 0.2239 False 
 5.0    26.0  -0.0594  -0.4256 0.3068 False 
 5.0    27.0  -0.0594  -0.4256 0.3068 False 
 5.0    28.0  -0.1352  -0.5014 0.231  False 
 5.0    29.0  -0.0774  -0.4436 0.2888 False 
 5.0    30.0  -0.0617  -0.4279 0.3045 False 
 5.0    31.0  -0.0979  -0.4641 0.2683 False 
 5.0    32.0   -0.048  -0.4142 0.3182 False 
 5.0    33.0   -0.06   -0.4262 0.3062 False 
 5.0    34.0  -0.1025  -0.4687 0.2637 False 
 5.0    35.0    -0.1   -0.4663 0.2662 False 
 5.0    36.0  -0.1017  -0.4679 0.2645 False 
 5.0    37.0  -0.1017  -0.4679 0.2645 False 
 5.0    38.0  -0.0747  -0.4409 0.2915 False 
 5.0    39.0   -0.123  -0.4892 0.2432 False 
 5.0    40.0  -0.1062  -0.4725  0.26  False 
 5.0    41.0   0.1232   -0.243 0.4894 False 
 5.0    42.0  -0.1062  -0.4725  0.26  False 
 5.0    43.0   0.1417  -0.2245 0.508  False 
 5.0    44.0   0.0873  -0.2789 0.4535 False 
 5.0    45.0   0.0873  -0.2789 0.4535 False 
 5.0    46.0  -0.1906  -0.5569 0.1756 False 
 5.0    47.0  -0.1475  -0.5137 0.2187 False 
 5.0    48.0   0.0746  -0.2916 0.4408 False 
 5.0    49.0   0.1089  -0.2573 0.4752 False 
 5.0    50.0   0.1417  -0.2245 0.508  False 
 5.0    51.0  -0.0132  -0.3794 0.3531 False 
 5.0    52.0   0.1417  -0.2245 0.508  False 
 5.0    53.0   0.1417  -0.2245 0.508  False 
 5.0    54.0   0.0651  -0.3011 0.4313 False 
 5.0    55.0   0.0751  -0.2911 0.4413 False 
 5.0    56.0  -0.1808   -0.547 0.1854 False 
 5.0    57.0  -0.1808   -0.547 0.1854 False 
 5.0    58.0   0.1232   -0.243 0.4894 False 
 5.0    59.0  -0.0132  -0.3794 0.3531 False 
 5.0    60.0  -0.2056  -0.5718 0.1606 False 
 5.0    61.0  -0.2056  -0.5718 0.1606 False 
 5.0    62.0  -0.0152  -0.3815 0.351  False 
 5.0    63.0   0.0153  -0.3509 0.3815 False 
 5.0    64.0  -0.0178   -0.384 0.3484 False 
 5.0    65.0   0.0068  -0.3594 0.3731 False 
 5.0    66.0  -0.0201  -0.3863 0.3461 False 
 5.0    67.0  -0.0389  -0.4051 0.3273 False 
 5.0    68.0  -0.1325  -0.4987 0.2338 False 
 5.0    69.0  -0.1325  -0.4987 0.2338 False 
 5.0    70.0   0.0312   -0.335 0.3974 False 
 5.0    71.0  -0.0178   -0.384 0.3484 False 
 5.0    72.0   0.0323  -0.3339 0.3985 False 
 5.0    73.0  -0.0191  -0.3853 0.3471 False 
 5.0    74.0  -0.0201  -0.3863 0.3461 False 
 5.0    75.0  -0.0133  -0.3795 0.353  False 
 6.0    7.0   -0.1001  -0.4663 0.2662 False 
 6.0    8.0   -0.0793  -0.4455 0.2869 False 
 6.0    9.0    0.0481  -0.3181 0.4143 False 
 6.0    10.0  -0.0753  -0.4415 0.2909 False 
 6.0    11.0  -0.0753  -0.4415 0.2909 False 
 6.0    12.0   0.0295  -0.3367 0.3957 False 
 6.0    13.0   0.0086  -0.3576 0.3748 False 
 6.0    14.0  -0.0112  -0.3774 0.355  False 
 6.0    15.0   0.0127  -0.3535 0.3789 False 
 6.0    16.0  -0.0205  -0.3867 0.3457 False 
 6.0    17.0  -0.0775  -0.4437 0.2887 False 
 6.0    18.0  -0.0788   -0.445 0.2874 False 
 6.0    19.0   -0.078  -0.4442 0.2883 False 
 6.0    20.0   -0.023  -0.3892 0.3432 False 
 6.0    21.0  -0.0713  -0.4375 0.2949 False 
 6.0    22.0   0.039   -0.3272 0.4052 False 
 6.0    23.0  -0.0128   -0.379 0.3534 False 
 6.0    24.0  -0.0556  -0.4218 0.3106 False 
 6.0    25.0  -0.0906  -0.4568 0.2756 False 
 6.0    26.0  -0.0076  -0.3738 0.3586 False 
 6.0    27.0  -0.0076  -0.3738 0.3586 False 
 6.0    28.0  -0.0835  -0.4497 0.2827 False 
 6.0    29.0  -0.0257  -0.3919 0.3405 False 
 6.0    30.0   -0.01   -0.3762 0.3563 False 
 6.0    31.0  -0.0462  -0.4124  0.32  False 
 6.0    32.0   0.0037  -0.3625  0.37  False 
 6.0    33.0  -0.0083  -0.3745 0.3579 False 
 6.0    34.0  -0.0508   -0.417 0.3154 False 
 6.0    35.0  -0.0483  -0.4145 0.3179 False 
 6.0    36.0   -0.05   -0.4162 0.3162 False 
 6.0    37.0   -0.05   -0.4162 0.3162 False 
 6.0    38.0   -0.023  -0.3892 0.3432 False 
 6.0    39.0  -0.0713  -0.4375 0.2949 False 
 6.0    40.0  -0.0545  -0.4207 0.3117 False 
 6.0    41.0   0.175   -0.1912 0.5412 False 
 6.0    42.0  -0.0545  -0.4207 0.3117 False 
 6.0    43.0   0.1935  -0.1727 0.5597 False 
 6.0    44.0   0.139   -0.2272 0.5052 False 
 6.0    45.0   0.139   -0.2272 0.5052 False 
 6.0    46.0  -0.1389  -0.5051 0.2273 False 
 6.0    47.0  -0.0957  -0.4619 0.2705 False 
 6.0    48.0   0.1264  -0.2399 0.4926 False 
 6.0    49.0   0.1607  -0.2055 0.5269 False 
 6.0    50.0   0.1935  -0.1727 0.5597 False 
 6.0    51.0   0.0386  -0.3276 0.4048 False 
 6.0    52.0   0.1935  -0.1727 0.5597 False 
 6.0    53.0   0.1935  -0.1727 0.5597 False 
 6.0    54.0   0.1168  -0.2494 0.483  False 
 6.0    55.0   0.1268  -0.2394 0.493  False 
 6.0    56.0   -0.129  -0.4952 0.2372 False 
 6.0    57.0   -0.129  -0.4952 0.2372 False 
 6.0    58.0   0.175   -0.1912 0.5412 False 
 6.0    59.0   0.0386  -0.3276 0.4048 False 
 6.0    60.0  -0.1539  -0.5201 0.2124 False 
 6.0    61.0  -0.1539  -0.5201 0.2124 False 
 6.0    62.0   0.0365  -0.3297 0.4027 False 
 6.0    63.0   0.067   -0.2992 0.4332 False 
 6.0    64.0   0.0339  -0.3323 0.4001 False 
 6.0    65.0   0.0586  -0.3076 0.4248 False 
 6.0    66.0   0.0317  -0.3345 0.3979 False 
 6.0    67.0   0.0129  -0.3533 0.3791 False 
 6.0    68.0  -0.0807  -0.4469 0.2855 False 
 6.0    69.0  -0.0807  -0.4469 0.2855 False 
 6.0    70.0   0.0829  -0.2833 0.4491 False 
 6.0    71.0   0.0339  -0.3323 0.4001 False 
 6.0    72.0   0.084   -0.2822 0.4502 False 
 6.0    73.0   0.0326  -0.3336 0.3988 False 
 6.0    74.0   0.0317  -0.3345 0.3979 False 
 6.0    75.0   0.0385  -0.3277 0.4047 False 
 7.0    8.0    0.0208  -0.3454 0.387  False 
 7.0    9.0    0.1482  -0.2181 0.5144 False 
 7.0    10.0   0.0247  -0.3415 0.3909 False 
 7.0    11.0   0.0247  -0.3415 0.3909 False 
 7.0    12.0   0.1296  -0.2366 0.4958 False 
 7.0    13.0   0.1086  -0.2576 0.4748 False 
 7.0    14.0   0.0888  -0.2774 0.455  False 
 7.0    15.0   0.1128  -0.2534 0.479  False 
 7.0    16.0   0.0795  -0.2867 0.4458 False 
 7.0    17.0   0.0226  -0.3437 0.3888 False 
 7.0    18.0   0.0212   -0.345 0.3874 False 
 7.0    19.0   0.0221  -0.3441 0.3883 False 
 7.0    20.0   0.0771  -0.2891 0.4433 False 
 7.0    21.0   0.0287  -0.3375 0.395  False 
 7.0    22.0   0.1391  -0.2271 0.5053 False 
 7.0    23.0   0.0873   -0.279 0.4535 False 
 7.0    24.0   0.0445  -0.3217 0.4107 False 
 7.0    25.0   0.0095  -0.3567 0.3757 False 
 7.0    26.0   0.0924  -0.2738 0.4586 False 
 7.0    27.0   0.0924  -0.2738 0.4586 False 
 7.0    28.0   0.0166  -0.3496 0.3828 False 
 7.0    29.0   0.0744  -0.2919 0.4406 False 
 7.0    30.0   0.0901  -0.2761 0.4563 False 
 7.0    31.0   0.0539  -0.3123 0.4201 False 
 7.0    32.0   0.1038  -0.2624  0.47  False 
 7.0    33.0   0.0918  -0.2745 0.458  False 
 7.0    34.0   0.0493   -0.317 0.4155 False 
 7.0    35.0   0.0517  -0.3145 0.4179 False 
 7.0    36.0   0.0501  -0.3161 0.4163 False 
 7.0    37.0   0.0501  -0.3161 0.4163 False 
 7.0    38.0   0.0771  -0.2891 0.4433 False 
 7.0    39.0   0.0287  -0.3375 0.395  False 
 7.0    40.0   0.0455  -0.3207 0.4117 False 
 7.0    41.0   0.275   -0.0912 0.6412 False 
 7.0    42.0   0.0455  -0.3207 0.4117 False 
 7.0    43.0   0.2935  -0.0727 0.6597 False 
 7.0    44.0   0.2391  -0.1271 0.6053 False 
 7.0    45.0   0.2391  -0.1271 0.6053 False 
 7.0    46.0  -0.0389  -0.4051 0.3273 False 
 7.0    47.0   0.0043  -0.3619 0.3705 False 
 7.0    48.0   0.2264  -0.1398 0.5926 False 
 7.0    49.0   0.2607  -0.1055 0.6269 False 
 7.0    50.0   0.2935  -0.0727 0.6597 False 
 7.0    51.0   0.1386  -0.2276 0.5048 False 
 7.0    52.0   0.2935  -0.0727 0.6597 False 
 7.0    53.0   0.2935  -0.0727 0.6597 False 
 7.0    54.0   0.2169  -0.1493 0.5831 False 
 7.0    55.0   0.2269  -0.1393 0.5931 False 
 7.0    56.0   -0.029  -0.3952 0.3372 False 
 7.0    57.0   -0.029  -0.3952 0.3372 False 
 7.0    58.0   0.275   -0.0912 0.6412 False 
 7.0    59.0   0.1386  -0.2276 0.5048 False 
 7.0    60.0  -0.0538   -0.42  0.3124 False 
 7.0    61.0  -0.0538   -0.42  0.3124 False 
 7.0    62.0   0.1365  -0.2297 0.5027 False 
 7.0    63.0   0.167   -0.1992 0.5333 False 
 7.0    64.0   0.1339  -0.2323 0.5002 False 
 7.0    65.0   0.1586  -0.2076 0.5248 False 
 7.0    66.0   0.1317  -0.2345 0.4979 False 
 7.0    67.0   0.1129  -0.2533 0.4791 False 
 7.0    68.0   0.0193  -0.3469 0.3855 False 
 7.0    69.0   0.0193  -0.3469 0.3855 False 
 7.0    70.0   0.183   -0.1832 0.5492 False 
 7.0    71.0   0.1339  -0.2323 0.5002 False 
 7.0    72.0   0.1841  -0.1821 0.5503 False 
 7.0    73.0   0.1327  -0.2335 0.4989 False 
 7.0    74.0   0.1317  -0.2345 0.4979 False 
 7.0    75.0   0.1385  -0.2277 0.5047 False 
 8.0    9.0    0.1274  -0.2388 0.4936 False 
 8.0    10.0   0.004   -0.3622 0.3702 False 
 8.0    11.0   0.004   -0.3622 0.3702 False 
 8.0    12.0   0.1088  -0.2574 0.475  False 
 8.0    13.0   0.0879  -0.2784 0.4541 False 
 8.0    14.0   0.0681  -0.2982 0.4343 False 
 8.0    15.0   0.092   -0.2742 0.4582 False 
 8.0    16.0   0.0588  -0.3074 0.425  False 
 8.0    17.0   0.0018  -0.3644 0.368  False 
 8.0    18.0   0.0005  -0.3657 0.3667 False 
 8.0    19.0   0.0013  -0.3649 0.3675 False 
 8.0    20.0   0.0563  -0.3099 0.4225 False 
 8.0    21.0   0.008   -0.3582 0.3742 False 
 8.0    22.0   0.1183  -0.2479 0.4845 False 
 8.0    23.0   0.0665  -0.2997 0.4327 False 
 8.0    24.0   0.0237  -0.3425 0.3899 False 
 8.0    25.0  -0.0113  -0.3775 0.3549 False 
 8.0    26.0   0.0717  -0.2945 0.4379 False 
 8.0    27.0   0.0717  -0.2945 0.4379 False 
 8.0    28.0  -0.0042  -0.3704 0.362  False 
 8.0    29.0   0.0536  -0.3126 0.4198 False 
 8.0    30.0   0.0693  -0.2969 0.4355 False 
 8.0    31.0   0.0331  -0.3331 0.3993 False 
 8.0    32.0   0.083   -0.2832 0.4492 False 
 8.0    33.0   0.071   -0.2952 0.4372 False 
 8.0    34.0   0.0285  -0.3377 0.3947 False 
 8.0    35.0   0.031   -0.3352 0.3972 False 
 8.0    36.0   0.0293  -0.3369 0.3955 False 
 8.0    37.0   0.0293  -0.3369 0.3955 False 
 8.0    38.0   0.0563  -0.3099 0.4225 False 
 8.0    39.0   0.008   -0.3582 0.3742 False 
 8.0    40.0   0.0248  -0.3414 0.391  False 
 8.0    41.0   0.2543   -0.112 0.6205 False 
 8.0    42.0   0.0248  -0.3414 0.391  False 
 8.0    43.0   0.2728  -0.0934 0.639  False 
 8.0    44.0   0.2183  -0.1479 0.5845 False 
 8.0    45.0   0.2183  -0.1479 0.5845 False 
 8.0    46.0  -0.0596  -0.4258 0.3066 False 
 8.0    47.0  -0.0165  -0.3827 0.3498 False 
 8.0    48.0   0.2056  -0.1606 0.5719 False 
 8.0    49.0    0.24   -0.1262 0.6062 False 
 8.0    50.0   0.2728  -0.0934 0.639  False 
 8.0    51.0   0.1179  -0.2483 0.4841 False 
 8.0    52.0   0.2728  -0.0934 0.639  False 
 8.0    53.0   0.2728  -0.0934 0.639  False 
 8.0    54.0   0.1961  -0.1701 0.5623 False 
 8.0    55.0   0.2061  -0.1601 0.5723 False 
 8.0    56.0  -0.0498   -0.416 0.3165 False 
 8.0    57.0  -0.0498   -0.416 0.3165 False 
 8.0    58.0   0.2543   -0.112 0.6205 False 
 8.0    59.0   0.1179  -0.2483 0.4841 False 
 8.0    60.0  -0.0746  -0.4408 0.2916 False 
 8.0    61.0  -0.0746  -0.4408 0.2916 False 
 8.0    62.0   0.1158  -0.2504 0.482  False 
 8.0    63.0   0.1463  -0.2199 0.5125 False 
 8.0    64.0   0.1132   -0.253 0.4794 False 
 8.0    65.0   0.1379  -0.2283 0.5041 False 
 8.0    66.0   0.111   -0.2552 0.4772 False 
 8.0    67.0   0.0922  -0.2741 0.4584 False 
 8.0    68.0  -0.0014  -0.3676 0.3648 False 
 8.0    69.0  -0.0014  -0.3676 0.3648 False 
 8.0    70.0   0.1622   -0.204 0.5284 False 
 8.0    71.0   0.1132   -0.253 0.4794 False 
 8.0    72.0   0.1633  -0.2029 0.5295 False 
 8.0    73.0   0.1119  -0.2543 0.4781 False 
 8.0    74.0   0.111   -0.2552 0.4772 False 
 8.0    75.0   0.1178  -0.2484 0.484  False 
 9.0    10.0  -0.1234  -0.4896 0.2428 False 
 9.0    11.0  -0.1234  -0.4896 0.2428 False 
 9.0    12.0  -0.0186  -0.3848 0.3476 False 
 9.0    13.0  -0.0395  -0.4057 0.3267 False 
 9.0    14.0  -0.0593  -0.4255 0.3069 False 
 9.0    15.0  -0.0354  -0.4016 0.3308 False 
 9.0    16.0  -0.0686  -0.4348 0.2976 False 
 9.0    17.0  -0.1256  -0.4918 0.2406 False 
 9.0    18.0  -0.1269  -0.4931 0.2393 False 
 9.0    19.0  -0.1261  -0.4923 0.2402 False 
 9.0    20.0  -0.0711  -0.4373 0.2951 False 
 9.0    21.0  -0.1194  -0.4856 0.2468 False 
 9.0    22.0  -0.0091  -0.3753 0.3571 False 
 9.0    23.0  -0.0609  -0.4271 0.3053 False 
 9.0    24.0  -0.1037  -0.4699 0.2625 False 
 9.0    25.0  -0.1387  -0.5049 0.2275 False 
 9.0    26.0  -0.0557  -0.4219 0.3105 False 
 9.0    27.0  -0.0557  -0.4219 0.3105 False 
 9.0    28.0  -0.1316  -0.4978 0.2346 False 
 9.0    29.0  -0.0738   -0.44  0.2924 False 
 9.0    30.0  -0.0581  -0.4243 0.3082 False 
 9.0    31.0  -0.0943  -0.4605 0.2719 False 
 9.0    32.0  -0.0444  -0.4106 0.3219 False 
 9.0    33.0  -0.0564  -0.4226 0.3098 False 
 9.0    34.0  -0.0989  -0.4651 0.2673 False 
 9.0    35.0  -0.0964  -0.4626 0.2698 False 
 9.0    36.0  -0.0981  -0.4643 0.2681 False 
 9.0    37.0  -0.0981  -0.4643 0.2681 False 
 9.0    38.0  -0.0711  -0.4373 0.2951 False 
 9.0    39.0  -0.1194  -0.4856 0.2468 False 
 9.0    40.0  -0.1026  -0.4688 0.2636 False 
 9.0    41.0   0.1269  -0.2393 0.4931 False 
 9.0    42.0  -0.1026  -0.4688 0.2636 False 
 9.0    43.0   0.1454  -0.2208 0.5116 False 
 9.0    44.0   0.0909  -0.2753 0.4571 False 
 9.0    45.0   0.0909  -0.2753 0.4571 False 
 9.0    46.0   -0.187  -0.5532 0.1792 False 
 9.0    47.0  -0.1438   -0.51  0.2224 False 
 9.0    48.0   0.0783   -0.288 0.4445 False 
 9.0    49.0   0.1126  -0.2536 0.4788 False 
 9.0    50.0   0.1454  -0.2208 0.5116 False 
 9.0    51.0  -0.0095  -0.3757 0.3567 False 
 9.0    52.0   0.1454  -0.2208 0.5116 False 
 9.0    53.0   0.1454  -0.2208 0.5116 False 
 9.0    54.0   0.0687  -0.2975 0.4349 False 
 9.0    55.0   0.0787  -0.2875 0.4449 False 
 9.0    56.0  -0.1771  -0.5433 0.1891 False 
 9.0    57.0  -0.1771  -0.5433 0.1891 False 
 9.0    58.0   0.1269  -0.2393 0.4931 False 
 9.0    59.0  -0.0095  -0.3757 0.3567 False 
 9.0    60.0   -0.202  -0.5682 0.1643 False 
 9.0    61.0   -0.202  -0.5682 0.1643 False 
 9.0    62.0  -0.0116  -0.3778 0.3546 False 
 9.0    63.0   0.0189  -0.3473 0.3851 False 
 9.0    64.0  -0.0142  -0.3804 0.352  False 
 9.0    65.0   0.0105  -0.3557 0.3767 False 
 9.0    66.0  -0.0164  -0.3826 0.3498 False 
 9.0    67.0  -0.0352  -0.4014 0.331  False 
 9.0    68.0  -0.1288   -0.495 0.2374 False 
 9.0    69.0  -0.1288   -0.495 0.2374 False 
 9.0    70.0   0.0348  -0.3314 0.401  False 
 9.0    71.0  -0.0142  -0.3804 0.352  False 
 9.0    72.0   0.0359  -0.3303 0.4021 False 
 9.0    73.0  -0.0155  -0.3817 0.3507 False 
 9.0    74.0  -0.0164  -0.3826 0.3498 False 
 9.0    75.0  -0.0096  -0.3758 0.3566 False 
 10.0   11.0    0.0    -0.3662 0.3662 False 
 10.0   12.0   0.1048  -0.2614 0.471  False 
 10.0   13.0   0.0839  -0.2823 0.4501 False 
 10.0   14.0   0.0641  -0.3021 0.4303 False 
 10.0   15.0   0.0881  -0.2782 0.4543 False 
 10.0   16.0   0.0548  -0.3114 0.421  False 
 10.0   17.0  -0.0022  -0.3684 0.364  False 
 10.0   18.0  -0.0035  -0.3697 0.3627 False 
 10.0   19.0  -0.0026  -0.3688 0.3636 False 
 10.0   20.0   0.0524  -0.3138 0.4186 False 
 10.0   21.0   0.004   -0.3622 0.3702 False 
 10.0   22.0   0.1143  -0.2519 0.4806 False 
 10.0   23.0   0.0625  -0.3037 0.4287 False 
 10.0   24.0   0.0197  -0.3465 0.3859 False 
 10.0   25.0  -0.0153  -0.3815 0.3509 False 
 10.0   26.0   0.0677  -0.2985 0.4339 False 
 10.0   27.0   0.0677  -0.2985 0.4339 False 
 10.0   28.0  -0.0081  -0.3743 0.3581 False 
 10.0   29.0   0.0496  -0.3166 0.4158 False 
 10.0   30.0   0.0654  -0.3008 0.4316 False 
 10.0   31.0   0.0291  -0.3371 0.3954 False 
 10.0   32.0   0.0791  -0.2871 0.4453 False 
 10.0   33.0   0.067   -0.2992 0.4332 False 
 10.0   34.0   0.0245  -0.3417 0.3907 False 
 10.0   35.0   0.027   -0.3392 0.3932 False 
 10.0   36.0   0.0253  -0.3409 0.3916 False 
 10.0   37.0   0.0253  -0.3409 0.3916 False 
 10.0   38.0   0.0524  -0.3138 0.4186 False 
 10.0   39.0   0.004   -0.3622 0.3702 False 
 10.0   40.0   0.0208  -0.3454 0.387  False 
 10.0   41.0   0.2503  -0.1159 0.6165 False 
 10.0   42.0   0.0208  -0.3454 0.387  False 
 10.0   43.0   0.2688  -0.0974 0.635  False 
 10.0   44.0   0.2143  -0.1519 0.5806 False 
 10.0   45.0   0.2143  -0.1519 0.5806 False 
 10.0   46.0  -0.0636  -0.4298 0.3026 False 
 10.0   47.0  -0.0204  -0.3866 0.3458 False 
 10.0   48.0   0.2017  -0.1645 0.5679 False 
 10.0   49.0   0.236   -0.1302 0.6022 False 
 10.0   50.0   0.2688  -0.0974 0.635  False 
 10.0   51.0   0.1139  -0.2523 0.4801 False 
 10.0   52.0   0.2688  -0.0974 0.635  False 
 10.0   53.0   0.2688  -0.0974 0.635  False 
 10.0   54.0   0.1921  -0.1741 0.5583 False 
 10.0   55.0   0.2021  -0.1641 0.5683 False 
 10.0   56.0  -0.0537  -0.4199 0.3125 False 
 10.0   57.0  -0.0537  -0.4199 0.3125 False 
 10.0   58.0   0.2503  -0.1159 0.6165 False 
 10.0   59.0   0.1139  -0.2523 0.4801 False 
 10.0   60.0  -0.0785  -0.4447 0.2877 False 
 10.0   61.0  -0.0785  -0.4447 0.2877 False 
 10.0   62.0   0.1118  -0.2544 0.478  False 
 10.0   63.0   0.1423  -0.2239 0.5085 False 
 10.0   64.0   0.1092   -0.257 0.4754 False 
 10.0   65.0   0.1339  -0.2323 0.5001 False 
 10.0   66.0   0.107   -0.2592 0.4732 False 
 10.0   67.0   0.0882   -0.278 0.4544 False 
 10.0   68.0  -0.0054  -0.3716 0.3608 False 
 10.0   69.0  -0.0054  -0.3716 0.3608 False 
 10.0   70.0   0.1582   -0.208 0.5244 False 
 10.0   71.0   0.1092   -0.257 0.4754 False 
 10.0   72.0   0.1593  -0.2069 0.5256 False 
 10.0   73.0   0.108   -0.2583 0.4742 False 
 10.0   74.0   0.107   -0.2592 0.4732 False 
 10.0   75.0   0.1138  -0.2524  0.48  False 
 11.0   12.0   0.1048  -0.2614 0.471  False 
 11.0   13.0   0.0839  -0.2823 0.4501 False 
 11.0   14.0   0.0641  -0.3021 0.4303 False 
 11.0   15.0   0.0881  -0.2782 0.4543 False 
 11.0   16.0   0.0548  -0.3114 0.421  False 
 11.0   17.0  -0.0022  -0.3684 0.364  False 
 11.0   18.0  -0.0035  -0.3697 0.3627 False 
 11.0   19.0  -0.0026  -0.3688 0.3636 False 
 11.0   20.0   0.0524  -0.3138 0.4186 False 
 11.0   21.0   0.004   -0.3622 0.3702 False 
 11.0   22.0   0.1143  -0.2519 0.4806 False 
 11.0   23.0   0.0625  -0.3037 0.4287 False 
 11.0   24.0   0.0197  -0.3465 0.3859 False 
 11.0   25.0  -0.0153  -0.3815 0.3509 False 
 11.0   26.0   0.0677  -0.2985 0.4339 False 
 11.0   27.0   0.0677  -0.2985 0.4339 False 
 11.0   28.0  -0.0081  -0.3743 0.3581 False 
 11.0   29.0   0.0496  -0.3166 0.4158 False 
 11.0   30.0   0.0654  -0.3008 0.4316 False 
 11.0   31.0   0.0291  -0.3371 0.3954 False 
 11.0   32.0   0.0791  -0.2871 0.4453 False 
 11.0   33.0   0.067   -0.2992 0.4332 False 
 11.0   34.0   0.0245  -0.3417 0.3907 False 
 11.0   35.0   0.027   -0.3392 0.3932 False 
 11.0   36.0   0.0253  -0.3409 0.3916 False 
 11.0   37.0   0.0253  -0.3409 0.3916 False 
 11.0   38.0   0.0524  -0.3138 0.4186 False 
 11.0   39.0   0.004   -0.3622 0.3702 False 
 11.0   40.0   0.0208  -0.3454 0.387  False 
 11.0   41.0   0.2503  -0.1159 0.6165 False 
 11.0   42.0   0.0208  -0.3454 0.387  False 
 11.0   43.0   0.2688  -0.0974 0.635  False 
 11.0   44.0   0.2143  -0.1519 0.5806 False 
 11.0   45.0   0.2143  -0.1519 0.5806 False 
 11.0   46.0  -0.0636  -0.4298 0.3026 False 
 11.0   47.0  -0.0204  -0.3866 0.3458 False 
 11.0   48.0   0.2017  -0.1645 0.5679 False 
 11.0   49.0   0.236   -0.1302 0.6022 False 
 11.0   50.0   0.2688  -0.0974 0.635  False 
 11.0   51.0   0.1139  -0.2523 0.4801 False 
 11.0   52.0   0.2688  -0.0974 0.635  False 
 11.0   53.0   0.2688  -0.0974 0.635  False 
 11.0   54.0   0.1921  -0.1741 0.5583 False 
 11.0   55.0   0.2021  -0.1641 0.5683 False 
 11.0   56.0  -0.0537  -0.4199 0.3125 False 
 11.0   57.0  -0.0537  -0.4199 0.3125 False 
 11.0   58.0   0.2503  -0.1159 0.6165 False 
 11.0   59.0   0.1139  -0.2523 0.4801 False 
 11.0   60.0  -0.0785  -0.4447 0.2877 False 
 11.0   61.0  -0.0785  -0.4447 0.2877 False 
 11.0   62.0   0.1118  -0.2544 0.478  False 
 11.0   63.0   0.1423  -0.2239 0.5085 False 
 11.0   64.0   0.1092   -0.257 0.4754 False 
 11.0   65.0   0.1339  -0.2323 0.5001 False 
 11.0   66.0   0.107   -0.2592 0.4732 False 
 11.0   67.0   0.0882   -0.278 0.4544 False 
 11.0   68.0  -0.0054  -0.3716 0.3608 False 
 11.0   69.0  -0.0054  -0.3716 0.3608 False 
 11.0   70.0   0.1582   -0.208 0.5244 False 
 11.0   71.0   0.1092   -0.257 0.4754 False 
 11.0   72.0   0.1593  -0.2069 0.5256 False 
 11.0   73.0   0.108   -0.2583 0.4742 False 
 11.0   74.0   0.107   -0.2592 0.4732 False 
 11.0   75.0   0.1138  -0.2524  0.48  False 
 12.0   13.0  -0.0209  -0.3872 0.3453 False 
 12.0   14.0  -0.0407   -0.407 0.3255 False 
 12.0   15.0  -0.0168   -0.383 0.3494 False 
 12.0   16.0   -0.05   -0.4162 0.3162 False 
 12.0   17.0   -0.107  -0.4732 0.2592 False 
 12.0   18.0  -0.1083  -0.4745 0.2579 False 
 12.0   19.0  -0.1075  -0.4737 0.2587 False 
 12.0   20.0  -0.0525  -0.4187 0.3137 False 
 12.0   21.0  -0.1008   -0.467 0.2654 False 
 12.0   22.0   0.0095  -0.3567 0.3757 False 
 12.0   23.0  -0.0423  -0.4085 0.3239 False 
 12.0   24.0  -0.0851  -0.4513 0.2811 False 
 12.0   25.0  -0.1201  -0.4863 0.2461 False 
 12.0   26.0  -0.0371  -0.4033 0.3291 False 
 12.0   27.0  -0.0371  -0.4033 0.3291 False 
 12.0   28.0   -0.113  -0.4792 0.2532 False 
 12.0   29.0  -0.0552  -0.4214 0.311  False 
 12.0   30.0  -0.0395  -0.4057 0.3267 False 
 12.0   31.0  -0.0757  -0.4419 0.2905 False 
 12.0   32.0  -0.0258   -0.392 0.3404 False 
 12.0   33.0  -0.0378   -0.404 0.3284 False 
 12.0   34.0  -0.0803  -0.4465 0.2859 False 
 12.0   35.0  -0.0778   -0.444 0.2884 False 
 12.0   36.0  -0.0795  -0.4457 0.2867 False 
 12.0   37.0  -0.0795  -0.4457 0.2867 False 
 12.0   38.0  -0.0525  -0.4187 0.3137 False 
 12.0   39.0  -0.1008   -0.467 0.2654 False 
 12.0   40.0   -0.084  -0.4502 0.2822 False 
 12.0   41.0   0.1455  -0.2208 0.5117 False 
 12.0   42.0   -0.084  -0.4502 0.2822 False 
 12.0   43.0   0.164   -0.2022 0.5302 False 
 12.0   44.0   0.1095  -0.2567 0.4757 False 
 12.0   45.0   0.1095  -0.2567 0.4757 False 
 12.0   46.0  -0.1684  -0.5346 0.1978 False 
 12.0   47.0  -0.1252  -0.4915 0.241  False 
 12.0   48.0   0.0968  -0.2694 0.4631 False 
 12.0   49.0   0.1312   -0.235 0.4974 False 
 12.0   50.0   0.164   -0.2022 0.5302 False 
 12.0   51.0   0.0091  -0.3571 0.3753 False 
 12.0   52.0   0.164   -0.2022 0.5302 False 
 12.0   53.0   0.164   -0.2022 0.5302 False 
 12.0   54.0   0.0873  -0.2789 0.4535 False 
 12.0   55.0   0.0973  -0.2689 0.4635 False 
 12.0   56.0  -0.1585  -0.5248 0.2077 False 
 12.0   57.0  -0.1585  -0.5248 0.2077 False 
 12.0   58.0   0.1455  -0.2208 0.5117 False 
 12.0   59.0   0.0091  -0.3571 0.3753 False 
 12.0   60.0  -0.1834  -0.5496 0.1828 False 
 12.0   61.0  -0.1834  -0.5496 0.1828 False 
 12.0   62.0   0.007   -0.3592 0.3732 False 
 12.0   63.0   0.0375  -0.3287 0.4037 False 
 12.0   64.0   0.0044  -0.3618 0.3706 False 
 12.0   65.0   0.0291  -0.3371 0.3953 False 
 12.0   66.0   0.0022   -0.364 0.3684 False 
 12.0   67.0  -0.0166  -0.3829 0.3496 False 
 12.0   68.0  -0.1102  -0.4764 0.256  False 
 12.0   69.0  -0.1102  -0.4764 0.256  False 
 12.0   70.0   0.0534  -0.3128 0.4196 False 
 12.0   71.0   0.0044  -0.3618 0.3706 False 
 12.0   72.0   0.0545  -0.3117 0.4207 False 
 12.0   73.0   0.0031  -0.3631 0.3693 False 
 12.0   74.0   0.0022   -0.364 0.3684 False 
 12.0   75.0   0.009   -0.3572 0.3752 False 
 13.0   14.0  -0.0198   -0.386 0.3464 False 
 13.0   15.0   0.0042   -0.362 0.3704 False 
 13.0   16.0  -0.0291  -0.3953 0.3371 False 
 13.0   17.0  -0.0861  -0.4523 0.2801 False 
 13.0   18.0  -0.0874  -0.4536 0.2788 False 
 13.0   19.0  -0.0865  -0.4527 0.2797 False 
 13.0   20.0  -0.0315  -0.3977 0.3347 False 
 13.0   21.0  -0.0799  -0.4461 0.2863 False 
 13.0   22.0   0.0305  -0.3357 0.3967 False 
 13.0   23.0  -0.0214  -0.3876 0.3448 False 
 13.0   24.0  -0.0641  -0.4304 0.3021 False 
 13.0   25.0  -0.0991  -0.4654 0.2671 False 
 13.0   26.0  -0.0162  -0.3824  0.35  False 
 13.0   27.0  -0.0162  -0.3824  0.35  False 
 13.0   28.0   -0.092  -0.4582 0.2742 False 
 13.0   29.0  -0.0343  -0.4005 0.3319 False 
 13.0   30.0  -0.0185  -0.3847 0.3477 False 
 13.0   31.0  -0.0547  -0.4209 0.3115 False 
 13.0   32.0  -0.0048   -0.371 0.3614 False 
 13.0   33.0  -0.0169  -0.3831 0.3493 False 
 13.0   34.0  -0.0594  -0.4256 0.3069 False 
 13.0   35.0  -0.0569  -0.4231 0.3093 False 
 13.0   36.0  -0.0585  -0.4247 0.3077 False 
 13.0   37.0  -0.0585  -0.4247 0.3077 False 
 13.0   38.0  -0.0315  -0.3977 0.3347 False 
 13.0   39.0  -0.0799  -0.4461 0.2863 False 
 13.0   40.0  -0.0631  -0.4293 0.3031 False 
 13.0   41.0   0.1664  -0.1998 0.5326 False 
 13.0   42.0  -0.0631  -0.4293 0.3031 False 
 13.0   43.0   0.1849  -0.1813 0.5511 False 
 13.0   44.0   0.1305  -0.2357 0.4967 False 
 13.0   45.0   0.1305  -0.2357 0.4967 False 
 13.0   46.0  -0.1475  -0.5137 0.2187 False 
 13.0   47.0  -0.1043  -0.4705 0.2619 False 
 13.0   48.0   0.1178  -0.2484 0.484  False 
 13.0   49.0   0.1521  -0.2141 0.5183 False 
 13.0   50.0   0.1849  -0.1813 0.5511 False 
 13.0   51.0    0.03   -0.3362 0.3962 False 
 13.0   52.0   0.1849  -0.1813 0.5511 False 
 13.0   53.0   0.1849  -0.1813 0.5511 False 
 13.0   54.0   0.1082   -0.258 0.4745 False 
 13.0   55.0   0.1182   -0.248 0.4845 False 
 13.0   56.0  -0.1376  -0.5038 0.2286 False 
 13.0   57.0  -0.1376  -0.5038 0.2286 False 
 13.0   58.0   0.1664  -0.1998 0.5326 False 
 13.0   59.0    0.03   -0.3362 0.3962 False 
 13.0   60.0  -0.1624  -0.5286 0.2038 False 
 13.0   61.0  -0.1624  -0.5286 0.2038 False 
 13.0   62.0   0.0279  -0.3383 0.3941 False 
 13.0   63.0   0.0584  -0.3078 0.4246 False 
 13.0   64.0   0.0253  -0.3409 0.3915 False 
 13.0   65.0    0.05   -0.3162 0.4162 False 
 13.0   66.0   0.0231  -0.3431 0.3893 False 
 13.0   67.0   0.0043  -0.3619 0.3705 False 
 13.0   68.0  -0.0893  -0.4555 0.2769 False 
 13.0   69.0  -0.0893  -0.4555 0.2769 False 
 13.0   70.0   0.0744  -0.2919 0.4406 False 
 13.0   71.0   0.0253  -0.3409 0.3915 False 
 13.0   72.0   0.0755  -0.2907 0.4417 False 
 13.0   73.0   0.0241  -0.3421 0.3903 False 
 13.0   74.0   0.0231  -0.3431 0.3893 False 
 13.0   75.0   0.0299  -0.3363 0.3961 False 
 14.0   15.0   0.024   -0.3422 0.3902 False 
 14.0   16.0  -0.0093  -0.3755 0.3569 False 
 14.0   17.0  -0.0663  -0.4325 0.2999 False 
 14.0   18.0  -0.0676  -0.4338 0.2986 False 
 14.0   19.0  -0.0667  -0.4329 0.2995 False 
 14.0   20.0  -0.0117  -0.3779 0.3545 False 
 14.0   21.0  -0.0601  -0.4263 0.3061 False 
 14.0   22.0   0.0503  -0.3159 0.4165 False 
 14.0   23.0  -0.0016  -0.3678 0.3646 False 
 14.0   24.0  -0.0443  -0.4106 0.3219 False 
 14.0   25.0  -0.0793  -0.4456 0.2869 False 
 14.0   26.0   0.0036  -0.3626 0.3698 False 
 14.0   27.0   0.0036  -0.3626 0.3698 False 
 14.0   28.0  -0.0722  -0.4384 0.294  False 
 14.0   29.0  -0.0145  -0.3807 0.3517 False 
 14.0   30.0   0.0013  -0.3649 0.3675 False 
 14.0   31.0  -0.0349  -0.4011 0.3313 False 
 14.0   32.0   0.015   -0.3512 0.3812 False 
 14.0   33.0   0.0029  -0.3633 0.3691 False 
 14.0   34.0  -0.0396  -0.4058 0.3266 False 
 14.0   35.0  -0.0371  -0.4033 0.3291 False 
 14.0   36.0  -0.0387  -0.4049 0.3275 False 
 14.0   37.0  -0.0387  -0.4049 0.3275 False 
 14.0   38.0  -0.0117  -0.3779 0.3545 False 
 14.0   39.0  -0.0601  -0.4263 0.3061 False 
 14.0   40.0  -0.0433  -0.4095 0.3229 False 
 14.0   41.0   0.1862   -0.18  0.5524 False 
 14.0   42.0  -0.0433  -0.4095 0.3229 False 
 14.0   43.0   0.2047  -0.1615 0.5709 False 
 14.0   44.0   0.1503  -0.2159 0.5165 False 
 14.0   45.0   0.1503  -0.2159 0.5165 False 
 14.0   46.0  -0.1277  -0.4939 0.2385 False 
 14.0   47.0  -0.0845  -0.4507 0.2817 False 
 14.0   48.0   0.1376  -0.2286 0.5038 False 
 14.0   49.0   0.1719  -0.1943 0.5381 False 
 14.0   50.0   0.2047  -0.1615 0.5709 False 
 14.0   51.0   0.0498  -0.3164 0.416  False 
 14.0   52.0   0.2047  -0.1615 0.5709 False 
 14.0   53.0   0.2047  -0.1615 0.5709 False 
 14.0   54.0   0.128   -0.2382 0.4943 False 
 14.0   55.0   0.138   -0.2282 0.5043 False 
 14.0   56.0  -0.1178   -0.484 0.2484 False 
 14.0   57.0  -0.1178   -0.484 0.2484 False 
 14.0   58.0   0.1862   -0.18  0.5524 False 
 14.0   59.0   0.0498  -0.3164 0.416  False 
 14.0   60.0  -0.1426  -0.5088 0.2236 False 
 14.0   61.0  -0.1426  -0.5088 0.2236 False 
 14.0   62.0   0.0477  -0.3185 0.4139 False 
 14.0   63.0   0.0782   -0.288 0.4444 False 
 14.0   64.0   0.0451  -0.3211 0.4113 False 
 14.0   65.0   0.0698  -0.2964 0.436  False 
 14.0   66.0   0.0429  -0.3233 0.4091 False 
 14.0   67.0   0.0241  -0.3421 0.3903 False 
 14.0   68.0  -0.0695  -0.4357 0.2967 False 
 14.0   69.0  -0.0695  -0.4357 0.2967 False 
 14.0   70.0   0.0942  -0.2721 0.4604 False 
 14.0   71.0   0.0451  -0.3211 0.4113 False 
 14.0   72.0   0.0953  -0.2709 0.4615 False 
 14.0   73.0   0.0439  -0.3223 0.4101 False 
 14.0   74.0   0.0429  -0.3233 0.4091 False 
 14.0   75.0   0.0497  -0.3165 0.4159 False 
 15.0   16.0  -0.0332  -0.3995 0.333  False 
 15.0   17.0  -0.0902  -0.4564 0.276  False 
 15.0   18.0  -0.0916  -0.4578 0.2747 False 
 15.0   19.0  -0.0907  -0.4569 0.2755 False 
 15.0   20.0  -0.0357  -0.4019 0.3305 False 
 15.0   21.0   -0.084  -0.4503 0.2822 False 
 15.0   22.0   0.0263  -0.3399 0.3925 False 
 15.0   23.0  -0.0255  -0.3917 0.3407 False 
 15.0   24.0  -0.0683  -0.4345 0.2979 False 
 15.0   25.0  -0.1033  -0.4695 0.2629 False 
 15.0   26.0  -0.0204  -0.3866 0.3458 False 
 15.0   27.0  -0.0204  -0.3866 0.3458 False 
 15.0   28.0  -0.0962  -0.4624  0.27  False 
 15.0   29.0  -0.0384  -0.4046 0.3278 False 
 15.0   30.0  -0.0227  -0.3889 0.3435 False 
 15.0   31.0  -0.0589  -0.4251 0.3073 False 
 15.0   32.0   -0.009  -0.3752 0.3572 False 
 15.0   33.0   -0.021  -0.3872 0.3452 False 
 15.0   34.0  -0.0635  -0.4297 0.3027 False 
 15.0   35.0  -0.0611  -0.4273 0.3052 False 
 15.0   36.0  -0.0627  -0.4289 0.3035 False 
 15.0   37.0  -0.0627  -0.4289 0.3035 False 
 15.0   38.0  -0.0357  -0.4019 0.3305 False 
 15.0   39.0   -0.084  -0.4503 0.2822 False 
 15.0   40.0  -0.0673  -0.4335 0.299  False 
 15.0   41.0   0.1622   -0.204 0.5284 False 
 15.0   42.0  -0.0673  -0.4335 0.299  False 
 15.0   43.0   0.1807  -0.1855 0.5469 False 
 15.0   44.0   0.1263  -0.2399 0.4925 False 
 15.0   45.0   0.1263  -0.2399 0.4925 False 
 15.0   46.0  -0.1516  -0.5179 0.2146 False 
 15.0   47.0  -0.1085  -0.4747 0.2577 False 
 15.0   48.0   0.1136  -0.2526 0.4798 False 
 15.0   49.0   0.1479  -0.2183 0.5141 False 
 15.0   50.0   0.1807  -0.1855 0.5469 False 
 15.0   51.0   0.0258  -0.3404 0.392  False 
 15.0   52.0   0.1807  -0.1855 0.5469 False 
 15.0   53.0   0.1807  -0.1855 0.5469 False 
 15.0   54.0   0.1041  -0.2621 0.4703 False 
 15.0   55.0   0.1141  -0.2521 0.4803 False 
 15.0   56.0  -0.1418   -0.508 0.2244 False 
 15.0   57.0  -0.1418   -0.508 0.2244 False 
 15.0   58.0   0.1622   -0.204 0.5284 False 
 15.0   59.0   0.0258  -0.3404 0.392  False 
 15.0   60.0  -0.1666  -0.5328 0.1996 False 
 15.0   61.0  -0.1666  -0.5328 0.1996 False 
 15.0   62.0   0.0238  -0.3425  0.39  False 
 15.0   63.0   0.0543  -0.3119 0.4205 False 
 15.0   64.0   0.0212  -0.3451 0.3874 False 
 15.0   65.0   0.0458  -0.3204 0.412  False 
 15.0   66.0   0.0189  -0.3473 0.3851 False 
 15.0   67.0   0.0001  -0.3661 0.3663 False 
 15.0   68.0  -0.0935  -0.4597 0.2727 False 
 15.0   69.0  -0.0935  -0.4597 0.2727 False 
 15.0   70.0   0.0702   -0.296 0.4364 False 
 15.0   71.0   0.0212  -0.3451 0.3874 False 
 15.0   72.0   0.0713  -0.2949 0.4375 False 
 15.0   73.0   0.0199  -0.3463 0.3861 False 
 15.0   74.0   0.0189  -0.3473 0.3851 False 
 15.0   75.0   0.0257  -0.3405 0.3919 False 
 16.0   17.0   -0.057  -0.4232 0.3092 False 
 16.0   18.0  -0.0583  -0.4245 0.3079 False 
 16.0   19.0  -0.0574  -0.4237 0.3088 False 
 16.0   20.0  -0.0025  -0.3687 0.3638 False 
 16.0   21.0  -0.0508   -0.417 0.3154 False 
 16.0   22.0   0.0595  -0.3067 0.4257 False 
 16.0   23.0   0.0077  -0.3585 0.3739 False 
 16.0   24.0  -0.0351  -0.4013 0.3311 False 
 16.0   25.0  -0.0701  -0.4363 0.2961 False 
 16.0   26.0   0.0129  -0.3533 0.3791 False 
 16.0   27.0   0.0129  -0.3533 0.3791 False 
 16.0   28.0   -0.063  -0.4292 0.3033 False 
 16.0   29.0  -0.0052  -0.3714 0.361  False 
 16.0   30.0   0.0105  -0.3557 0.3768 False 
 16.0   31.0  -0.0257  -0.3919 0.3405 False 
 16.0   32.0   0.0242   -0.342 0.3905 False 
 16.0   33.0   0.0122   -0.354 0.3784 False 
 16.0   34.0  -0.0303  -0.3965 0.3359 False 
 16.0   35.0  -0.0278   -0.394 0.3384 False 
 16.0   36.0  -0.0295  -0.3957 0.3367 False 
 16.0   37.0  -0.0295  -0.3957 0.3367 False 
 16.0   38.0  -0.0025  -0.3687 0.3638 False 
 16.0   39.0  -0.0508   -0.417 0.3154 False 
 16.0   40.0   -0.034  -0.4002 0.3322 False 
 16.0   41.0   0.1955  -0.1707 0.5617 False 
 16.0   42.0   -0.034  -0.4002 0.3322 False 
 16.0   43.0   0.214   -0.1522 0.5802 False 
 16.0   44.0   0.1595  -0.2067 0.5257 False 
 16.0   45.0   0.1595  -0.2067 0.5257 False 
 16.0   46.0  -0.1184  -0.4846 0.2478 False 
 16.0   47.0  -0.0752  -0.4414 0.291  False 
 16.0   48.0   0.1469  -0.2193 0.5131 False 
 16.0   49.0   0.1812   -0.185 0.5474 False 
 16.0   50.0   0.214   -0.1522 0.5802 False 
 16.0   51.0   0.0591  -0.3071 0.4253 False 
 16.0   52.0   0.214   -0.1522 0.5802 False 
 16.0   53.0   0.214   -0.1522 0.5802 False 
 16.0   54.0   0.1373  -0.2289 0.5035 False 
 16.0   55.0   0.1473  -0.2189 0.5135 False 
 16.0   56.0  -0.1085  -0.4747 0.2577 False 
 16.0   57.0  -0.1085  -0.4747 0.2577 False 
 16.0   58.0   0.1955  -0.1707 0.5617 False 
 16.0   59.0   0.0591  -0.3071 0.4253 False 
 16.0   60.0  -0.1333  -0.4996 0.2329 False 
 16.0   61.0  -0.1333  -0.4996 0.2329 False 
 16.0   62.0   0.057   -0.3092 0.4232 False 
 16.0   63.0   0.0875  -0.2787 0.4537 False 
 16.0   64.0   0.0544  -0.3118 0.4206 False 
 16.0   65.0   0.0791  -0.2871 0.4453 False 
 16.0   66.0   0.0522   -0.314 0.4184 False 
 16.0   67.0   0.0334  -0.3328 0.3996 False 
 16.0   68.0  -0.0602  -0.4264 0.306  False 
 16.0   69.0  -0.0602  -0.4264 0.306  False 
 16.0   70.0   0.1034  -0.2628 0.4696 False 
 16.0   71.0   0.0544  -0.3118 0.4206 False 
 16.0   72.0   0.1045  -0.2617 0.4707 False 
 16.0   73.0   0.0531  -0.3131 0.4194 False 
 16.0   74.0   0.0522   -0.314 0.4184 False 
 16.0   75.0   0.059   -0.3072 0.4252 False 
 17.0   18.0  -0.0013  -0.3675 0.3649 False 
 17.0   19.0  -0.0005  -0.3667 0.3658 False 
 17.0   20.0   0.0545  -0.3117 0.4207 False 
 17.0   21.0   0.0062   -0.36  0.3724 False 
 17.0   22.0   0.1165  -0.2497 0.4827 False 
 17.0   23.0   0.0647  -0.3015 0.4309 False 
 17.0   24.0   0.0219  -0.3443 0.3881 False 
 17.0   25.0  -0.0131  -0.3793 0.3531 False 
 17.0   26.0   0.0699  -0.2963 0.4361 False 
 17.0   27.0   0.0699  -0.2963 0.4361 False 
 17.0   28.0   -0.006  -0.3722 0.3602 False 
 17.0   29.0   0.0518  -0.3144 0.418  False 
 17.0   30.0   0.0675  -0.2987 0.4338 False 
 17.0   31.0   0.0313  -0.3349 0.3975 False 
 17.0   32.0   0.0812   -0.285 0.4474 False 
 17.0   33.0   0.0692   -0.297 0.4354 False 
 17.0   34.0   0.0267  -0.3395 0.3929 False 
 17.0   35.0   0.0292   -0.337 0.3954 False 
 17.0   36.0   0.0275  -0.3387 0.3937 False 
 17.0   37.0   0.0275  -0.3387 0.3937 False 
 17.0   38.0   0.0545  -0.3117 0.4207 False 
 17.0   39.0   0.0062   -0.36  0.3724 False 
 17.0   40.0   0.023   -0.3432 0.3892 False 
 17.0   41.0   0.2525  -0.1137 0.6187 False 
 17.0   42.0   0.023   -0.3432 0.3892 False 
 17.0   43.0   0.271   -0.0952 0.6372 False 
 17.0   44.0   0.2165  -0.1497 0.5827 False 
 17.0   45.0   0.2165  -0.1497 0.5827 False 
 17.0   46.0  -0.0614  -0.4276 0.3048 False 
 17.0   47.0  -0.0182  -0.3844 0.348  False 
 17.0   48.0   0.2039  -0.1624 0.5701 False 
 17.0   49.0   0.2382   -0.128 0.6044 False 
 17.0   50.0   0.271   -0.0952 0.6372 False 
 17.0   51.0   0.1161  -0.2501 0.4823 False 
 17.0   52.0   0.271   -0.0952 0.6372 False 
 17.0   53.0   0.271   -0.0952 0.6372 False 
 17.0   54.0   0.1943  -0.1719 0.5605 False 
 17.0   55.0   0.2043  -0.1619 0.5705 False 
 17.0   56.0  -0.0515  -0.4178 0.3147 False 
 17.0   57.0  -0.0515  -0.4178 0.3147 False 
 17.0   58.0   0.2525  -0.1137 0.6187 False 
 17.0   59.0   0.1161  -0.2501 0.4823 False 
 17.0   60.0  -0.0764  -0.4426 0.2899 False 
 17.0   61.0  -0.0764  -0.4426 0.2899 False 
 17.0   62.0   0.114   -0.2522 0.4802 False 
 17.0   63.0   0.1445  -0.2217 0.5107 False 
 17.0   64.0   0.1114  -0.2548 0.4776 False 
 17.0   65.0   0.1361  -0.2301 0.5023 False 
 17.0   66.0   0.1092   -0.257 0.4754 False 
 17.0   67.0   0.0904  -0.2758 0.4566 False 
 17.0   68.0  -0.0032  -0.3694 0.363  False 
 17.0   69.0  -0.0032  -0.3694 0.363  False 
 17.0   70.0   0.1604  -0.2058 0.5266 False 
 17.0   71.0   0.1114  -0.2548 0.4776 False 
 17.0   72.0   0.1615  -0.2047 0.5277 False 
 17.0   73.0   0.1101  -0.2561 0.4763 False 
 17.0   74.0   0.1092   -0.257 0.4754 False 
 17.0   75.0   0.116   -0.2502 0.4822 False 
 18.0   19.0   0.0009  -0.3653 0.3671 False 
 18.0   20.0   0.0559  -0.3104 0.4221 False 
 18.0   21.0   0.0075  -0.3587 0.3737 False 
 18.0   22.0   0.1178  -0.2484 0.4841 False 
 18.0   23.0   0.066   -0.3002 0.4322 False 
 18.0   24.0   0.0232   -0.343 0.3894 False 
 18.0   25.0  -0.0118   -0.378 0.3544 False 
 18.0   26.0   0.0712   -0.295 0.4374 False 
 18.0   27.0   0.0712   -0.295 0.4374 False 
 18.0   28.0  -0.0046  -0.3709 0.3616 False 
 18.0   29.0   0.0531  -0.3131 0.4193 False 
 18.0   30.0   0.0689  -0.2973 0.4351 False 
 18.0   31.0   0.0326  -0.3336 0.3988 False 
 18.0   32.0   0.0826  -0.2836 0.4488 False 
 18.0   33.0   0.0705  -0.2957 0.4367 False 
 18.0   34.0   0.028   -0.3382 0.3942 False 
 18.0   35.0   0.0305  -0.3357 0.3967 False 
 18.0   36.0   0.0288  -0.3374 0.3951 False 
 18.0   37.0   0.0288  -0.3374 0.3951 False 
 18.0   38.0   0.0559  -0.3104 0.4221 False 
 18.0   39.0   0.0075  -0.3587 0.3737 False 
 18.0   40.0   0.0243  -0.3419 0.3905 False 
 18.0   41.0   0.2538  -0.1124  0.62  False 
 18.0   42.0   0.0243  -0.3419 0.3905 False 
 18.0   43.0   0.2723  -0.0939 0.6385 False 
 18.0   44.0   0.2178  -0.1484 0.5841 False 
 18.0   45.0   0.2178  -0.1484 0.5841 False 
 18.0   46.0  -0.0601  -0.4263 0.3061 False 
 18.0   47.0  -0.0169  -0.3831 0.3493 False 
 18.0   48.0   0.2052   -0.161 0.5714 False 
 18.0   49.0   0.2395  -0.1267 0.6057 False 
 18.0   50.0   0.2723  -0.0939 0.6385 False 
 18.0   51.0   0.1174  -0.2488 0.4836 False 
 18.0   52.0   0.2723  -0.0939 0.6385 False 
 18.0   53.0   0.2723  -0.0939 0.6385 False 
 18.0   54.0   0.1956  -0.1706 0.5618 False 
 18.0   55.0   0.2056  -0.1606 0.5718 False 
 18.0   56.0  -0.0502  -0.4164 0.316  False 
 18.0   57.0  -0.0502  -0.4164 0.316  False 
 18.0   58.0   0.2538  -0.1124  0.62  False 
 18.0   59.0   0.1174  -0.2488 0.4836 False 
 18.0   60.0   -0.075  -0.4412 0.2912 False 
 18.0   61.0   -0.075  -0.4412 0.2912 False 
 18.0   62.0   0.1153  -0.2509 0.4815 False 
 18.0   63.0   0.1458  -0.2204 0.512  False 
 18.0   64.0   0.1127  -0.2535 0.4789 False 
 18.0   65.0   0.1374  -0.2288 0.5036 False 
 18.0   66.0   0.1105  -0.2557 0.4767 False 
 18.0   67.0   0.0917  -0.2745 0.4579 False 
 18.0   68.0  -0.0019  -0.3681 0.3643 False 
 18.0   69.0  -0.0019  -0.3681 0.3643 False 
 18.0   70.0   0.1617  -0.2045 0.5279 False 
 18.0   71.0   0.1127  -0.2535 0.4789 False 
 18.0   72.0   0.1628  -0.2034 0.5291 False 
 18.0   73.0   0.1115  -0.2548 0.4777 False 
 18.0   74.0   0.1105  -0.2557 0.4767 False 
 18.0   75.0   0.1173  -0.2489 0.4835 False 
 19.0   20.0   0.055   -0.3112 0.4212 False 
 19.0   21.0   0.0066  -0.3596 0.3729 False 
 19.0   22.0   0.117   -0.2492 0.4832 False 
 19.0   23.0   0.0652  -0.3011 0.4314 False 
 19.0   24.0   0.0224  -0.3438 0.3886 False 
 19.0   25.0  -0.0126  -0.3788 0.3536 False 
 19.0   26.0   0.0703  -0.2959 0.4365 False 
 19.0   27.0   0.0703  -0.2959 0.4365 False 
 19.0   28.0  -0.0055  -0.3717 0.3607 False 
 19.0   29.0   0.0523   -0.314 0.4185 False 
 19.0   30.0   0.068   -0.2982 0.4342 False 
 19.0   31.0   0.0318  -0.3344 0.398  False 
 19.0   32.0   0.0817  -0.2845 0.4479 False 
 19.0   33.0   0.0697  -0.2966 0.4359 False 
 19.0   34.0   0.0272  -0.3391 0.3934 False 
 19.0   35.0   0.0296  -0.3366 0.3958 False 
 19.0   36.0   0.028   -0.3382 0.3942 False 
 19.0   37.0   0.028   -0.3382 0.3942 False 
 19.0   38.0   0.055   -0.3112 0.4212 False 
 19.0   39.0   0.0066  -0.3596 0.3729 False 
 19.0   40.0   0.0234  -0.3428 0.3896 False 
 19.0   41.0   0.2529  -0.1133 0.6191 False 
 19.0   42.0   0.0234  -0.3428 0.3896 False 
 19.0   43.0   0.2714  -0.0948 0.6376 False 
 19.0   44.0   0.217   -0.1492 0.5832 False 
 19.0   45.0   0.217   -0.1492 0.5832 False 
 19.0   46.0   -0.061  -0.4272 0.3052 False 
 19.0   47.0  -0.0178   -0.384 0.3484 False 
 19.0   48.0   0.2043  -0.1619 0.5705 False 
 19.0   49.0   0.2386  -0.1276 0.6048 False 
 19.0   50.0   0.2714  -0.0948 0.6376 False 
 19.0   51.0   0.1165  -0.2497 0.4827 False 
 19.0   52.0   0.2714  -0.0948 0.6376 False 
 19.0   53.0   0.2714  -0.0948 0.6376 False 
 19.0   54.0   0.1948  -0.1714 0.561  False 
 19.0   55.0   0.2048  -0.1614 0.571  False 
 19.0   56.0  -0.0511  -0.4173 0.3151 False 
 19.0   57.0  -0.0511  -0.4173 0.3151 False 
 19.0   58.0   0.2529  -0.1133 0.6191 False 
 19.0   59.0   0.1165  -0.2497 0.4827 False 
 19.0   60.0  -0.0759  -0.4421 0.2903 False 
 19.0   61.0  -0.0759  -0.4421 0.2903 False 
 19.0   62.0   0.1144  -0.2518 0.4806 False 
 19.0   63.0   0.1449  -0.2213 0.5112 False 
 19.0   64.0   0.1118  -0.2544 0.4781 False 
 19.0   65.0   0.1365  -0.2297 0.5027 False 
 19.0   66.0   0.1096  -0.2566 0.4758 False 
 19.0   67.0   0.0908  -0.2754 0.457  False 
 19.0   68.0  -0.0028   -0.369 0.3634 False 
 19.0   69.0  -0.0028   -0.369 0.3634 False 
 19.0   70.0   0.1609  -0.2053 0.5271 False 
 19.0   71.0   0.1118  -0.2544 0.4781 False 
 19.0   72.0   0.162   -0.2042 0.5282 False 
 19.0   73.0   0.1106  -0.2556 0.4768 False 
 19.0   74.0   0.1096  -0.2566 0.4758 False 
 19.0   75.0   0.1164  -0.2498 0.4826 False 
 20.0   21.0  -0.0483  -0.4146 0.3179 False 
 20.0   22.0   0.062   -0.3042 0.4282 False 
 20.0   23.0   0.0102   -0.356 0.3764 False 
 20.0   24.0  -0.0326  -0.3988 0.3336 False 
 20.0   25.0  -0.0676  -0.4338 0.2986 False 
 20.0   26.0   0.0153  -0.3509 0.3815 False 
 20.0   27.0   0.0153  -0.3509 0.3815 False 
 20.0   28.0  -0.0605  -0.4267 0.3057 False 
 20.0   29.0  -0.0027  -0.3689 0.3635 False 
 20.0   30.0   0.013   -0.3532 0.3792 False 
 20.0   31.0  -0.0232  -0.3894 0.343  False 
 20.0   32.0   0.0267  -0.3395 0.3929 False 
 20.0   33.0   0.0147  -0.3515 0.3809 False 
 20.0   34.0  -0.0278   -0.394 0.3384 False 
 20.0   35.0  -0.0254  -0.3916 0.3409 False 
 20.0   36.0   -0.027  -0.3932 0.3392 False 
 20.0   37.0   -0.027  -0.3932 0.3392 False 
 20.0   38.0    0.0    -0.3662 0.3662 False 
 20.0   39.0  -0.0483  -0.4146 0.3179 False 
 20.0   40.0  -0.0316  -0.3978 0.3347 False 
 20.0   41.0   0.1979  -0.1683 0.5641 False 
 20.0   42.0  -0.0316  -0.3978 0.3347 False 
 20.0   43.0   0.2164  -0.1498 0.5826 False 
 20.0   44.0   0.162   -0.2042 0.5282 False 
 20.0   45.0   0.162   -0.2042 0.5282 False 
 20.0   46.0   -0.116  -0.4822 0.2503 False 
 20.0   47.0  -0.0728   -0.439 0.2934 False 
 20.0   48.0   0.1493  -0.2169 0.5155 False 
 20.0   49.0   0.1836  -0.1826 0.5498 False 
 20.0   50.0   0.2164  -0.1498 0.5826 False 
 20.0   51.0   0.0615  -0.3047 0.4277 False 
 20.0   52.0   0.2164  -0.1498 0.5826 False 
 20.0   53.0   0.2164  -0.1498 0.5826 False 
 20.0   54.0   0.1398  -0.2264 0.506  False 
 20.0   55.0   0.1498  -0.2164 0.516  False 
 20.0   56.0  -0.1061  -0.4723 0.2601 False 
 20.0   57.0  -0.1061  -0.4723 0.2601 False 
 20.0   58.0   0.1979  -0.1683 0.5641 False 
 20.0   59.0   0.0615  -0.3047 0.4277 False 
 20.0   60.0  -0.1309  -0.4971 0.2353 False 
 20.0   61.0  -0.1309  -0.4971 0.2353 False 
 20.0   62.0   0.0594  -0.3068 0.4257 False 
 20.0   63.0    0.09   -0.2763 0.4562 False 
 20.0   64.0   0.0569  -0.3094 0.4231 False 
 20.0   65.0   0.0815  -0.2847 0.4477 False 
 20.0   66.0   0.0546  -0.3116 0.4208 False 
 20.0   67.0   0.0358  -0.3304 0.402  False 
 20.0   68.0  -0.0578   -0.424 0.3084 False 
 20.0   69.0  -0.0578   -0.424 0.3084 False 
 20.0   70.0   0.1059  -0.2603 0.4721 False 
 20.0   71.0   0.0569  -0.3094 0.4231 False 
 20.0   72.0   0.107   -0.2592 0.4732 False 
 20.0   73.0   0.0556  -0.3106 0.4218 False 
 20.0   74.0   0.0546  -0.3116 0.4208 False 
 20.0   75.0   0.0614  -0.3048 0.4276 False 
 21.0   22.0   0.1103  -0.2559 0.4765 False 
 21.0   23.0   0.0585  -0.3077 0.4247 False 
 21.0   24.0   0.0157  -0.3505 0.3819 False 
 21.0   25.0  -0.0193  -0.3855 0.3469 False 
 21.0   26.0   0.0637  -0.3025 0.4299 False 
 21.0   27.0   0.0637  -0.3025 0.4299 False 
 21.0   28.0  -0.0122  -0.3784 0.3541 False 
 21.0   29.0   0.0456  -0.3206 0.4118 False 
 21.0   30.0   0.0613  -0.3049 0.4276 False 
 21.0   31.0   0.0251  -0.3411 0.3913 False 
 21.0   32.0   0.075   -0.2912 0.4413 False 
 21.0   33.0   0.063   -0.3032 0.4292 False 
 21.0   34.0   0.0205  -0.3457 0.3867 False 
 21.0   35.0   0.023   -0.3432 0.3892 False 
 21.0   36.0   0.0213  -0.3449 0.3875 False 
 21.0   37.0   0.0213  -0.3449 0.3875 False 
 21.0   38.0   0.0483  -0.3179 0.4146 False 
 21.0   39.0    0.0    -0.3662 0.3662 False 
 21.0   40.0   0.0168  -0.3494 0.383  False 
 21.0   41.0   0.2463  -0.1199 0.6125 False 
 21.0   42.0   0.0168  -0.3494 0.383  False 
 21.0   43.0   0.2648  -0.1014 0.631  False 
 21.0   44.0   0.2103  -0.1559 0.5765 False 
 21.0   45.0   0.2103  -0.1559 0.5765 False 
 21.0   46.0  -0.0676  -0.4338 0.2986 False 
 21.0   47.0  -0.0244  -0.3906 0.3418 False 
 21.0   48.0   0.1977  -0.1685 0.5639 False 
 21.0   49.0   0.232   -0.1342 0.5982 False 
 21.0   50.0   0.2648  -0.1014 0.631  False 
 21.0   51.0   0.1099  -0.2563 0.4761 False 
 21.0   52.0   0.2648  -0.1014 0.631  False 
 21.0   53.0   0.2648  -0.1014 0.631  False 
 21.0   54.0   0.1881  -0.1781 0.5543 False 
 21.0   55.0   0.1981  -0.1681 0.5643 False 
 21.0   56.0  -0.0577  -0.4239 0.3085 False 
 21.0   57.0  -0.0577  -0.4239 0.3085 False 
 21.0   58.0   0.2463  -0.1199 0.6125 False 
 21.0   59.0   0.1099  -0.2563 0.4761 False 
 21.0   60.0  -0.0825  -0.4488 0.2837 False 
 21.0   61.0  -0.0825  -0.4488 0.2837 False 
 21.0   62.0   0.1078  -0.2584 0.474  False 
 21.0   63.0   0.1383  -0.2279 0.5045 False 
 21.0   64.0   0.1052   -0.261 0.4714 False 
 21.0   65.0   0.1299  -0.2363 0.4961 False 
 21.0   66.0   0.103   -0.2632 0.4692 False 
 21.0   67.0   0.0842   -0.282 0.4504 False 
 21.0   68.0  -0.0094  -0.3756 0.3568 False 
 21.0   69.0  -0.0094  -0.3756 0.3568 False 
 21.0   70.0   0.1542   -0.212 0.5204 False 
 21.0   71.0   0.1052   -0.261 0.4714 False 
 21.0   72.0   0.1553  -0.2109 0.5215 False 
 21.0   73.0   0.1039  -0.2623 0.4702 False 
 21.0   74.0   0.103   -0.2632 0.4692 False 
 21.0   75.0   0.1098  -0.2564 0.476  False 
 22.0   23.0  -0.0518   -0.418 0.3144 False 
 22.0   24.0  -0.0946  -0.4608 0.2716 False 
 22.0   25.0  -0.1296  -0.4958 0.2366 False 
 22.0   26.0  -0.0467  -0.4129 0.3195 False 
 22.0   27.0  -0.0467  -0.4129 0.3195 False 
 22.0   28.0  -0.1225  -0.4887 0.2437 False 
 22.0   29.0  -0.0647  -0.4309 0.3015 False 
 22.0   30.0   -0.049  -0.4152 0.3172 False 
 22.0   31.0  -0.0852  -0.4514 0.281  False 
 22.0   32.0  -0.0353  -0.4015 0.3309 False 
 22.0   33.0  -0.0473  -0.4135 0.3189 False 
 22.0   34.0  -0.0898   -0.456 0.2764 False 
 22.0   35.0  -0.0873  -0.4536 0.2789 False 
 22.0   36.0   -0.089  -0.4552 0.2772 False 
 22.0   37.0   -0.089  -0.4552 0.2772 False 
 22.0   38.0   -0.062  -0.4282 0.3042 False 
 22.0   39.0  -0.1103  -0.4765 0.2559 False 
 22.0   40.0  -0.0935  -0.4598 0.2727 False 
 22.0   41.0   0.1359  -0.2303 0.5021 False 
 22.0   42.0  -0.0935  -0.4598 0.2727 False 
 22.0   43.0   0.1544  -0.2118 0.5207 False 
 22.0   44.0    0.1    -0.2662 0.4662 False 
 22.0   45.0    0.1    -0.2662 0.4662 False 
 22.0   46.0  -0.1779  -0.5441 0.1883 False 
 22.0   47.0  -0.1348   -0.501 0.2314 False 
 22.0   48.0   0.0873  -0.2789 0.4535 False 
 22.0   49.0   0.1216  -0.2446 0.4879 False 
 22.0   50.0   0.1544  -0.2118 0.5207 False 
 22.0   51.0  -0.0005  -0.3667 0.3658 False 
 22.0   52.0   0.1544  -0.2118 0.5207 False 
 22.0   53.0   0.1544  -0.2118 0.5207 False 
 22.0   54.0   0.0778  -0.2884 0.444  False 
 22.0   55.0   0.0878  -0.2784 0.454  False 
 22.0   56.0  -0.1681  -0.5343 0.1981 False 
 22.0   57.0  -0.1681  -0.5343 0.1981 False 
 22.0   58.0   0.1359  -0.2303 0.5021 False 
 22.0   59.0  -0.0005  -0.3667 0.3658 False 
 22.0   60.0  -0.1929  -0.5591 0.1733 False 
 22.0   61.0  -0.1929  -0.5591 0.1733 False 
 22.0   62.0  -0.0025  -0.3687 0.3637 False 
 22.0   63.0   0.028   -0.3382 0.3942 False 
 22.0   64.0  -0.0051  -0.3713 0.3611 False 
 22.0   65.0   0.0195  -0.3467 0.3858 False 
 22.0   66.0  -0.0074  -0.3736 0.3588 False 
 22.0   67.0  -0.0262  -0.3924  0.34  False 
 22.0   68.0  -0.1198   -0.486 0.2465 False 
 22.0   69.0  -0.1198   -0.486 0.2465 False 
 22.0   70.0   0.0439  -0.3223 0.4101 False 
 22.0   71.0  -0.0051  -0.3713 0.3611 False 
 22.0   72.0   0.045   -0.3212 0.4112 False 
 22.0   73.0  -0.0064  -0.3726 0.3598 False 
 22.0   74.0  -0.0074  -0.3736 0.3588 False 
 22.0   75.0  -0.0006  -0.3668 0.3657 False 
 23.0   24.0  -0.0428   -0.409 0.3234 False 
 23.0   25.0  -0.0778   -0.444 0.2884 False 
 23.0   26.0   0.0052   -0.361 0.3714 False 
 23.0   27.0   0.0052   -0.361 0.3714 False 
 23.0   28.0  -0.0707  -0.4369 0.2955 False 
 23.0   29.0  -0.0129  -0.3791 0.3533 False 
 23.0   30.0   0.0028  -0.3634 0.3691 False 
 23.0   31.0  -0.0334  -0.3996 0.3328 False 
 23.0   32.0   0.0165  -0.3497 0.3828 False 
 23.0   33.0   0.0045  -0.3617 0.3707 False 
 23.0   34.0   -0.038  -0.4042 0.3282 False 
 23.0   35.0  -0.0355  -0.4017 0.3307 False 
 23.0   36.0  -0.0372  -0.4034 0.329  False 
 23.0   37.0  -0.0372  -0.4034 0.329  False 
 23.0   38.0  -0.0102  -0.3764 0.356  False 
 23.0   39.0  -0.0585  -0.4247 0.3077 False 
 23.0   40.0  -0.0417  -0.4079 0.3245 False 
 23.0   41.0   0.1878  -0.1784 0.554  False 
 23.0   42.0  -0.0417  -0.4079 0.3245 False 
 23.0   43.0   0.2063  -0.1599 0.5725 False 
 23.0   44.0   0.1518  -0.2144 0.518  False 
 23.0   45.0   0.1518  -0.2144 0.518  False 
 23.0   46.0  -0.1261  -0.4923 0.2401 False 
 23.0   47.0  -0.0829  -0.4491 0.2833 False 
 23.0   48.0   0.1392  -0.2271 0.5054 False 
 23.0   49.0   0.1735  -0.1927 0.5397 False 
 23.0   50.0   0.2063  -0.1599 0.5725 False 
 23.0   51.0   0.0514  -0.3148 0.4176 False 
 23.0   52.0   0.2063  -0.1599 0.5725 False 
 23.0   53.0   0.2063  -0.1599 0.5725 False 
 23.0   54.0   0.1296  -0.2366 0.4958 False 
 23.0   55.0   0.1396  -0.2266 0.5058 False 
 23.0   56.0  -0.1162  -0.4824  0.25  False 
 23.0   57.0  -0.1162  -0.4824  0.25  False 
 23.0   58.0   0.1878  -0.1784 0.554  False 
 23.0   59.0   0.0514  -0.3148 0.4176 False 
 23.0   60.0  -0.1411  -0.5073 0.2252 False 
 23.0   61.0  -0.1411  -0.5073 0.2252 False 
 23.0   62.0   0.0493  -0.3169 0.4155 False 
 23.0   63.0   0.0798  -0.2864 0.446  False 
 23.0   64.0   0.0467  -0.3195 0.4129 False 
 23.0   65.0   0.0714  -0.2948 0.4376 False 
 23.0   66.0   0.0445  -0.3217 0.4107 False 
 23.0   67.0   0.0257  -0.3405 0.3919 False 
 23.0   68.0  -0.0679  -0.4341 0.2983 False 
 23.0   69.0  -0.0679  -0.4341 0.2983 False 
 23.0   70.0   0.0957  -0.2705 0.4619 False 
 23.0   71.0   0.0467  -0.3195 0.4129 False 
 23.0   72.0   0.0968  -0.2694 0.463  False 
 23.0   73.0   0.0454  -0.3208 0.4116 False 
 23.0   74.0   0.0445  -0.3217 0.4107 False 
 23.0   75.0   0.0513  -0.3149 0.4175 False 
 24.0   25.0   -0.035  -0.4012 0.3312 False 
 24.0   26.0   0.048   -0.3183 0.4142 False 
 24.0   27.0   0.048   -0.3183 0.4142 False 
 24.0   28.0  -0.0279  -0.3941 0.3383 False 
 24.0   29.0   0.0299  -0.3363 0.3961 False 
 24.0   30.0   0.0456  -0.3206 0.4118 False 
 24.0   31.0   0.0094  -0.3568 0.3756 False 
 24.0   32.0   0.0593  -0.3069 0.4255 False 
 24.0   33.0   0.0473  -0.3189 0.4135 False 
 24.0   34.0   0.0048  -0.3614 0.371  False 
 24.0   35.0   0.0073  -0.3589 0.3735 False 
 24.0   36.0   0.0056  -0.3606 0.3718 False 
 24.0   37.0   0.0056  -0.3606 0.3718 False 
 24.0   38.0   0.0326  -0.3336 0.3988 False 
 24.0   39.0  -0.0157  -0.3819 0.3505 False 
 24.0   40.0   0.0011  -0.3651 0.3673 False 
 24.0   41.0   0.2305  -0.1357 0.5968 False 
 24.0   42.0   0.0011  -0.3651 0.3673 False 
 24.0   43.0   0.2491  -0.1171 0.6153 False 
 24.0   44.0   0.1946  -0.1716 0.5608 False 
 24.0   45.0   0.1946  -0.1716 0.5608 False 
 24.0   46.0  -0.0833  -0.4495 0.2829 False 
 24.0   47.0  -0.0402  -0.4064 0.3261 False 
 24.0   48.0   0.1819  -0.1843 0.5481 False 
 24.0   49.0   0.2163   -0.15  0.5825 False 
 24.0   50.0   0.2491  -0.1171 0.6153 False 
 24.0   51.0   0.0942  -0.2721 0.4604 False 
 24.0   52.0   0.2491  -0.1171 0.6153 False 
 24.0   53.0   0.2491  -0.1171 0.6153 False 
 24.0   54.0   0.1724  -0.1938 0.5386 False 
 24.0   55.0   0.1824  -0.1838 0.5486 False 
 24.0   56.0  -0.0735  -0.4397 0.2928 False 
 24.0   57.0  -0.0735  -0.4397 0.2928 False 
 24.0   58.0   0.2305  -0.1357 0.5968 False 
 24.0   59.0   0.0942  -0.2721 0.4604 False 
 24.0   60.0  -0.0983  -0.4645 0.2679 False 
 24.0   61.0  -0.0983  -0.4645 0.2679 False 
 24.0   62.0   0.0921  -0.2741 0.4583 False 
 24.0   63.0   0.1226  -0.2436 0.4888 False 
 24.0   64.0   0.0895  -0.2767 0.4557 False 
 24.0   65.0   0.1142   -0.252 0.4804 False 
 24.0   66.0   0.0873   -0.279 0.4535 False 
 24.0   67.0   0.0684  -0.2978 0.4347 False 
 24.0   68.0  -0.0251  -0.3913 0.3411 False 
 24.0   69.0  -0.0251  -0.3913 0.3411 False 
 24.0   70.0   0.1385  -0.2277 0.5047 False 
 24.0   71.0   0.0895  -0.2767 0.4557 False 
 24.0   72.0   0.1396  -0.2266 0.5058 False 
 24.0   73.0   0.0882   -0.278 0.4544 False 
 24.0   74.0   0.0873   -0.279 0.4535 False 
 24.0   75.0   0.0941  -0.2722 0.4603 False 
 25.0   26.0   0.083   -0.2833 0.4492 False 
 25.0   27.0   0.083   -0.2833 0.4492 False 
 25.0   28.0   0.0071  -0.3591 0.3733 False 
 25.0   29.0   0.0649  -0.3013 0.4311 False 
 25.0   30.0   0.0806  -0.2856 0.4468 False 
 25.0   31.0   0.0444  -0.3218 0.4106 False 
 25.0   32.0   0.0943  -0.2719 0.4605 False 
 25.0   33.0   0.0823  -0.2839 0.4485 False 
 25.0   34.0   0.0398  -0.3264 0.406  False 
 25.0   35.0   0.0423  -0.3239 0.4085 False 
 25.0   36.0   0.0406  -0.3256 0.4068 False 
 25.0   37.0   0.0406  -0.3256 0.4068 False 
 25.0   38.0   0.0676  -0.2986 0.4338 False 
 25.0   39.0   0.0193  -0.3469 0.3855 False 
 25.0   40.0   0.0361  -0.3301 0.4023 False 
 25.0   41.0   0.2655  -0.1007 0.6318 False 
 25.0   42.0   0.0361  -0.3301 0.4023 False 
 25.0   43.0   0.2841  -0.0821 0.6503 False 
 25.0   44.0   0.2296  -0.1366 0.5958 False 
 25.0   45.0   0.2296  -0.1366 0.5958 False 
 25.0   46.0  -0.0483  -0.4145 0.3179 False 
 25.0   47.0  -0.0052  -0.3714 0.3611 False 
 25.0   48.0   0.2169  -0.1493 0.5831 False 
 25.0   49.0   0.2513   -0.115 0.6175 False 
 25.0   50.0   0.2841  -0.0821 0.6503 False 
 25.0   51.0   0.1292  -0.2371 0.4954 False 
 25.0   52.0   0.2841  -0.0821 0.6503 False 
 25.0   53.0   0.2841  -0.0821 0.6503 False 
 25.0   54.0   0.2074  -0.1588 0.5736 False 
 25.0   55.0   0.2174  -0.1488 0.5836 False 
 25.0   56.0  -0.0385  -0.4047 0.3278 False 
 25.0   57.0  -0.0385  -0.4047 0.3278 False 
 25.0   58.0   0.2655  -0.1007 0.6318 False 
 25.0   59.0   0.1292  -0.2371 0.4954 False 
 25.0   60.0  -0.0633  -0.4295 0.3029 False 
 25.0   61.0  -0.0633  -0.4295 0.3029 False 
 25.0   62.0   0.1271  -0.2391 0.4933 False 
 25.0   63.0   0.1576  -0.2086 0.5238 False 
 25.0   64.0   0.1245  -0.2417 0.4907 False 
 25.0   65.0   0.1492   -0.217 0.5154 False 
 25.0   66.0   0.1223   -0.244 0.4885 False 
 25.0   67.0   0.1034  -0.2628 0.4697 False 
 25.0   68.0   0.0099  -0.3563 0.3761 False 
 25.0   69.0   0.0099  -0.3563 0.3761 False 
 25.0   70.0   0.1735  -0.1927 0.5397 False 
 25.0   71.0   0.1245  -0.2417 0.4907 False 
 25.0   72.0   0.1746  -0.1916 0.5408 False 
 25.0   73.0   0.1232   -0.243 0.4894 False 
 25.0   74.0   0.1223   -0.244 0.4885 False 
 25.0   75.0   0.1291  -0.2372 0.4953 False 
 26.0   27.0    0.0    -0.3662 0.3662 False 
 26.0   28.0  -0.0758   -0.442 0.2904 False 
 26.0   29.0  -0.0181  -0.3843 0.3481 False 
 26.0   30.0  -0.0023  -0.3685 0.3639 False 
 26.0   31.0  -0.0385  -0.4048 0.3277 False 
 26.0   32.0   0.0114  -0.3548 0.3776 False 
 26.0   33.0  -0.0007  -0.3669 0.3655 False 
 26.0   34.0  -0.0432  -0.4094 0.323  False 
 26.0   35.0  -0.0407  -0.4069 0.3255 False 
 26.0   36.0  -0.0423  -0.4086 0.3239 False 
 26.0   37.0  -0.0423  -0.4086 0.3239 False 
 26.0   38.0  -0.0153  -0.3815 0.3509 False 
 26.0   39.0  -0.0637  -0.4299 0.3025 False 
 26.0   40.0  -0.0469  -0.4131 0.3193 False 
 26.0   41.0   0.1826  -0.1836 0.5488 False 
 26.0   42.0  -0.0469  -0.4131 0.3193 False 
 26.0   43.0   0.2011  -0.1651 0.5673 False 
 26.0   44.0   0.1467  -0.2195 0.5129 False 
 26.0   45.0   0.1467  -0.2195 0.5129 False 
 26.0   46.0  -0.1313  -0.4975 0.2349 False 
 26.0   47.0  -0.0881  -0.4543 0.2781 False 
 26.0   48.0   0.134   -0.2322 0.5002 False 
 26.0   49.0   0.1683  -0.1979 0.5345 False 
 26.0   50.0   0.2011  -0.1651 0.5673 False 
 26.0   51.0   0.0462   -0.32  0.4124 False 
 26.0   52.0   0.2011  -0.1651 0.5673 False 
 26.0   53.0   0.2011  -0.1651 0.5673 False 
 26.0   54.0   0.1244  -0.2418 0.4906 False 
 26.0   55.0   0.1344  -0.2318 0.5006 False 
 26.0   56.0  -0.1214  -0.4876 0.2448 False 
 26.0   57.0  -0.1214  -0.4876 0.2448 False 
 26.0   58.0   0.1826  -0.1836 0.5488 False 
 26.0   59.0   0.0462   -0.32  0.4124 False 
 26.0   60.0  -0.1462  -0.5124  0.22  False 
 26.0   61.0  -0.1462  -0.5124  0.22  False 
 26.0   62.0   0.0441  -0.3221 0.4103 False 
 26.0   63.0   0.0746  -0.2916 0.4408 False 
 26.0   64.0   0.0415  -0.3247 0.4077 False 
 26.0   65.0   0.0662    -0.3  0.4324 False 
 26.0   66.0   0.0393  -0.3269 0.4055 False 
 26.0   67.0   0.0205  -0.3457 0.3867 False 
 26.0   68.0  -0.0731  -0.4393 0.2931 False 
 26.0   69.0  -0.0731  -0.4393 0.2931 False 
 26.0   70.0   0.0905  -0.2757 0.4568 False 
 26.0   71.0   0.0415  -0.3247 0.4077 False 
 26.0   72.0   0.0917  -0.2745 0.4579 False 
 26.0   73.0   0.0403  -0.3259 0.4065 False 
 26.0   74.0   0.0393  -0.3269 0.4055 False 
 26.0   75.0   0.0461  -0.3201 0.4123 False 
 27.0   28.0  -0.0758   -0.442 0.2904 False 
 27.0   29.0  -0.0181  -0.3843 0.3481 False 
 27.0   30.0  -0.0023  -0.3685 0.3639 False 
 27.0   31.0  -0.0385  -0.4048 0.3277 False 
 27.0   32.0   0.0114  -0.3548 0.3776 False 
 27.0   33.0  -0.0007  -0.3669 0.3655 False 
 27.0   34.0  -0.0432  -0.4094 0.323  False 
 27.0   35.0  -0.0407  -0.4069 0.3255 False 
 27.0   36.0  -0.0423  -0.4086 0.3239 False 
 27.0   37.0  -0.0423  -0.4086 0.3239 False 
 27.0   38.0  -0.0153  -0.3815 0.3509 False 
 27.0   39.0  -0.0637  -0.4299 0.3025 False 
 27.0   40.0  -0.0469  -0.4131 0.3193 False 
 27.0   41.0   0.1826  -0.1836 0.5488 False 
 27.0   42.0  -0.0469  -0.4131 0.3193 False 
 27.0   43.0   0.2011  -0.1651 0.5673 False 
 27.0   44.0   0.1467  -0.2195 0.5129 False 
 27.0   45.0   0.1467  -0.2195 0.5129 False 
 27.0   46.0  -0.1313  -0.4975 0.2349 False 
 27.0   47.0  -0.0881  -0.4543 0.2781 False 
 27.0   48.0   0.134   -0.2322 0.5002 False 
 27.0   49.0   0.1683  -0.1979 0.5345 False 
 27.0   50.0   0.2011  -0.1651 0.5673 False 
 27.0   51.0   0.0462   -0.32  0.4124 False 
 27.0   52.0   0.2011  -0.1651 0.5673 False 
 27.0   53.0   0.2011  -0.1651 0.5673 False 
 27.0   54.0   0.1244  -0.2418 0.4906 False 
 27.0   55.0   0.1344  -0.2318 0.5006 False 
 27.0   56.0  -0.1214  -0.4876 0.2448 False 
 27.0   57.0  -0.1214  -0.4876 0.2448 False 
 27.0   58.0   0.1826  -0.1836 0.5488 False 
 27.0   59.0   0.0462   -0.32  0.4124 False 
 27.0   60.0  -0.1462  -0.5124  0.22  False 
 27.0   61.0  -0.1462  -0.5124  0.22  False 
 27.0   62.0   0.0441  -0.3221 0.4103 False 
 27.0   63.0   0.0746  -0.2916 0.4408 False 
 27.0   64.0   0.0415  -0.3247 0.4077 False 
 27.0   65.0   0.0662    -0.3  0.4324 False 
 27.0   66.0   0.0393  -0.3269 0.4055 False 
 27.0   67.0   0.0205  -0.3457 0.3867 False 
 27.0   68.0  -0.0731  -0.4393 0.2931 False 
 27.0   69.0  -0.0731  -0.4393 0.2931 False 
 27.0   70.0   0.0905  -0.2757 0.4568 False 
 27.0   71.0   0.0415  -0.3247 0.4077 False 
 27.0   72.0   0.0917  -0.2745 0.4579 False 
 27.0   73.0   0.0403  -0.3259 0.4065 False 
 27.0   74.0   0.0393  -0.3269 0.4055 False 
 27.0   75.0   0.0461  -0.3201 0.4123 False 
 28.0   29.0   0.0578  -0.3084 0.424  False 
 28.0   30.0   0.0735  -0.2927 0.4397 False 
 28.0   31.0   0.0373  -0.3289 0.4035 False 
 28.0   32.0   0.0872   -0.279 0.4534 False 
 28.0   33.0   0.0752   -0.291 0.4414 False 
 28.0   34.0   0.0327  -0.3335 0.3989 False 
 28.0   35.0   0.0351  -0.3311 0.4014 False 
 28.0   36.0   0.0335  -0.3327 0.3997 False 
 28.0   37.0   0.0335  -0.3327 0.3997 False 
 28.0   38.0   0.0605  -0.3057 0.4267 False 
 28.0   39.0   0.0122  -0.3541 0.3784 False 
 28.0   40.0   0.0289  -0.3373 0.3952 False 
 28.0   41.0   0.2584  -0.1078 0.6246 False 
 28.0   42.0   0.0289  -0.3373 0.3952 False 
 28.0   43.0   0.2769  -0.0893 0.6431 False 
 28.0   44.0   0.2225  -0.1437 0.5887 False 
 28.0   45.0   0.2225  -0.1437 0.5887 False 
 28.0   46.0  -0.0555  -0.4217 0.3108 False 
 28.0   47.0  -0.0123  -0.3785 0.3539 False 
 28.0   48.0   0.2098  -0.1564 0.576  False 
 28.0   49.0   0.2441  -0.1221 0.6103 False 
 28.0   50.0   0.2769  -0.0893 0.6431 False 
 28.0   51.0   0.122   -0.2442 0.4882 False 
 28.0   52.0   0.2769  -0.0893 0.6431 False 
 28.0   53.0   0.2769  -0.0893 0.6431 False 
 28.0   54.0   0.2003  -0.1659 0.5665 False 
 28.0   55.0   0.2103  -0.1559 0.5765 False 
 28.0   56.0  -0.0456  -0.4118 0.3206 False 
 28.0   57.0  -0.0456  -0.4118 0.3206 False 
 28.0   58.0   0.2584  -0.1078 0.6246 False 
 28.0   59.0   0.122   -0.2442 0.4882 False 
 28.0   60.0  -0.0704  -0.4366 0.2958 False 
 28.0   61.0  -0.0704  -0.4366 0.2958 False 
 28.0   62.0   0.1199  -0.2463 0.4862 False 
 28.0   63.0   0.1505  -0.2158 0.5167 False 
 28.0   64.0   0.1174  -0.2489 0.4836 False 
 28.0   65.0   0.142   -0.2242 0.5082 False 
 28.0   66.0   0.1151  -0.2511 0.4813 False 
 28.0   67.0   0.0963  -0.2699 0.4625 False 
 28.0   68.0   0.0027  -0.3635 0.3689 False 
 28.0   69.0   0.0027  -0.3635 0.3689 False 
 28.0   70.0   0.1664  -0.1998 0.5326 False 
 28.0   71.0   0.1174  -0.2489 0.4836 False 
 28.0   72.0   0.1675  -0.1987 0.5337 False 
 28.0   73.0   0.1161  -0.2501 0.4823 False 
 28.0   74.0   0.1151  -0.2511 0.4813 False 
 28.0   75.0   0.1219  -0.2443 0.4881 False 
 29.0   30.0   0.0157  -0.3505 0.3819 False 
 29.0   31.0  -0.0205  -0.3867 0.3457 False 
 29.0   32.0   0.0294  -0.3368 0.3956 False 
 29.0   33.0   0.0174  -0.3488 0.3836 False 
 29.0   34.0  -0.0251  -0.3913 0.3411 False 
 29.0   35.0  -0.0226  -0.3888 0.3436 False 
 29.0   36.0  -0.0243  -0.3905 0.3419 False 
 29.0   37.0  -0.0243  -0.3905 0.3419 False 
 29.0   38.0   0.0027  -0.3635 0.3689 False 
 29.0   39.0  -0.0456  -0.4118 0.3206 False 
 29.0   40.0  -0.0288   -0.395 0.3374 False 
 29.0   41.0   0.2007  -0.1655 0.5669 False 
 29.0   42.0  -0.0288   -0.395 0.3374 False 
 29.0   43.0   0.2192   -0.147 0.5854 False 
 29.0   44.0   0.1647  -0.2015 0.5309 False 
 29.0   45.0   0.1647  -0.2015 0.5309 False 
 29.0   46.0  -0.1132  -0.4794 0.253  False 
 29.0   47.0   -0.07   -0.4363 0.2962 False 
 29.0   48.0   0.1521  -0.2142 0.5183 False 
 29.0   49.0   0.1864  -0.1798 0.5526 False 
 29.0   50.0   0.2192   -0.147 0.5854 False 
 29.0   51.0   0.0643  -0.3019 0.4305 False 
 29.0   52.0   0.2192   -0.147 0.5854 False 
 29.0   53.0   0.2192   -0.147 0.5854 False 
 29.0   54.0   0.1425  -0.2237 0.5087 False 
 29.0   55.0   0.1525  -0.2137 0.5187 False 
 29.0   56.0  -0.1033  -0.4696 0.2629 False 
 29.0   57.0  -0.1033  -0.4696 0.2629 False 
 29.0   58.0   0.2007  -0.1655 0.5669 False 
 29.0   59.0   0.0643  -0.3019 0.4305 False 
 29.0   60.0  -0.1282  -0.4944 0.2381 False 
 29.0   61.0  -0.1282  -0.4944 0.2381 False 
 29.0   62.0   0.0622   -0.304 0.4284 False 
 29.0   63.0   0.0927  -0.2735 0.4589 False 
 29.0   64.0   0.0596  -0.3066 0.4258 False 
 29.0   65.0   0.0843  -0.2819 0.4505 False 
 29.0   66.0   0.0574  -0.3088 0.4236 False 
 29.0   67.0   0.0386  -0.3276 0.4048 False 
 29.0   68.0   -0.055  -0.4212 0.3112 False 
 29.0   69.0   -0.055  -0.4212 0.3112 False 
 29.0   70.0   0.1086  -0.2576 0.4748 False 
 29.0   71.0   0.0596  -0.3066 0.4258 False 
 29.0   72.0   0.1097  -0.2565 0.4759 False 
 29.0   73.0   0.0583  -0.3079 0.4245 False 
 29.0   74.0   0.0574  -0.3088 0.4236 False 
 29.0   75.0   0.0642   -0.302 0.4304 False 
 30.0   31.0  -0.0362  -0.4024  0.33  False 
 30.0   32.0   0.0137  -0.3525 0.3799 False 
 30.0   33.0   0.0017  -0.3646 0.3679 False 
 30.0   34.0  -0.0408   -0.407 0.3254 False 
 30.0   35.0  -0.0384  -0.4046 0.3278 False 
 30.0   36.0   -0.04   -0.4062 0.3262 False 
 30.0   37.0   -0.04   -0.4062 0.3262 False 
 30.0   38.0   -0.013  -0.3792 0.3532 False 
 30.0   39.0  -0.0613  -0.4276 0.3049 False 
 30.0   40.0  -0.0446  -0.4108 0.3217 False 
 30.0   41.0   0.1849  -0.1813 0.5511 False 
 30.0   42.0  -0.0446  -0.4108 0.3217 False 
 30.0   43.0   0.2034  -0.1628 0.5696 False 
 30.0   44.0   0.149   -0.2172 0.5152 False 
 30.0   45.0   0.149   -0.2172 0.5152 False 
 30.0   46.0   -0.129  -0.4952 0.2373 False 
 30.0   47.0  -0.0858   -0.452 0.2804 False 
 30.0   48.0   0.1363  -0.2299 0.5025 False 
 30.0   49.0   0.1706  -0.1956 0.5368 False 
 30.0   50.0   0.2034  -0.1628 0.5696 False 
 30.0   51.0   0.0485  -0.3177 0.4147 False 
 30.0   52.0   0.2034  -0.1628 0.5696 False 
 30.0   53.0   0.2034  -0.1628 0.5696 False 
 30.0   54.0   0.1268  -0.2394 0.493  False 
 30.0   55.0   0.1368  -0.2294 0.503  False 
 30.0   56.0  -0.1191  -0.4853 0.2471 False 
 30.0   57.0  -0.1191  -0.4853 0.2471 False 
 30.0   58.0   0.1849  -0.1813 0.5511 False 
 30.0   59.0   0.0485  -0.3177 0.4147 False 
 30.0   60.0  -0.1439  -0.5101 0.2223 False 
 30.0   61.0  -0.1439  -0.5101 0.2223 False 
 30.0   62.0   0.0464  -0.3198 0.4127 False 
 30.0   63.0   0.077   -0.2893 0.4432 False 
 30.0   64.0   0.0438  -0.3224 0.4101 False 
 30.0   65.0   0.0685  -0.2977 0.4347 False 
 30.0   66.0   0.0416  -0.3246 0.4078 False 
 30.0   67.0   0.0228  -0.3434 0.389  False 
 30.0   68.0  -0.0708   -0.437 0.2954 False 
 30.0   69.0  -0.0708   -0.437 0.2954 False 
 30.0   70.0   0.0929  -0.2733 0.4591 False 
 30.0   71.0   0.0438  -0.3224 0.4101 False 
 30.0   72.0   0.094   -0.2722 0.4602 False 
 30.0   73.0   0.0426  -0.3236 0.4088 False 
 30.0   74.0   0.0416  -0.3246 0.4078 False 
 30.0   75.0   0.0484  -0.3178 0.4146 False 
 31.0   32.0   0.0499  -0.3163 0.4161 False 
 31.0   33.0   0.0379  -0.3283 0.4041 False 
 31.0   34.0  -0.0046  -0.3708 0.3616 False 
 31.0   35.0  -0.0021  -0.3683 0.3641 False 
 31.0   36.0  -0.0038   -0.37  0.3624 False 
 31.0   37.0  -0.0038   -0.37  0.3624 False 
 31.0   38.0   0.0232   -0.343 0.3894 False 
 31.0   39.0  -0.0251  -0.3913 0.3411 False 
 31.0   40.0  -0.0083  -0.3745 0.3579 False 
 31.0   41.0   0.2211  -0.1451 0.5873 False 
 31.0   42.0  -0.0083  -0.3745 0.3579 False 
 31.0   43.0   0.2397  -0.1266 0.6059 False 
 31.0   44.0   0.1852   -0.181 0.5514 False 
 31.0   45.0   0.1852   -0.181 0.5514 False 
 31.0   46.0  -0.0927  -0.4589 0.2735 False 
 31.0   47.0  -0.0496  -0.4158 0.3166 False 
 31.0   48.0   0.1725  -0.1937 0.5387 False 
 31.0   49.0   0.2069  -0.1594 0.5731 False 
 31.0   50.0   0.2397  -0.1266 0.6059 False 
 31.0   51.0   0.0848  -0.2815 0.451  False 
 31.0   52.0   0.2397  -0.1266 0.6059 False 
 31.0   53.0   0.2397  -0.1266 0.6059 False 
 31.0   54.0   0.163   -0.2032 0.5292 False 
 31.0   55.0   0.173   -0.1932 0.5392 False 
 31.0   56.0  -0.0829  -0.4491 0.2833 False 
 31.0   57.0  -0.0829  -0.4491 0.2833 False 
 31.0   58.0   0.2211  -0.1451 0.5873 False 
 31.0   59.0   0.0848  -0.2815 0.451  False 
 31.0   60.0  -0.1077  -0.4739 0.2585 False 
 31.0   61.0  -0.1077  -0.4739 0.2585 False 
 31.0   62.0   0.0827  -0.2835 0.4489 False 
 31.0   63.0   0.1132   -0.253 0.4794 False 
 31.0   64.0   0.0801  -0.2861 0.4463 False 
 31.0   65.0   0.1048  -0.2615 0.471  False 
 31.0   66.0   0.0778  -0.2884 0.4441 False 
 31.0   67.0   0.059   -0.3072 0.4253 False 
 31.0   68.0  -0.0345  -0.4008 0.3317 False 
 31.0   69.0  -0.0345  -0.4008 0.3317 False 
 31.0   70.0   0.1291  -0.2371 0.4953 False 
 31.0   71.0   0.0801  -0.2861 0.4463 False 
 31.0   72.0   0.1302   -0.236 0.4964 False 
 31.0   73.0   0.0788  -0.2874 0.445  False 
 31.0   74.0   0.0778  -0.2884 0.4441 False 
 31.0   75.0   0.0847  -0.2816 0.4509 False 
 32.0   33.0   -0.012  -0.3783 0.3542 False 
 32.0   34.0  -0.0545  -0.4207 0.3117 False 
 32.0   35.0  -0.0521  -0.4183 0.3141 False 
 32.0   36.0  -0.0537  -0.4199 0.3125 False 
 32.0   37.0  -0.0537  -0.4199 0.3125 False 
 32.0   38.0  -0.0267  -0.3929 0.3395 False 
 32.0   39.0   -0.075  -0.4413 0.2912 False 
 32.0   40.0  -0.0583  -0.4245 0.308  False 
 32.0   41.0   0.1712   -0.195 0.5374 False 
 32.0   42.0  -0.0583  -0.4245 0.308  False 
 32.0   43.0   0.1897  -0.1765 0.5559 False 
 32.0   44.0   0.1353  -0.2309 0.5015 False 
 32.0   45.0   0.1353  -0.2309 0.5015 False 
 32.0   46.0  -0.1427  -0.5089 0.2236 False 
 32.0   47.0  -0.0995  -0.4657 0.2667 False 
 32.0   48.0   0.1226  -0.2436 0.4888 False 
 32.0   49.0   0.1569  -0.2093 0.5231 False 
 32.0   50.0   0.1897  -0.1765 0.5559 False 
 32.0   51.0   0.0348  -0.3314 0.401  False 
 32.0   52.0   0.1897  -0.1765 0.5559 False 
 32.0   53.0   0.1897  -0.1765 0.5559 False 
 32.0   54.0   0.1131  -0.2531 0.4793 False 
 32.0   55.0   0.1231  -0.2431 0.4893 False 
 32.0   56.0  -0.1328   -0.499 0.2334 False 
 32.0   57.0  -0.1328   -0.499 0.2334 False 
 32.0   58.0   0.1712   -0.195 0.5374 False 
 32.0   59.0   0.0348  -0.3314 0.401  False 
 32.0   60.0  -0.1576  -0.5238 0.2086 False 
 32.0   61.0  -0.1576  -0.5238 0.2086 False 
 32.0   62.0   0.0327  -0.3335 0.399  False 
 32.0   63.0   0.0633   -0.303 0.4295 False 
 32.0   64.0   0.0301  -0.3361 0.3964 False 
 32.0   65.0   0.0548  -0.3114 0.421  False 
 32.0   66.0   0.0279  -0.3383 0.3941 False 
 32.0   67.0   0.0091  -0.3571 0.3753 False 
 32.0   68.0  -0.0845  -0.4507 0.2817 False 
 32.0   69.0  -0.0845  -0.4507 0.2817 False 
 32.0   70.0   0.0792   -0.287 0.4454 False 
 32.0   71.0   0.0301  -0.3361 0.3964 False 
 32.0   72.0   0.0803  -0.2859 0.4465 False 
 32.0   73.0   0.0289  -0.3373 0.3951 False 
 32.0   74.0   0.0279  -0.3383 0.3941 False 
 32.0   75.0   0.0347  -0.3315 0.4009 False 
 33.0   34.0  -0.0425  -0.4087 0.3237 False 
 33.0   35.0   -0.04   -0.4062 0.3262 False 
 33.0   36.0  -0.0417  -0.4079 0.3245 False 
 33.0   37.0  -0.0417  -0.4079 0.3245 False 
 33.0   38.0  -0.0147  -0.3809 0.3515 False 
 33.0   39.0   -0.063  -0.4292 0.3032 False 
 33.0   40.0  -0.0462  -0.4124  0.32  False 
 33.0   41.0   0.1833  -0.1829 0.5495 False 
 33.0   42.0  -0.0462  -0.4124  0.32  False 
 33.0   43.0   0.2018  -0.1644 0.568  False 
 33.0   44.0   0.1473  -0.2189 0.5135 False 
 33.0   45.0   0.1473  -0.2189 0.5135 False 
 33.0   46.0  -0.1306  -0.4968 0.2356 False 
 33.0   47.0  -0.0874  -0.4536 0.2788 False 
 33.0   48.0   0.1347  -0.2316 0.5009 False 
 33.0   49.0   0.169   -0.1972 0.5352 False 
 33.0   50.0   0.2018  -0.1644 0.568  False 
 33.0   51.0   0.0469  -0.3193 0.4131 False 
 33.0   52.0   0.2018  -0.1644 0.568  False 
 33.0   53.0   0.2018  -0.1644 0.568  False 
 33.0   54.0   0.1251  -0.2411 0.4913 False 
 33.0   55.0   0.1351  -0.2311 0.5013 False 
 33.0   56.0  -0.1207  -0.4869 0.2455 False 
 33.0   57.0  -0.1207  -0.4869 0.2455 False 
 33.0   58.0   0.1833  -0.1829 0.5495 False 
 33.0   59.0   0.0469  -0.3193 0.4131 False 
 33.0   60.0  -0.1456  -0.5118 0.2207 False 
 33.0   61.0  -0.1456  -0.5118 0.2207 False 
 33.0   62.0   0.0448  -0.3214 0.411  False 
 33.0   63.0   0.0753  -0.2909 0.4415 False 
 33.0   64.0   0.0422   -0.324 0.4084 False 
 33.0   65.0   0.0669  -0.2993 0.4331 False 
 33.0   66.0    0.04   -0.3262 0.4062 False 
 33.0   67.0   0.0212   -0.345 0.3874 False 
 33.0   68.0  -0.0724  -0.4386 0.2938 False 
 33.0   69.0  -0.0724  -0.4386 0.2938 False 
 33.0   70.0   0.0912   -0.275 0.4574 False 
 33.0   71.0   0.0422   -0.324 0.4084 False 
 33.0   72.0   0.0923  -0.2739 0.4585 False 
 33.0   73.0   0.0409  -0.3253 0.4071 False 
 33.0   74.0    0.04   -0.3262 0.4062 False 
 33.0   75.0   0.0468  -0.3194 0.413  False 
 34.0   35.0   0.0025  -0.3637 0.3687 False 
 34.0   36.0   0.0008  -0.3654 0.367  False 
 34.0   37.0   0.0008  -0.3654 0.367  False 
 34.0   38.0   0.0278  -0.3384 0.394  False 
 34.0   39.0  -0.0205  -0.3867 0.3457 False 
 34.0   40.0  -0.0037  -0.3699 0.3625 False 
 34.0   41.0   0.2258  -0.1405 0.592  False 
 34.0   42.0  -0.0037  -0.3699 0.3625 False 
 34.0   43.0   0.2443  -0.1219 0.6105 False 
 34.0   44.0   0.1898  -0.1764 0.556  False 
 34.0   45.0   0.1898  -0.1764 0.556  False 
 34.0   46.0  -0.0881  -0.4543 0.2781 False 
 34.0   47.0  -0.0449  -0.4112 0.3213 False 
 34.0   48.0   0.1772  -0.1891 0.5434 False 
 34.0   49.0   0.2115  -0.1547 0.5777 False 
 34.0   50.0   0.2443  -0.1219 0.6105 False 
 34.0   51.0   0.0894  -0.2768 0.4556 False 
 34.0   52.0   0.2443  -0.1219 0.6105 False 
 34.0   53.0   0.2443  -0.1219 0.6105 False 
 34.0   54.0   0.1676  -0.1986 0.5338 False 
 34.0   55.0   0.1776  -0.1886 0.5438 False 
 34.0   56.0  -0.0782  -0.4445 0.288  False 
 34.0   57.0  -0.0782  -0.4445 0.288  False 
 34.0   58.0   0.2258  -0.1405 0.592  False 
 34.0   59.0   0.0894  -0.2768 0.4556 False 
 34.0   60.0  -0.1031  -0.4693 0.2632 False 
 34.0   61.0  -0.1031  -0.4693 0.2632 False 
 34.0   62.0   0.0873  -0.2789 0.4535 False 
 34.0   63.0   0.1178  -0.2484 0.484  False 
 34.0   64.0   0.0847  -0.2815 0.4509 False 
 34.0   65.0   0.1094  -0.2568 0.4756 False 
 34.0   66.0   0.0825  -0.2837 0.4487 False 
 34.0   67.0   0.0637  -0.3025 0.4299 False 
 34.0   68.0  -0.0299  -0.3961 0.3363 False 
 34.0   69.0  -0.0299  -0.3961 0.3363 False 
 34.0   70.0   0.1337  -0.2325 0.4999 False 
 34.0   71.0   0.0847  -0.2815 0.4509 False 
 34.0   72.0   0.1348  -0.2314 0.501  False 
 34.0   73.0   0.0834  -0.2828 0.4496 False 
 34.0   74.0   0.0825  -0.2837 0.4487 False 
 34.0   75.0   0.0893  -0.2769 0.4555 False 
 35.0   36.0  -0.0017  -0.3679 0.3646 False 
 35.0   37.0  -0.0017  -0.3679 0.3646 False 
 35.0   38.0   0.0254  -0.3409 0.3916 False 
 35.0   39.0   -0.023  -0.3892 0.3432 False 
 35.0   40.0  -0.0062  -0.3724  0.36  False 
 35.0   41.0   0.2233  -0.1429 0.5895 False 
 35.0   42.0  -0.0062  -0.3724  0.36  False 
 35.0   43.0   0.2418  -0.1244 0.608  False 
 35.0   44.0   0.1873  -0.1789 0.5536 False 
 35.0   45.0   0.1873  -0.1789 0.5536 False 
 35.0   46.0  -0.0906  -0.4568 0.2756 False 
 35.0   47.0  -0.0474  -0.4136 0.3188 False 
 35.0   48.0   0.1747  -0.1915 0.5409 False 
 35.0   49.0   0.209   -0.1572 0.5752 False 
 35.0   50.0   0.2418  -0.1244 0.608  False 
 35.0   51.0   0.0869  -0.2793 0.4531 False 
 35.0   52.0   0.2418  -0.1244 0.608  False 
 35.0   53.0   0.2418  -0.1244 0.608  False 
 35.0   54.0   0.1651  -0.2011 0.5313 False 
 35.0   55.0   0.1751  -0.1911 0.5413 False 
 35.0   56.0  -0.0807  -0.4469 0.2855 False 
 35.0   57.0  -0.0807  -0.4469 0.2855 False 
 35.0   58.0   0.2233  -0.1429 0.5895 False 
 35.0   59.0   0.0869  -0.2793 0.4531 False 
 35.0   60.0  -0.1055  -0.4717 0.2607 False 
 35.0   61.0  -0.1055  -0.4717 0.2607 False 
 35.0   62.0   0.0848  -0.2814 0.451  False 
 35.0   63.0   0.1153  -0.2509 0.4815 False 
 35.0   64.0   0.0822   -0.284 0.4484 False 
 35.0   65.0   0.1069  -0.2593 0.4731 False 
 35.0   66.0    0.08   -0.2862 0.4462 False 
 35.0   67.0   0.0612   -0.305 0.4274 False 
 35.0   68.0  -0.0324  -0.3986 0.3338 False 
 35.0   69.0  -0.0324  -0.3986 0.3338 False 
 35.0   70.0   0.1312   -0.235 0.4974 False 
 35.0   71.0   0.0822   -0.284 0.4484 False 
 35.0   72.0   0.1323  -0.2339 0.4986 False 
 35.0   73.0   0.081   -0.2853 0.4472 False 
 35.0   74.0    0.08   -0.2862 0.4462 False 
 35.0   75.0   0.0868  -0.2794 0.453  False 
 36.0   37.0    0.0    -0.3662 0.3662 False 
 36.0   38.0   0.027   -0.3392 0.3932 False 
 36.0   39.0  -0.0213  -0.3875 0.3449 False 
 36.0   40.0  -0.0045  -0.3707 0.3617 False 
 36.0   41.0   0.2249  -0.1413 0.5911 False 
 36.0   42.0  -0.0045  -0.3707 0.3617 False 
 36.0   43.0   0.2435  -0.1228 0.6097 False 
 36.0   44.0   0.189   -0.1772 0.5552 False 
 36.0   45.0   0.189   -0.1772 0.5552 False 
 36.0   46.0  -0.0889  -0.4551 0.2773 False 
 36.0   47.0  -0.0458   -0.412 0.3204 False 
 36.0   48.0   0.1763  -0.1899 0.5425 False 
 36.0   49.0   0.2107  -0.1556 0.5769 False 
 36.0   50.0   0.2435  -0.1228 0.6097 False 
 36.0   51.0   0.0885  -0.2777 0.4548 False 
 36.0   52.0   0.2435  -0.1228 0.6097 False 
 36.0   53.0   0.2435  -0.1228 0.6097 False 
 36.0   54.0   0.1668  -0.1994 0.533  False 
 36.0   55.0   0.1768  -0.1894 0.543  False 
 36.0   56.0  -0.0791  -0.4453 0.2871 False 
 36.0   57.0  -0.0791  -0.4453 0.2871 False 
 36.0   58.0   0.2249  -0.1413 0.5911 False 
 36.0   59.0   0.0885  -0.2777 0.4548 False 
 36.0   60.0  -0.1039  -0.4701 0.2623 False 
 36.0   61.0  -0.1039  -0.4701 0.2623 False 
 36.0   62.0   0.0865  -0.2797 0.4527 False 
 36.0   63.0   0.117   -0.2492 0.4832 False 
 36.0   64.0   0.0839  -0.2823 0.4501 False 
 36.0   65.0   0.1086  -0.2577 0.4748 False 
 36.0   66.0   0.0816  -0.2846 0.4479 False 
 36.0   67.0   0.0628  -0.3034 0.4291 False 
 36.0   68.0  -0.0307   -0.397 0.3355 False 
 36.0   69.0  -0.0307   -0.397 0.3355 False 
 36.0   70.0   0.1329  -0.2333 0.4991 False 
 36.0   71.0   0.0839  -0.2823 0.4501 False 
 36.0   72.0   0.134   -0.2322 0.5002 False 
 36.0   73.0   0.0826  -0.2836 0.4488 False 
 36.0   74.0   0.0816  -0.2846 0.4479 False 
 36.0   75.0   0.0884  -0.2778 0.4547 False 
 37.0   38.0   0.027   -0.3392 0.3932 False 
 37.0   39.0  -0.0213  -0.3875 0.3449 False 
 37.0   40.0  -0.0045  -0.3707 0.3617 False 
 37.0   41.0   0.2249  -0.1413 0.5911 False 
 37.0   42.0  -0.0045  -0.3707 0.3617 False 
 37.0   43.0   0.2435  -0.1228 0.6097 False 
 37.0   44.0   0.189   -0.1772 0.5552 False 
 37.0   45.0   0.189   -0.1772 0.5552 False 
 37.0   46.0  -0.0889  -0.4551 0.2773 False 
 37.0   47.0  -0.0458   -0.412 0.3204 False 
 37.0   48.0   0.1763  -0.1899 0.5425 False 
 37.0   49.0   0.2107  -0.1556 0.5769 False 
 37.0   50.0   0.2435  -0.1228 0.6097 False 
 37.0   51.0   0.0885  -0.2777 0.4548 False 
 37.0   52.0   0.2435  -0.1228 0.6097 False 
 37.0   53.0   0.2435  -0.1228 0.6097 False 
 37.0   54.0   0.1668  -0.1994 0.533  False 
 37.0   55.0   0.1768  -0.1894 0.543  False 
 37.0   56.0  -0.0791  -0.4453 0.2871 False 
 37.0   57.0  -0.0791  -0.4453 0.2871 False 
 37.0   58.0   0.2249  -0.1413 0.5911 False 
 37.0   59.0   0.0885  -0.2777 0.4548 False 
 37.0   60.0  -0.1039  -0.4701 0.2623 False 
 37.0   61.0  -0.1039  -0.4701 0.2623 False 
 37.0   62.0   0.0865  -0.2797 0.4527 False 
 37.0   63.0   0.117   -0.2492 0.4832 False 
 37.0   64.0   0.0839  -0.2823 0.4501 False 
 37.0   65.0   0.1086  -0.2577 0.4748 False 
 37.0   66.0   0.0816  -0.2846 0.4479 False 
 37.0   67.0   0.0628  -0.3034 0.4291 False 
 37.0   68.0  -0.0307   -0.397 0.3355 False 
 37.0   69.0  -0.0307   -0.397 0.3355 False 
 37.0   70.0   0.1329  -0.2333 0.4991 False 
 37.0   71.0   0.0839  -0.2823 0.4501 False 
 37.0   72.0   0.134   -0.2322 0.5002 False 
 37.0   73.0   0.0826  -0.2836 0.4488 False 
 37.0   74.0   0.0816  -0.2846 0.4479 False 
 37.0   75.0   0.0884  -0.2778 0.4547 False 
 38.0   39.0  -0.0483  -0.4146 0.3179 False 
 38.0   40.0  -0.0316  -0.3978 0.3347 False 
 38.0   41.0   0.1979  -0.1683 0.5641 False 
 38.0   42.0  -0.0316  -0.3978 0.3347 False 
 38.0   43.0   0.2164  -0.1498 0.5826 False 
 38.0   44.0   0.162   -0.2042 0.5282 False 
 38.0   45.0   0.162   -0.2042 0.5282 False 
 38.0   46.0   -0.116  -0.4822 0.2503 False 
 38.0   47.0  -0.0728   -0.439 0.2934 False 
 38.0   48.0   0.1493  -0.2169 0.5155 False 
 38.0   49.0   0.1836  -0.1826 0.5498 False 
 38.0   50.0   0.2164  -0.1498 0.5826 False 
 38.0   51.0   0.0615  -0.3047 0.4277 False 
 38.0   52.0   0.2164  -0.1498 0.5826 False 
 38.0   53.0   0.2164  -0.1498 0.5826 False 
 38.0   54.0   0.1398  -0.2264 0.506  False 
 38.0   55.0   0.1498  -0.2164 0.516  False 
 38.0   56.0  -0.1061  -0.4723 0.2601 False 
 38.0   57.0  -0.1061  -0.4723 0.2601 False 
 38.0   58.0   0.1979  -0.1683 0.5641 False 
 38.0   59.0   0.0615  -0.3047 0.4277 False 
 38.0   60.0  -0.1309  -0.4971 0.2353 False 
 38.0   61.0  -0.1309  -0.4971 0.2353 False 
 38.0   62.0   0.0594  -0.3068 0.4257 False 
 38.0   63.0    0.09   -0.2763 0.4562 False 
 38.0   64.0   0.0569  -0.3094 0.4231 False 
 38.0   65.0   0.0815  -0.2847 0.4477 False 
 38.0   66.0   0.0546  -0.3116 0.4208 False 
 38.0   67.0   0.0358  -0.3304 0.402  False 
 38.0   68.0  -0.0578   -0.424 0.3084 False 
 38.0   69.0  -0.0578   -0.424 0.3084 False 
 38.0   70.0   0.1059  -0.2603 0.4721 False 
 38.0   71.0   0.0569  -0.3094 0.4231 False 
 38.0   72.0   0.107   -0.2592 0.4732 False 
 38.0   73.0   0.0556  -0.3106 0.4218 False 
 38.0   74.0   0.0546  -0.3116 0.4208 False 
 38.0   75.0   0.0614  -0.3048 0.4276 False 
 39.0   40.0   0.0168  -0.3494 0.383  False 
 39.0   41.0   0.2463  -0.1199 0.6125 False 
 39.0   42.0   0.0168  -0.3494 0.383  False 
 39.0   43.0   0.2648  -0.1014 0.631  False 
 39.0   44.0   0.2103  -0.1559 0.5765 False 
 39.0   45.0   0.2103  -0.1559 0.5765 False 
 39.0   46.0  -0.0676  -0.4338 0.2986 False 
 39.0   47.0  -0.0244  -0.3906 0.3418 False 
 39.0   48.0   0.1977  -0.1685 0.5639 False 
 39.0   49.0   0.232   -0.1342 0.5982 False 
 39.0   50.0   0.2648  -0.1014 0.631  False 
 39.0   51.0   0.1099  -0.2563 0.4761 False 
 39.0   52.0   0.2648  -0.1014 0.631  False 
 39.0   53.0   0.2648  -0.1014 0.631  False 
 39.0   54.0   0.1881  -0.1781 0.5543 False 
 39.0   55.0   0.1981  -0.1681 0.5643 False 
 39.0   56.0  -0.0577  -0.4239 0.3085 False 
 39.0   57.0  -0.0577  -0.4239 0.3085 False 
 39.0   58.0   0.2463  -0.1199 0.6125 False 
 39.0   59.0   0.1099  -0.2563 0.4761 False 
 39.0   60.0  -0.0825  -0.4488 0.2837 False 
 39.0   61.0  -0.0825  -0.4488 0.2837 False 
 39.0   62.0   0.1078  -0.2584 0.474  False 
 39.0   63.0   0.1383  -0.2279 0.5045 False 
 39.0   64.0   0.1052   -0.261 0.4714 False 
 39.0   65.0   0.1299  -0.2363 0.4961 False 
 39.0   66.0   0.103   -0.2632 0.4692 False 
 39.0   67.0   0.0842   -0.282 0.4504 False 
 39.0   68.0  -0.0094  -0.3756 0.3568 False 
 39.0   69.0  -0.0094  -0.3756 0.3568 False 
 39.0   70.0   0.1542   -0.212 0.5204 False 
 39.0   71.0   0.1052   -0.261 0.4714 False 
 39.0   72.0   0.1553  -0.2109 0.5215 False 
 39.0   73.0   0.1039  -0.2623 0.4702 False 
 39.0   74.0   0.103   -0.2632 0.4692 False 
 39.0   75.0   0.1098  -0.2564 0.476  False 
 40.0   41.0   0.2295  -0.1367 0.5957 False 
 40.0   42.0    -0.0   -0.3662 0.3662 False 
 40.0   43.0   0.248   -0.1182 0.6142 False 
 40.0   44.0   0.1935  -0.1727 0.5598 False 
 40.0   45.0   0.1935  -0.1727 0.5598 False 
 40.0   46.0  -0.0844  -0.4506 0.2818 False 
 40.0   47.0  -0.0412  -0.4074 0.325  False 
 40.0   48.0   0.1809  -0.1853 0.5471 False 
 40.0   49.0   0.2152   -0.151 0.5814 False 
 40.0   50.0   0.248   -0.1182 0.6142 False 
 40.0   51.0   0.0931  -0.2731 0.4593 False 
 40.0   52.0   0.248   -0.1182 0.6142 False 
 40.0   53.0   0.248   -0.1182 0.6142 False 
 40.0   54.0   0.1713  -0.1949 0.5375 False 
 40.0   55.0   0.1813  -0.1849 0.5475 False 
 40.0   56.0  -0.0745  -0.4407 0.2917 False 
 40.0   57.0  -0.0745  -0.4407 0.2917 False 
 40.0   58.0   0.2295  -0.1367 0.5957 False 
 40.0   59.0   0.0931  -0.2731 0.4593 False 
 40.0   60.0  -0.0993  -0.4655 0.2669 False 
 40.0   61.0  -0.0993  -0.4655 0.2669 False 
 40.0   62.0   0.091   -0.2752 0.4572 False 
 40.0   63.0   0.1215  -0.2447 0.4877 False 
 40.0   64.0   0.0884  -0.2778 0.4546 False 
 40.0   65.0   0.1131  -0.2531 0.4793 False 
 40.0   66.0   0.0862   -0.28  0.4524 False 
 40.0   67.0   0.0674  -0.2988 0.4336 False 
 40.0   68.0  -0.0262  -0.3924  0.34  False 
 40.0   69.0  -0.0262  -0.3924  0.34  False 
 40.0   70.0   0.1374  -0.2288 0.5036 False 
 40.0   71.0   0.0884  -0.2778 0.4546 False 
 40.0   72.0   0.1385  -0.2277 0.5048 False 
 40.0   73.0   0.0872  -0.2791 0.4534 False 
 40.0   74.0   0.0862   -0.28  0.4524 False 
 40.0   75.0   0.093   -0.2732 0.4592 False 
 41.0   42.0  -0.2295  -0.5957 0.1367 False 
 41.0   43.0   0.0185  -0.3477 0.3847 False 
 41.0   44.0  -0.0359  -0.4021 0.3303 False 
 41.0   45.0  -0.0359  -0.4021 0.3303 False 
 41.0   46.0  -0.3139  -0.6801 0.0523 False 
 41.0   47.0  -0.2707  -0.6369 0.0955 False 
 41.0   48.0  -0.0486  -0.4148 0.3176 False 
 41.0   49.0  -0.0143  -0.3805 0.3519 False 
 41.0   50.0   0.0185  -0.3477 0.3847 False 
 41.0   51.0  -0.1364  -0.5026 0.2298 False 
 41.0   52.0   0.0185  -0.3477 0.3847 False 
 41.0   53.0   0.0185  -0.3477 0.3847 False 
 41.0   54.0  -0.0582  -0.4244 0.3081 False 
 41.0   55.0  -0.0482  -0.4144 0.3181 False 
 41.0   56.0   -0.304  -0.6702 0.0622 False 
 41.0   57.0   -0.304  -0.6702 0.0622 False 
 41.0   58.0    0.0    -0.3662 0.3662 False 
 41.0   59.0  -0.1364  -0.5026 0.2298 False 
 41.0   60.0  -0.3288   -0.695 0.0374 False 
 41.0   61.0  -0.3288   -0.695 0.0374 False 
 41.0   62.0  -0.1385  -0.5047 0.2277 False 
 41.0   63.0   -0.108  -0.4742 0.2582 False 
 41.0   64.0  -0.1411  -0.5073 0.2251 False 
 41.0   65.0  -0.1164  -0.4826 0.2498 False 
 41.0   66.0  -0.1433  -0.5095 0.2229 False 
 41.0   67.0  -0.1621  -0.5283 0.2041 False 
 41.0   68.0  -0.2557  -0.6219 0.1105 False 
 41.0   69.0  -0.2557  -0.6219 0.1105 False 
 41.0   70.0   -0.092  -0.4583 0.2742 False 
 41.0   71.0  -0.1411  -0.5073 0.2251 False 
 41.0   72.0  -0.0909  -0.4571 0.2753 False 
 41.0   73.0  -0.1423  -0.5085 0.2239 False 
 41.0   74.0  -0.1433  -0.5095 0.2229 False 
 41.0   75.0  -0.1365  -0.5027 0.2297 False 
 42.0   43.0   0.248   -0.1182 0.6142 False 
 42.0   44.0   0.1935  -0.1727 0.5598 False 
 42.0   45.0   0.1935  -0.1727 0.5598 False 
 42.0   46.0  -0.0844  -0.4506 0.2818 False 
 42.0   47.0  -0.0412  -0.4074 0.325  False 
 42.0   48.0   0.1809  -0.1853 0.5471 False 
 42.0   49.0   0.2152   -0.151 0.5814 False 
 42.0   50.0   0.248   -0.1182 0.6142 False 
 42.0   51.0   0.0931  -0.2731 0.4593 False 
 42.0   52.0   0.248   -0.1182 0.6142 False 
 42.0   53.0   0.248   -0.1182 0.6142 False 
 42.0   54.0   0.1713  -0.1949 0.5375 False 
 42.0   55.0   0.1813  -0.1849 0.5475 False 
 42.0   56.0  -0.0745  -0.4407 0.2917 False 
 42.0   57.0  -0.0745  -0.4407 0.2917 False 
 42.0   58.0   0.2295  -0.1367 0.5957 False 
 42.0   59.0   0.0931  -0.2731 0.4593 False 
 42.0   60.0  -0.0993  -0.4655 0.2669 False 
 42.0   61.0  -0.0993  -0.4655 0.2669 False 
 42.0   62.0   0.091   -0.2752 0.4572 False 
 42.0   63.0   0.1215  -0.2447 0.4877 False 
 42.0   64.0   0.0884  -0.2778 0.4546 False 
 42.0   65.0   0.1131  -0.2531 0.4793 False 
 42.0   66.0   0.0862   -0.28  0.4524 False 
 42.0   67.0   0.0674  -0.2988 0.4336 False 
 42.0   68.0  -0.0262  -0.3924  0.34  False 
 42.0   69.0  -0.0262  -0.3924  0.34  False 
 42.0   70.0   0.1374  -0.2288 0.5036 False 
 42.0   71.0   0.0884  -0.2778 0.4546 False 
 42.0   72.0   0.1385  -0.2277 0.5048 False 
 42.0   73.0   0.0872  -0.2791 0.4534 False 
 42.0   74.0   0.0862   -0.28  0.4524 False 
 42.0   75.0   0.093   -0.2732 0.4592 False 
 43.0   44.0  -0.0544  -0.4207 0.3118 False 
 43.0   45.0  -0.0544  -0.4207 0.3118 False 
 43.0   46.0  -0.3324  -0.6986 0.0338 False 
 43.0   47.0  -0.2892  -0.6554 0.077  False 
 43.0   48.0  -0.0671  -0.4333 0.2991 False 
 43.0   49.0  -0.0328   -0.399 0.3334 False 
 43.0   50.0    0.0    -0.3662 0.3662 False 
 43.0   51.0  -0.1549  -0.5211 0.2113 False 
 43.0   52.0    0.0    -0.3662 0.3662 False 
 43.0   53.0    0.0    -0.3662 0.3662 False 
 43.0   54.0  -0.0767  -0.4429 0.2895 False 
 43.0   55.0  -0.0667  -0.4329 0.2995 False 
 43.0   56.0  -0.3225  -0.6887 0.0437 False 
 43.0   57.0  -0.3225  -0.6887 0.0437 False 
 43.0   58.0  -0.0185  -0.3847 0.3477 False 
 43.0   59.0  -0.1549  -0.5211 0.2113 False 
 43.0   60.0  -0.3473  -0.7135 0.0189 False 
 43.0   61.0  -0.3473  -0.7135 0.0189 False 
 43.0   62.0   -0.157  -0.5232 0.2092 False 
 43.0   63.0  -0.1265  -0.4927 0.2397 False 
 43.0   64.0  -0.1596  -0.5258 0.2066 False 
 43.0   65.0  -0.1349  -0.5011 0.2313 False 
 43.0   66.0  -0.1618   -0.528 0.2044 False 
 43.0   67.0  -0.1806  -0.5468 0.1856 False 
 43.0   68.0  -0.2742  -0.6404 0.092  False 
 43.0   69.0  -0.2742  -0.6404 0.092  False 
 43.0   70.0  -0.1106  -0.4768 0.2556 False 
 43.0   71.0  -0.1596  -0.5258 0.2066 False 
 43.0   72.0  -0.1094  -0.4757 0.2568 False 
 43.0   73.0  -0.1608   -0.527 0.2054 False 
 43.0   74.0  -0.1618   -0.528 0.2044 False 
 43.0   75.0   -0.155  -0.5212 0.2112 False 
 44.0   45.0    0.0    -0.3662 0.3662 False 
 44.0   46.0  -0.2779  -0.6441 0.0883 False 
 44.0   47.0  -0.2348   -0.601 0.1314 False 
 44.0   48.0  -0.0127  -0.3789 0.3535 False 
 44.0   49.0   0.0216  -0.3446 0.3879 False 
 44.0   50.0   0.0544  -0.3118 0.4207 False 
 44.0   51.0  -0.1005  -0.4667 0.2658 False 
 44.0   52.0   0.0544  -0.3118 0.4207 False 
 44.0   53.0   0.0544  -0.3118 0.4207 False 
 44.0   54.0  -0.0222  -0.3884 0.344  False 
 44.0   55.0  -0.0122  -0.3784 0.354  False 
 44.0   56.0  -0.2681  -0.6343 0.0981 False 
 44.0   57.0  -0.2681  -0.6343 0.0981 False 
 44.0   58.0   0.0359  -0.3303 0.4021 False 
 44.0   59.0  -0.1005  -0.4667 0.2658 False 
 44.0   60.0  -0.2929  -0.6591 0.0733 False 
 44.0   61.0  -0.2929  -0.6591 0.0733 False 
 44.0   62.0  -0.1025  -0.4687 0.2637 False 
 44.0   63.0   -0.072  -0.4382 0.2942 False 
 44.0   64.0  -0.1051  -0.4713 0.2611 False 
 44.0   65.0  -0.0805  -0.4467 0.2858 False 
 44.0   66.0  -0.1074  -0.4736 0.2588 False 
 44.0   67.0  -0.1262  -0.4924  0.24  False 
 44.0   68.0  -0.2198   -0.586 0.1465 False 
 44.0   69.0  -0.2198   -0.586 0.1465 False 
 44.0   70.0  -0.0561  -0.4223 0.3101 False 
 44.0   71.0  -0.1051  -0.4713 0.2611 False 
 44.0   72.0   -0.055  -0.4212 0.3112 False 
 44.0   73.0  -0.1064  -0.4726 0.2598 False 
 44.0   74.0  -0.1074  -0.4736 0.2588 False 
 44.0   75.0  -0.1006  -0.4668 0.2657 False 
 45.0   46.0  -0.2779  -0.6441 0.0883 False 
 45.0   47.0  -0.2348   -0.601 0.1314 False 
 45.0   48.0  -0.0127  -0.3789 0.3535 False 
 45.0   49.0   0.0216  -0.3446 0.3879 False 
 45.0   50.0   0.0544  -0.3118 0.4207 False 
 45.0   51.0  -0.1005  -0.4667 0.2658 False 
 45.0   52.0   0.0544  -0.3118 0.4207 False 
 45.0   53.0   0.0544  -0.3118 0.4207 False 
 45.0   54.0  -0.0222  -0.3884 0.344  False 
 45.0   55.0  -0.0122  -0.3784 0.354  False 
 45.0   56.0  -0.2681  -0.6343 0.0981 False 
 45.0   57.0  -0.2681  -0.6343 0.0981 False 
 45.0   58.0   0.0359  -0.3303 0.4021 False 
 45.0   59.0  -0.1005  -0.4667 0.2658 False 
 45.0   60.0  -0.2929  -0.6591 0.0733 False 
 45.0   61.0  -0.2929  -0.6591 0.0733 False 
 45.0   62.0  -0.1025  -0.4687 0.2637 False 
 45.0   63.0   -0.072  -0.4382 0.2942 False 
 45.0   64.0  -0.1051  -0.4713 0.2611 False 
 45.0   65.0  -0.0805  -0.4467 0.2858 False 
 45.0   66.0  -0.1074  -0.4736 0.2588 False 
 45.0   67.0  -0.1262  -0.4924  0.24  False 
 45.0   68.0  -0.2198   -0.586 0.1465 False 
 45.0   69.0  -0.2198   -0.586 0.1465 False 
 45.0   70.0  -0.0561  -0.4223 0.3101 False 
 45.0   71.0  -0.1051  -0.4713 0.2611 False 
 45.0   72.0   -0.055  -0.4212 0.3112 False 
 45.0   73.0  -0.1064  -0.4726 0.2598 False 
 45.0   74.0  -0.1074  -0.4736 0.2588 False 
 45.0   75.0  -0.1006  -0.4668 0.2657 False 
 46.0   47.0   0.0432   -0.323 0.4094 False 
 46.0   48.0   0.2653  -0.1009 0.6315 False 
 46.0   49.0   0.2996  -0.0666 0.6658 False 
 46.0   50.0   0.3324  -0.0338 0.6986 False 
 46.0   51.0   0.1775  -0.1887 0.5437 False 
 46.0   52.0   0.3324  -0.0338 0.6986 False 
 46.0   53.0   0.3324  -0.0338 0.6986 False 
 46.0   54.0   0.2557  -0.1105 0.6219 False 
 46.0   55.0   0.2657  -0.1005 0.6319 False 
 46.0   56.0   0.0099  -0.3563 0.3761 False 
 46.0   57.0   0.0099  -0.3563 0.3761 False 
 46.0   58.0   0.3139  -0.0523 0.6801 False 
 46.0   59.0   0.1775  -0.1887 0.5437 False 
 46.0   60.0  -0.0149  -0.3812 0.3513 False 
 46.0   61.0  -0.0149  -0.3812 0.3513 False 
 46.0   62.0   0.1754  -0.1908 0.5416 False 
 46.0   63.0   0.2059  -0.1603 0.5721 False 
 46.0   64.0   0.1728  -0.1934 0.539  False 
 46.0   65.0   0.1975  -0.1687 0.5637 False 
 46.0   66.0   0.1706  -0.1956 0.5368 False 
 46.0   67.0   0.1518  -0.2144 0.518  False 
 46.0   68.0   0.0582   -0.308 0.4244 False 
 46.0   69.0   0.0582   -0.308 0.4244 False 
 46.0   70.0   0.2218  -0.1444 0.588  False 
 46.0   71.0   0.1728  -0.1934 0.539  False 
 46.0   72.0   0.2229  -0.1433 0.5891 False 
 46.0   73.0   0.1715  -0.1947 0.5378 False 
 46.0   74.0   0.1706  -0.1956 0.5368 False 
 46.0   75.0   0.1774  -0.1888 0.5436 False 
 47.0   48.0   0.2221  -0.1441 0.5883 False 
 47.0   49.0   0.2564  -0.1098 0.6226 False 
 47.0   50.0   0.2892   -0.077 0.6554 False 
 47.0   51.0   0.1343  -0.2319 0.5005 False 
 47.0   52.0   0.2892   -0.077 0.6554 False 
 47.0   53.0   0.2892   -0.077 0.6554 False 
 47.0   54.0   0.2125  -0.1537 0.5788 False 
 47.0   55.0   0.2225  -0.1437 0.5888 False 
 47.0   56.0  -0.0333  -0.3995 0.3329 False 
 47.0   57.0  -0.0333  -0.3995 0.3329 False 
 47.0   58.0   0.2707  -0.0955 0.6369 False 
 47.0   59.0   0.1343  -0.2319 0.5005 False 
 47.0   60.0  -0.0581  -0.4243 0.3081 False 
 47.0   61.0  -0.0581  -0.4243 0.3081 False 
 47.0   62.0   0.1322   -0.234 0.4984 False 
 47.0   63.0   0.1627  -0.2035 0.5289 False 
 47.0   64.0   0.1296  -0.2366 0.4958 False 
 47.0   65.0   0.1543  -0.2119 0.5205 False 
 47.0   66.0   0.1274  -0.2388 0.4936 False 
 47.0   67.0   0.1086  -0.2576 0.4748 False 
 47.0   68.0   0.015   -0.3512 0.3812 False 
 47.0   69.0   0.015   -0.3512 0.3812 False 
 47.0   70.0   0.1787  -0.1875 0.5449 False 
 47.0   71.0   0.1296  -0.2366 0.4958 False 
 47.0   72.0   0.1798  -0.1864 0.546  False 
 47.0   73.0   0.1284  -0.2378 0.4946 False 
 47.0   74.0   0.1274  -0.2388 0.4936 False 
 47.0   75.0   0.1342   -0.232 0.5004 False 
 48.0   49.0   0.0343  -0.3319 0.4005 False 
 48.0   50.0   0.0671  -0.2991 0.4333 False 
 48.0   51.0  -0.0878   -0.454 0.2784 False 
 48.0   52.0   0.0671  -0.2991 0.4333 False 
 48.0   53.0   0.0671  -0.2991 0.4333 False 
 48.0   54.0  -0.0095  -0.3758 0.3567 False 
 48.0   55.0   0.0005  -0.3658 0.3667 False 
 48.0   56.0  -0.2554  -0.6216 0.1108 False 
 48.0   57.0  -0.2554  -0.6216 0.1108 False 
 48.0   58.0   0.0486  -0.3176 0.4148 False 
 48.0   59.0  -0.0878   -0.454 0.2784 False 
 48.0   60.0  -0.2802  -0.6464 0.086  False 
 48.0   61.0  -0.2802  -0.6464 0.086  False 
 48.0   62.0  -0.0899  -0.4561 0.2763 False 
 48.0   63.0  -0.0594  -0.4256 0.3069 False 
 48.0   64.0  -0.0925  -0.4587 0.2737 False 
 48.0   65.0  -0.0678   -0.434 0.2984 False 
 48.0   66.0  -0.0947  -0.4609 0.2715 False 
 48.0   67.0  -0.1135  -0.4797 0.2527 False 
 48.0   68.0  -0.2071  -0.5733 0.1591 False 
 48.0   69.0  -0.2071  -0.5733 0.1591 False 
 48.0   70.0  -0.0434  -0.4096 0.3228 False 
 48.0   71.0  -0.0925  -0.4587 0.2737 False 
 48.0   72.0  -0.0423  -0.4085 0.3239 False 
 48.0   73.0  -0.0937  -0.4599 0.2725 False 
 48.0   74.0  -0.0947  -0.4609 0.2715 False 
 48.0   75.0  -0.0879  -0.4541 0.2783 False 
 49.0   50.0   0.0328  -0.3334 0.399  False 
 49.0   51.0  -0.1221  -0.4883 0.2441 False 
 49.0   52.0   0.0328  -0.3334 0.399  False 
 49.0   53.0   0.0328  -0.3334 0.399  False 
 49.0   54.0  -0.0439  -0.4101 0.3223 False 
 49.0   55.0  -0.0339  -0.4001 0.3323 False 
 49.0   56.0  -0.2897  -0.6559 0.0765 False 
 49.0   57.0  -0.2897  -0.6559 0.0765 False 
 49.0   58.0   0.0143  -0.3519 0.3805 False 
 49.0   59.0  -0.1221  -0.4883 0.2441 False 
 49.0   60.0  -0.3145  -0.6807 0.0517 False 
 49.0   61.0  -0.3145  -0.6807 0.0517 False 
 49.0   62.0  -0.1242  -0.4904 0.242  False 
 49.0   63.0  -0.0937  -0.4599 0.2725 False 
 49.0   64.0  -0.1268   -0.493 0.2394 False 
 49.0   65.0  -0.1021  -0.4683 0.2641 False 
 49.0   66.0   -0.129  -0.4952 0.2372 False 
 49.0   67.0  -0.1478   -0.514 0.2184 False 
 49.0   68.0  -0.2414  -0.6076 0.1248 False 
 49.0   69.0  -0.2414  -0.6076 0.1248 False 
 49.0   70.0  -0.0778   -0.444 0.2885 False 
 49.0   71.0  -0.1268   -0.493 0.2394 False 
 49.0   72.0  -0.0766  -0.4429 0.2896 False 
 49.0   73.0   -0.128  -0.4942 0.2382 False 
 49.0   74.0   -0.129  -0.4952 0.2372 False 
 49.0   75.0  -0.1222  -0.4884 0.244  False 
 50.0   51.0  -0.1549  -0.5211 0.2113 False 
 50.0   52.0    0.0    -0.3662 0.3662 False 
 50.0   53.0    0.0    -0.3662 0.3662 False 
 50.0   54.0  -0.0767  -0.4429 0.2895 False 
 50.0   55.0  -0.0667  -0.4329 0.2995 False 
 50.0   56.0  -0.3225  -0.6887 0.0437 False 
 50.0   57.0  -0.3225  -0.6887 0.0437 False 
 50.0   58.0  -0.0185  -0.3847 0.3477 False 
 50.0   59.0  -0.1549  -0.5211 0.2113 False 
 50.0   60.0  -0.3473  -0.7135 0.0189 False 
 50.0   61.0  -0.3473  -0.7135 0.0189 False 
 50.0   62.0   -0.157  -0.5232 0.2092 False 
 50.0   63.0  -0.1265  -0.4927 0.2397 False 
 50.0   64.0  -0.1596  -0.5258 0.2066 False 
 50.0   65.0  -0.1349  -0.5011 0.2313 False 
 50.0   66.0  -0.1618   -0.528 0.2044 False 
 50.0   67.0  -0.1806  -0.5468 0.1856 False 
 50.0   68.0  -0.2742  -0.6404 0.092  False 
 50.0   69.0  -0.2742  -0.6404 0.092  False 
 50.0   70.0  -0.1106  -0.4768 0.2556 False 
 50.0   71.0  -0.1596  -0.5258 0.2066 False 
 50.0   72.0  -0.1094  -0.4757 0.2568 False 
 50.0   73.0  -0.1608   -0.527 0.2054 False 
 50.0   74.0  -0.1618   -0.528 0.2044 False 
 50.0   75.0   -0.155  -0.5212 0.2112 False 
 51.0   52.0   0.1549  -0.2113 0.5211 False 
 51.0   53.0   0.1549  -0.2113 0.5211 False 
 51.0   54.0   0.0782   -0.288 0.4444 False 
 51.0   55.0   0.0882   -0.278 0.4544 False 
 51.0   56.0  -0.1676  -0.5338 0.1986 False 
 51.0   57.0  -0.1676  -0.5338 0.1986 False 
 51.0   58.0   0.1364  -0.2298 0.5026 False 
 51.0   59.0    0.0    -0.3662 0.3662 False 
 51.0   60.0  -0.1924  -0.5586 0.1738 False 
 51.0   61.0  -0.1924  -0.5586 0.1738 False 
 51.0   62.0  -0.0021  -0.3683 0.3641 False 
 51.0   63.0   0.0284  -0.3378 0.3946 False 
 51.0   64.0  -0.0047  -0.3709 0.3615 False 
 51.0   65.0    0.02   -0.3462 0.3862 False 
 51.0   66.0  -0.0069  -0.3731 0.3593 False 
 51.0   67.0  -0.0257  -0.3919 0.3405 False 
 51.0   68.0  -0.1193  -0.4855 0.2469 False 
 51.0   69.0  -0.1193  -0.4855 0.2469 False 
 51.0   70.0   0.0443  -0.3219 0.4106 False 
 51.0   71.0  -0.0047  -0.3709 0.3615 False 
 51.0   72.0   0.0455  -0.3208 0.4117 False 
 51.0   73.0  -0.0059  -0.3721 0.3603 False 
 51.0   74.0  -0.0069  -0.3731 0.3593 False 
 51.0   75.0  -0.0001  -0.3663 0.3661 False 
 52.0   53.0    0.0    -0.3662 0.3662 False 
 52.0   54.0  -0.0767  -0.4429 0.2895 False 
 52.0   55.0  -0.0667  -0.4329 0.2995 False 
 52.0   56.0  -0.3225  -0.6887 0.0437 False 
 52.0   57.0  -0.3225  -0.6887 0.0437 False 
 52.0   58.0  -0.0185  -0.3847 0.3477 False 
 52.0   59.0  -0.1549  -0.5211 0.2113 False 
 52.0   60.0  -0.3473  -0.7135 0.0189 False 
 52.0   61.0  -0.3473  -0.7135 0.0189 False 
 52.0   62.0   -0.157  -0.5232 0.2092 False 
 52.0   63.0  -0.1265  -0.4927 0.2397 False 
 52.0   64.0  -0.1596  -0.5258 0.2066 False 
 52.0   65.0  -0.1349  -0.5011 0.2313 False 
 52.0   66.0  -0.1618   -0.528 0.2044 False 
 52.0   67.0  -0.1806  -0.5468 0.1856 False 
 52.0   68.0  -0.2742  -0.6404 0.092  False 
 52.0   69.0  -0.2742  -0.6404 0.092  False 
 52.0   70.0  -0.1106  -0.4768 0.2556 False 
 52.0   71.0  -0.1596  -0.5258 0.2066 False 
 52.0   72.0  -0.1094  -0.4757 0.2568 False 
 52.0   73.0  -0.1608   -0.527 0.2054 False 
 52.0   74.0  -0.1618   -0.528 0.2044 False 
 52.0   75.0   -0.155  -0.5212 0.2112 False 
 53.0   54.0  -0.0767  -0.4429 0.2895 False 
 53.0   55.0  -0.0667  -0.4329 0.2995 False 
 53.0   56.0  -0.3225  -0.6887 0.0437 False 
 53.0   57.0  -0.3225  -0.6887 0.0437 False 
 53.0   58.0  -0.0185  -0.3847 0.3477 False 
 53.0   59.0  -0.1549  -0.5211 0.2113 False 
 53.0   60.0  -0.3473  -0.7135 0.0189 False 
 53.0   61.0  -0.3473  -0.7135 0.0189 False 
 53.0   62.0   -0.157  -0.5232 0.2092 False 
 53.0   63.0  -0.1265  -0.4927 0.2397 False 
 53.0   64.0  -0.1596  -0.5258 0.2066 False 
 53.0   65.0  -0.1349  -0.5011 0.2313 False 
 53.0   66.0  -0.1618   -0.528 0.2044 False 
 53.0   67.0  -0.1806  -0.5468 0.1856 False 
 53.0   68.0  -0.2742  -0.6404 0.092  False 
 53.0   69.0  -0.2742  -0.6404 0.092  False 
 53.0   70.0  -0.1106  -0.4768 0.2556 False 
 53.0   71.0  -0.1596  -0.5258 0.2066 False 
 53.0   72.0  -0.1094  -0.4757 0.2568 False 
 53.0   73.0  -0.1608   -0.527 0.2054 False 
 53.0   74.0  -0.1618   -0.528 0.2044 False 
 53.0   75.0   -0.155  -0.5212 0.2112 False 
 54.0   55.0    0.01   -0.3562 0.3762 False 
 54.0   56.0  -0.2458  -0.6121 0.1204 False 
 54.0   57.0  -0.2458  -0.6121 0.1204 False 
 54.0   58.0   0.0582  -0.3081 0.4244 False 
 54.0   59.0  -0.0782  -0.4444 0.288  False 
 54.0   60.0  -0.2707  -0.6369 0.0955 False 
 54.0   61.0  -0.2707  -0.6369 0.0955 False 
 54.0   62.0  -0.0803  -0.4465 0.2859 False 
 54.0   63.0  -0.0498   -0.416 0.3164 False 
 54.0   64.0  -0.0829  -0.4491 0.2833 False 
 54.0   65.0  -0.0582  -0.4244 0.308  False 
 54.0   66.0  -0.0851  -0.4513 0.2811 False 
 54.0   67.0  -0.1039  -0.4701 0.2623 False 
 54.0   68.0  -0.1975  -0.5637 0.1687 False 
 54.0   69.0  -0.1975  -0.5637 0.1687 False 
 54.0   70.0  -0.0339  -0.4001 0.3323 False 
 54.0   71.0  -0.0829  -0.4491 0.2833 False 
 54.0   72.0  -0.0328   -0.399 0.3334 False 
 54.0   73.0  -0.0842  -0.4504 0.282  False 
 54.0   74.0  -0.0851  -0.4513 0.2811 False 
 54.0   75.0  -0.0783  -0.4445 0.2879 False 
 55.0   56.0  -0.2558  -0.6221 0.1104 False 
 55.0   57.0  -0.2558  -0.6221 0.1104 False 
 55.0   58.0   0.0482  -0.3181 0.4144 False 
 55.0   59.0  -0.0882  -0.4544 0.278  False 
 55.0   60.0  -0.2807  -0.6469 0.0855 False 
 55.0   61.0  -0.2807  -0.6469 0.0855 False 
 55.0   62.0  -0.0903  -0.4565 0.2759 False 
 55.0   63.0  -0.0598   -0.426 0.3064 False 
 55.0   64.0  -0.0929  -0.4591 0.2733 False 
 55.0   65.0  -0.0682  -0.4344 0.298  False 
 55.0   66.0  -0.0951  -0.4613 0.2711 False 
 55.0   67.0  -0.1139  -0.4801 0.2523 False 
 55.0   68.0  -0.2075  -0.5737 0.1587 False 
 55.0   69.0  -0.2075  -0.5737 0.1587 False 
 55.0   70.0  -0.0439  -0.4101 0.3223 False 
 55.0   71.0  -0.0929  -0.4591 0.2733 False 
 55.0   72.0  -0.0428   -0.409 0.3234 False 
 55.0   73.0  -0.0942  -0.4604 0.272  False 
 55.0   74.0  -0.0951  -0.4613 0.2711 False 
 55.0   75.0  -0.0883  -0.4545 0.2779 False 
 56.0   57.0    0.0    -0.3662 0.3662 False 
 56.0   58.0   0.304   -0.0622 0.6702 False 
 56.0   59.0   0.1676  -0.1986 0.5338 False 
 56.0   60.0  -0.0248   -0.391 0.3414 False 
 56.0   61.0  -0.0248   -0.391 0.3414 False 
 56.0   62.0   0.1655  -0.2007 0.5317 False 
 56.0   63.0   0.196   -0.1702 0.5622 False 
 56.0   64.0   0.1629  -0.2033 0.5291 False 
 56.0   65.0   0.1876  -0.1786 0.5538 False 
 56.0   66.0   0.1607  -0.2055 0.5269 False 
 56.0   67.0   0.1419  -0.2243 0.5081 False 
 56.0   68.0   0.0483  -0.3179 0.4145 False 
 56.0   69.0   0.0483  -0.3179 0.4145 False 
 56.0   70.0   0.212   -0.1542 0.5782 False 
 56.0   71.0   0.1629  -0.2033 0.5291 False 
 56.0   72.0   0.2131  -0.1531 0.5793 False 
 56.0   73.0   0.1617  -0.2045 0.5279 False 
 56.0   74.0   0.1607  -0.2055 0.5269 False 
 56.0   75.0   0.1675  -0.1987 0.5337 False 
 57.0   58.0   0.304   -0.0622 0.6702 False 
 57.0   59.0   0.1676  -0.1986 0.5338 False 
 57.0   60.0  -0.0248   -0.391 0.3414 False 
 57.0   61.0  -0.0248   -0.391 0.3414 False 
 57.0   62.0   0.1655  -0.2007 0.5317 False 
 57.0   63.0   0.196   -0.1702 0.5622 False 
 57.0   64.0   0.1629  -0.2033 0.5291 False 
 57.0   65.0   0.1876  -0.1786 0.5538 False 
 57.0   66.0   0.1607  -0.2055 0.5269 False 
 57.0   67.0   0.1419  -0.2243 0.5081 False 
 57.0   68.0   0.0483  -0.3179 0.4145 False 
 57.0   69.0   0.0483  -0.3179 0.4145 False 
 57.0   70.0   0.212   -0.1542 0.5782 False 
 57.0   71.0   0.1629  -0.2033 0.5291 False 
 57.0   72.0   0.2131  -0.1531 0.5793 False 
 57.0   73.0   0.1617  -0.2045 0.5279 False 
 57.0   74.0   0.1607  -0.2055 0.5269 False 
 57.0   75.0   0.1675  -0.1987 0.5337 False 
 58.0   59.0  -0.1364  -0.5026 0.2298 False 
 58.0   60.0  -0.3288   -0.695 0.0374 False 
 58.0   61.0  -0.3288   -0.695 0.0374 False 
 58.0   62.0  -0.1385  -0.5047 0.2277 False 
 58.0   63.0   -0.108  -0.4742 0.2582 False 
 58.0   64.0  -0.1411  -0.5073 0.2251 False 
 58.0   65.0  -0.1164  -0.4826 0.2498 False 
 58.0   66.0  -0.1433  -0.5095 0.2229 False 
 58.0   67.0  -0.1621  -0.5283 0.2041 False 
 58.0   68.0  -0.2557  -0.6219 0.1105 False 
 58.0   69.0  -0.2557  -0.6219 0.1105 False 
 58.0   70.0   -0.092  -0.4583 0.2742 False 
 58.0   71.0  -0.1411  -0.5073 0.2251 False 
 58.0   72.0  -0.0909  -0.4571 0.2753 False 
 58.0   73.0  -0.1423  -0.5085 0.2239 False 
 58.0   74.0  -0.1433  -0.5095 0.2229 False 
 58.0   75.0  -0.1365  -0.5027 0.2297 False 
 59.0   60.0  -0.1924  -0.5586 0.1738 False 
 59.0   61.0  -0.1924  -0.5586 0.1738 False 
 59.0   62.0  -0.0021  -0.3683 0.3641 False 
 59.0   63.0   0.0284  -0.3378 0.3946 False 
 59.0   64.0  -0.0047  -0.3709 0.3615 False 
 59.0   65.0    0.02   -0.3462 0.3862 False 
 59.0   66.0  -0.0069  -0.3731 0.3593 False 
 59.0   67.0  -0.0257  -0.3919 0.3405 False 
 59.0   68.0  -0.1193  -0.4855 0.2469 False 
 59.0   69.0  -0.1193  -0.4855 0.2469 False 
 59.0   70.0   0.0443  -0.3219 0.4106 False 
 59.0   71.0  -0.0047  -0.3709 0.3615 False 
 59.0   72.0   0.0455  -0.3208 0.4117 False 
 59.0   73.0  -0.0059  -0.3721 0.3603 False 
 59.0   74.0  -0.0069  -0.3731 0.3593 False 
 59.0   75.0  -0.0001  -0.3663 0.3661 False 
 60.0   61.0    0.0    -0.3662 0.3662 False 
 60.0   62.0   0.1903  -0.1759 0.5566 False 
 60.0   63.0   0.2209  -0.1454 0.5871 False 
 60.0   64.0   0.1877  -0.1785 0.554  False 
 60.0   65.0   0.2124  -0.1538 0.5786 False 
 60.0   66.0   0.1855  -0.1807 0.5517 False 
 60.0   67.0   0.1667  -0.1995 0.5329 False 
 60.0   68.0   0.0731  -0.2931 0.4393 False 
 60.0   69.0   0.0731  -0.2931 0.4393 False 
 60.0   70.0   0.2368  -0.1294 0.603  False 
 60.0   71.0   0.1877  -0.1785 0.554  False 
 60.0   72.0   0.2379  -0.1283 0.6041 False 
 60.0   73.0   0.1865  -0.1797 0.5527 False 
 60.0   74.0   0.1855  -0.1807 0.5517 False 
 60.0   75.0   0.1923  -0.1739 0.5585 False 
 61.0   62.0   0.1903  -0.1759 0.5566 False 
 61.0   63.0   0.2209  -0.1454 0.5871 False 
 61.0   64.0   0.1877  -0.1785 0.554  False 
 61.0   65.0   0.2124  -0.1538 0.5786 False 
 61.0   66.0   0.1855  -0.1807 0.5517 False 
 61.0   67.0   0.1667  -0.1995 0.5329 False 
 61.0   68.0   0.0731  -0.2931 0.4393 False 
 61.0   69.0   0.0731  -0.2931 0.4393 False 
 61.0   70.0   0.2368  -0.1294 0.603  False 
 61.0   71.0   0.1877  -0.1785 0.554  False 
 61.0   72.0   0.2379  -0.1283 0.6041 False 
 61.0   73.0   0.1865  -0.1797 0.5527 False 
 61.0   74.0   0.1855  -0.1807 0.5517 False 
 61.0   75.0   0.1923  -0.1739 0.5585 False 
 62.0   63.0   0.0305  -0.3357 0.3967 False 
 62.0   64.0  -0.0026  -0.3688 0.3636 False 
 62.0   65.0   0.0221  -0.3441 0.3883 False 
 62.0   66.0  -0.0048   -0.371 0.3614 False 
 62.0   67.0  -0.0236  -0.3898 0.3426 False 
 62.0   68.0  -0.1172  -0.4834 0.249  False 
 62.0   69.0  -0.1172  -0.4834 0.249  False 
 62.0   70.0   0.0464  -0.3198 0.4126 False 
 62.0   71.0  -0.0026  -0.3688 0.3636 False 
 62.0   72.0   0.0475  -0.3187 0.4137 False 
 62.0   73.0  -0.0039  -0.3701 0.3624 False 
 62.0   74.0  -0.0048   -0.371 0.3614 False 
 62.0   75.0   0.002   -0.3642 0.3682 False 
 63.0   64.0  -0.0331  -0.3993 0.3331 False 
 63.0   65.0  -0.0084  -0.3746 0.3578 False 
 63.0   66.0  -0.0353  -0.4015 0.3309 False 
 63.0   67.0  -0.0541  -0.4203 0.3121 False 
 63.0   68.0  -0.1477  -0.5139 0.2185 False 
 63.0   69.0  -0.1477  -0.5139 0.2185 False 
 63.0   70.0   0.0159  -0.3503 0.3821 False 
 63.0   71.0  -0.0331  -0.3993 0.3331 False 
 63.0   72.0   0.017   -0.3492 0.3832 False 
 63.0   73.0  -0.0344  -0.4006 0.3318 False 
 63.0   74.0  -0.0353  -0.4015 0.3309 False 
 63.0   75.0  -0.0285  -0.3947 0.3377 False 
 64.0   65.0   0.0247  -0.3415 0.3909 False 
 64.0   66.0  -0.0022  -0.3684 0.364  False 
 64.0   67.0   -0.021  -0.3872 0.3452 False 
 64.0   68.0  -0.1146  -0.4808 0.2516 False 
 64.0   69.0  -0.1146  -0.4808 0.2516 False 
 64.0   70.0   0.049   -0.3172 0.4152 False 
 64.0   71.0    0.0    -0.3662 0.3662 False 
 64.0   72.0   0.0501  -0.3161 0.4163 False 
 64.0   73.0  -0.0013  -0.3675 0.365  False 
 64.0   74.0  -0.0022  -0.3684 0.364  False 
 64.0   75.0   0.0046  -0.3616 0.3708 False 
 65.0   66.0  -0.0269  -0.3931 0.3393 False 
 65.0   67.0  -0.0457  -0.4119 0.3205 False 
 65.0   68.0  -0.1393  -0.5055 0.2269 False 
 65.0   69.0  -0.1393  -0.5055 0.2269 False 
 65.0   70.0   0.0243  -0.3419 0.3905 False 
 65.0   71.0  -0.0247  -0.3909 0.3415 False 
 65.0   72.0   0.0255  -0.3408 0.3917 False 
 65.0   73.0  -0.0259  -0.3921 0.3403 False 
 65.0   74.0  -0.0269  -0.3931 0.3393 False 
 65.0   75.0  -0.0201  -0.3863 0.3461 False 
 66.0   67.0  -0.0188   -0.385 0.3474 False 
 66.0   68.0  -0.1124  -0.4786 0.2538 False 
 66.0   69.0  -0.1124  -0.4786 0.2538 False 
 66.0   70.0   0.0512   -0.315 0.4175 False 
 66.0   71.0   0.0022   -0.364 0.3684 False 
 66.0   72.0   0.0524  -0.3138 0.4186 False 
 66.0   73.0   0.001   -0.3652 0.3672 False 
 66.0   74.0    0.0    -0.3662 0.3662 False 
 66.0   75.0   0.0068  -0.3594 0.373  False 
 67.0   68.0  -0.0936  -0.4598 0.2726 False 
 67.0   69.0  -0.0936  -0.4598 0.2726 False 
 67.0   70.0   0.0701  -0.2962 0.4363 False 
 67.0   71.0   0.021   -0.3452 0.3872 False 
 67.0   72.0   0.0712   -0.295 0.4374 False 
 67.0   73.0   0.0198  -0.3464 0.386  False 
 67.0   74.0   0.0188  -0.3474 0.385  False 
 67.0   75.0   0.0256  -0.3406 0.3918 False 
 68.0   69.0    0.0    -0.3662 0.3662 False 
 68.0   70.0   0.1636  -0.2026 0.5299 False 
 68.0   71.0   0.1146  -0.2516 0.4808 False 
 68.0   72.0   0.1648  -0.2015 0.531  False 
 68.0   73.0   0.1134  -0.2528 0.4796 False 
 68.0   74.0   0.1124  -0.2538 0.4786 False 
 68.0   75.0   0.1192   -0.247 0.4854 False 
 69.0   70.0   0.1636  -0.2026 0.5299 False 
 69.0   71.0   0.1146  -0.2516 0.4808 False 
 69.0   72.0   0.1648  -0.2015 0.531  False 
 69.0   73.0   0.1134  -0.2528 0.4796 False 
 69.0   74.0   0.1124  -0.2538 0.4786 False 
 69.0   75.0   0.1192   -0.247 0.4854 False 
 70.0   71.0   -0.049  -0.4152 0.3172 False 
 70.0   72.0   0.0011  -0.3651 0.3673 False 
 70.0   73.0  -0.0503  -0.4165 0.3159 False 
 70.0   74.0  -0.0512  -0.4175 0.315  False 
 70.0   75.0  -0.0444  -0.4107 0.3218 False 
 71.0   72.0   0.0501  -0.3161 0.4163 False 
 71.0   73.0  -0.0013  -0.3675 0.365  False 
 71.0   74.0  -0.0022  -0.3684 0.364  False 
 71.0   75.0   0.0046  -0.3616 0.3708 False 
 72.0   73.0  -0.0514  -0.4176 0.3148 False 
 72.0   74.0  -0.0524  -0.4186 0.3138 False 
 72.0   75.0  -0.0456  -0.4118 0.3207 False 
 73.0   74.0   -0.001  -0.3672 0.3652 False 
 73.0   75.0   0.0058  -0.3604 0.372  False 
 74.0   75.0   0.0068  -0.3594 0.373  False 
--------------------------------------------
[  0.   1.   2.   3.   4.   5.   6.   7.   8.   9.  10.  11.  12.  13.  14.
  15.  16.  17.  18.  19.  20.  21.  22.  23.  24.  25.  26.  27.  28.  29.
  30.  31.  32.  33.  34.  35.  36.  37.  38.  39.  40.  41.  42.  43.  44.
  45.  46.  47.  48.  49.  50.  51.  52.  53.  54.  55.  56.  57.  58.  59.
  60.  61.  62.  63.  64.  65.  66.  67.  68.  69.  70.  71.  72.  73.  74.
  75.]

Test Multiple Comparison ttest_rel 
FWER=0.05 method=b
alphacSidak=0.00, alphacBonf=0.000
==============================================
group1 group2   stat    pval  pval_corr reject
----------------------------------------------
 0.0    1.0    -1.782  0.1084    1.0    False 
 0.0    2.0    1.281   0.2322    1.0    False 
 0.0    3.0    0.3403  0.7414    1.0    False 
 0.0    4.0   -1.7523  0.1136    1.0    False 
 0.0    5.0   -1.7523  0.1136    1.0    False 
 0.0    6.0    -0.267  0.7955    1.0    False 
 0.0    7.0    1.3183   0.22     1.0    False 
 0.0    8.0    1.0026  0.3423    1.0    False 
 0.0    9.0   -1.2038  0.2594    1.0    False 
 0.0    10.0   0.8528  0.4159    1.0    False 
 0.0    11.0   0.8528  0.4159    1.0    False 
 0.0    12.0  -1.1734  0.2707    1.0    False 
 0.0    13.0  -0.5525  0.594     1.0    False 
 0.0    14.0  -0.1481  0.8855    1.0    False 
 0.0    15.0  -0.9628  0.3608    1.0    False 
 0.0    16.0    nan     nan      nan    False 
 0.0    17.0   0.9903  0.3479    1.0    False 
 0.0    18.0   1.1264  0.2891    1.0    False 
 0.0    19.0   0.9867  0.3496    1.0    False 
 0.0    20.0   0.0304  0.9764    1.0    False 
 0.0    21.0   1.5888  0.1466    1.0    False 
 0.0    22.0  -1.1344  0.2859    1.0    False 
 0.0    23.0  -0.1555  0.8798    1.0    False 
 0.0    24.0   0.6791  0.5142    1.0    False 
 0.0    25.0   1.3969  0.1959    1.0    False 
 0.0    26.0  -0.1677  0.8705    1.0    False 
 0.0    27.0  -0.1677  0.8705    1.0    False 
 0.0    28.0   1.1163  0.2932    1.0    False 
 0.0    29.0   0.0843  0.9347    1.0    False 
 0.0    30.0  -0.4051  0.6949    1.0    False 
 0.0    31.0   1.0426  0.3243    1.0    False 
 0.0    32.0  -0.4386  0.6713    1.0    False 
 0.0    33.0  -0.2337  0.8204    1.0    False 
 0.0    34.0   0.4984  0.6302    1.0    False 
 0.0    35.0   0.6146  0.5541    1.0    False 
 0.0    36.0   0.5106  0.6219    1.0    False 
 0.0    37.0   0.5106  0.6219    1.0    False 
 0.0    38.0   0.0304  0.9764    1.0    False 
 0.0    39.0   1.5888  0.1466    1.0    False 
 0.0    40.0   0.7899  0.4499    1.0    False 
 0.0    41.0  -5.5537  0.0004    1.0    False 
 0.0    42.0   0.8364  0.4246    1.0    False 
 0.0    43.0  -5.0682  0.0007    1.0    False 
 0.0    44.0  -4.4151  0.0017    1.0    False 
 0.0    45.0  -4.4151  0.0017    1.0    False 
 0.0    46.0   2.361   0.0425    1.0    False 
 0.0    47.0   1.7416  0.1156    1.0    False 
 0.0    48.0   -3.299  0.0092    1.0    False 
 0.0    49.0  -4.9837  0.0008    1.0    False 
 0.0    50.0  -5.0682  0.0007    1.0    False 
 0.0    51.0  -1.8634  0.0953    1.0    False 
 0.0    52.0  -5.0682  0.0007    1.0    False 
 0.0    53.0  -5.0682  0.0007    1.0    False 
 0.0    54.0  -4.8988  0.0008    1.0    False 
 0.0    55.0   -3.39   0.008     1.0    False 
 0.0    56.0   2.4208  0.0386    1.0    False 
 0.0    57.0   2.4208  0.0386    1.0    False 
 0.0    58.0  -5.5537  0.0004    1.0    False 
 0.0    59.0  -1.8634  0.0953    1.0    False 
 0.0    60.0   2.5086  0.0334    1.0    False 
 0.0    61.0   2.5086  0.0334    1.0    False 
 0.0    62.0  -0.8737  0.405     1.0    False 
 0.0    63.0  -1.7721  0.1101    1.0    False 
 0.0    64.0  -0.8653  0.4094    1.0    False 
 0.0    65.0  -1.1838  0.2668    1.0    False 
 0.0    66.0  -0.7031  0.4998    1.0    False 
 0.0    67.0  -0.5762  0.5786    1.0    False 
 0.0    68.0   0.7393  0.4786    1.0    False 
 0.0    69.0   0.7393  0.4786    1.0    False 
 0.0    70.0  -2.4377  0.0375    1.0    False 
 0.0    71.0  -0.8653  0.4094    1.0    False 
 0.0    72.0  -1.8247  0.1013    1.0    False 
 0.0    73.0  -0.8592  0.4125    1.0    False 
 0.0    74.0  -0.7031  0.4998    1.0    False 
 0.0    75.0  -0.8533  0.4156    1.0    False 
 1.0    2.0    2.4033  0.0397    1.0    False 
 1.0    3.0    1.874   0.0937    1.0    False 
 1.0    4.0    0.1298  0.8996    1.0    False 
 1.0    5.0    0.1298  0.8996    1.0    False 
 1.0    6.0    0.6406  0.5378    1.0    False 
 1.0    7.0    2.5643  0.0305    1.0    False 
 1.0    8.0    2.2601  0.0502    1.0    False 
 1.0    9.0    0.1631  0.8741    1.0    False 
 1.0    10.0   2.5279  0.0323    1.0    False 
 1.0    11.0   2.5279  0.0323    1.0    False 
 1.0    12.0   0.6638  0.5235    1.0    False 
 1.0    13.0   0.7883  0.4508    1.0    False 
 1.0    14.0   0.8335  0.4261    1.0    False 
 1.0    15.0    0.9    0.3916    1.0    False 
 1.0    16.0   1.782   0.1084    1.0    False 
 1.0    17.0   1.9256  0.0863    1.0    False 
 1.0    18.0   2.0838  0.0668    1.0    False 
 1.0    19.0   2.0698  0.0684    1.0    False 
 1.0    20.0   0.9886  0.3487    1.0    False 
 1.0    21.0   2.5932  0.0291    1.0    False 
 1.0    22.0   0.3724  0.7182    1.0    False 
 1.0    23.0   1.0244  0.3324    1.0    False 
 1.0    24.0   1.8259  0.1012    1.0    False 
 1.0    25.0   2.2768  0.0488    1.0    False 
 1.0    26.0   0.8501  0.4173    1.0    False 
 1.0    27.0   0.8501  0.4173    1.0    False 
 1.0    28.0   2.4337  0.0378    1.0    False 
 1.0    29.0   1.2354  0.248     1.0    False 
 1.0    30.0   1.5333  0.1596    1.0    False 
 1.0    31.0   2.1834  0.0569    1.0    False 
 1.0    32.0   0.8781  0.4027    1.0    False 
 1.0    33.0   1.1569  0.2771    1.0    False 
 1.0    34.0   1.8768  0.0933    1.0    False 
 1.0    35.0   1.8914  0.0911    1.0    False 
 1.0    36.0   1.4641  0.1772    1.0    False 
 1.0    37.0   1.4641  0.1772    1.0    False 
 1.0    38.0   0.9886  0.3487    1.0    False 
 1.0    39.0   2.5932  0.0291    1.0    False 
 1.0    40.0   1.8683  0.0946    1.0    False 
 1.0    41.0  -2.9769  0.0155    1.0    False 
 1.0    42.0   2.3236  0.0452    1.0    False 
 1.0    43.0  -3.5115  0.0066    1.0    False 
 1.0    44.0  -1.7852  0.1079    1.0    False 
 1.0    45.0  -1.7852  0.1079    1.0    False 
 1.0    46.0   2.8905  0.0179    1.0    False 
 1.0    47.0   2.9674  0.0158    1.0    False 
 1.0    48.0  -1.1788  0.2687    1.0    False 
 1.0    49.0   -1.754  0.1133    1.0    False 
 1.0    50.0  -3.5115  0.0066    1.0    False 
 1.0    51.0   0.522   0.6142    1.0    False 
 1.0    52.0  -3.5115  0.0066    1.0    False 
 1.0    53.0  -3.5115  0.0066    1.0    False 
 1.0    54.0  -1.2767  0.2337    1.0    False 
 1.0    55.0  -1.3913  0.1976    1.0    False 
 1.0    56.0   2.8391  0.0194    1.0    False 
 1.0    57.0   2.8391  0.0194    1.0    False 
 1.0    58.0  -2.9769  0.0155    1.0    False 
 1.0    59.0   0.522   0.6142    1.0    False 
 1.0    60.0   3.9224  0.0035    1.0    False 
 1.0    61.0   3.9224  0.0035    1.0    False 
 1.0    62.0   0.3105  0.7633    1.0    False 
 1.0    63.0  -0.1004  0.9222    1.0    False 
 1.0    64.0   0.3507  0.7339    1.0    False 
 1.0    65.0   0.0233  0.9819    1.0    False 
 1.0    66.0   0.3013   0.77     1.0    False 
 1.0    67.0   0.6527  0.5302    1.0    False 
 1.0    68.0   1.5577  0.1537    1.0    False 
 1.0    69.0   1.5577  0.1537    1.0    False 
 1.0    70.0  -0.3535  0.7319    1.0    False 
 1.0    71.0   0.3507  0.7339    1.0    False 
 1.0    72.0  -0.3645  0.7239    1.0    False 
 1.0    73.0   0.3716  0.7188    1.0    False 
 1.0    74.0   0.3013   0.77     1.0    False 
 1.0    75.0   0.2531  0.8059    1.0    False 
 2.0    3.0   -0.6886  0.5084    1.0    False 
 2.0    4.0   -3.1103  0.0125    1.0    False 
 2.0    5.0   -3.1103  0.0125    1.0    False 
 2.0    6.0   -0.9473  0.3682    1.0    False 
 2.0    7.0    0.4973  0.6309    1.0    False 
 2.0    8.0    0.1562  0.8793    1.0    False 
 2.0    9.0    -1.485  0.1717    1.0    False 
 2.0    10.0   0.1144  0.9114    1.0    False 
 2.0    11.0   0.1144  0.9114    1.0    False 
 2.0    12.0  -2.1837  0.0568    1.0    False 
 2.0    13.0  -1.0773  0.3094    1.0    False 
 2.0    14.0  -0.9767  0.3543    1.0    False 
 2.0    15.0  -1.9031  0.0894    1.0    False 
 2.0    16.0   -1.281  0.2322    1.0    False 
 2.0    17.0   0.1564  0.8792    1.0    False 
 2.0    18.0   0.1756  0.8645    1.0    False 
 2.0    19.0   0.1884  0.8547    1.0    False 
 2.0    20.0  -0.4975  0.6308    1.0    False 
 2.0    21.0    0.04   0.969     1.0    False 
 2.0    22.0  -1.5471  0.1563    1.0    False 
 2.0    23.0  -0.8668  0.4085    1.0    False 
 2.0    24.0   -0.181  0.8604    1.0    False 
 2.0    25.0   0.2651  0.7969    1.0    False 
 2.0    26.0  -0.9019  0.3906    1.0    False 
 2.0    27.0  -0.9019  0.3906    1.0    False 
 2.0    28.0   0.1772  0.8633    1.0    False 
 2.0    29.0  -0.6071  0.5588    1.0    False 
 2.0    30.0  -1.2595  0.2395    1.0    False 
 2.0    31.0  -0.5351  0.6055    1.0    False 
 2.0    32.0  -1.1426  0.2827    1.0    False 
 2.0    33.0  -0.8937  0.3948    1.0    False 
 2.0    34.0  -0.2434  0.8131    1.0    False 
 2.0    35.0  -0.3363  0.7444    1.0    False 
 2.0    36.0  -0.3739  0.7172    1.0    False 
 2.0    37.0  -0.3739  0.7172    1.0    False 
 2.0    38.0  -0.4975  0.6308    1.0    False 
 2.0    39.0    0.04   0.969     1.0    False 
 2.0    40.0  -0.2698  0.7934    1.0    False 
 2.0    41.0  -5.8428  0.0002   0.7009  False 
 2.0    42.0  -0.3264  0.7516    1.0    False 
 2.0    43.0  -6.5168  0.0001   0.3115  False 
 2.0    44.0  -6.8441  0.0001   0.2144  False 
 2.0    45.0  -6.8441  0.0001   0.2144  False 
 2.0    46.0   1.9002  0.0899    1.0    False 
 2.0    47.0   0.5151  0.6189    1.0    False 
 2.0    48.0  -4.1523  0.0025    1.0    False 
 2.0    49.0  -5.8699  0.0002   0.6777  False 
 2.0    50.0  -6.5168  0.0001   0.3115  False 
 2.0    51.0  -2.9369  0.0166    1.0    False 
 2.0    52.0  -6.5168  0.0001   0.3115  False 
 2.0    53.0  -6.5168  0.0001   0.3115  False 
 2.0    54.0  -6.0663  0.0002   0.5322  False 
 2.0    55.0   -5.571  0.0003   0.9888  False 
 2.0    56.0   0.7997  0.4445    1.0    False 
 2.0    57.0   0.7997  0.4445    1.0    False 
 2.0    58.0  -5.8428  0.0002   0.7009  False 
 2.0    59.0  -2.9369  0.0166    1.0    False 
 2.0    60.0   1.4346  0.1852    1.0    False 
 2.0    61.0   1.4346  0.1852    1.0    False 
 2.0    62.0  -1.5332  0.1596    1.0    False 
 2.0    63.0  -2.9087  0.0173    1.0    False 
 2.0    64.0  -1.6815  0.127     1.0    False 
 2.0    65.0  -1.9689  0.0805    1.0    False 
 2.0    66.0  -1.2837  0.2313    1.0    False 
 2.0    67.0  -1.3858  0.1992    1.0    False 
 2.0    68.0   0.1268  0.9019    1.0    False 
 2.0    69.0   0.1268  0.9019    1.0    False 
 2.0    70.0  -3.1707  0.0114    1.0    False 
 2.0    71.0  -1.6815  0.127     1.0    False 
 2.0    72.0  -2.5762  0.0299    1.0    False 
 2.0    73.0  -1.7327  0.1172    1.0    False 
 2.0    74.0  -1.2837  0.2313    1.0    False 
 2.0    75.0  -1.5607  0.153     1.0    False 
 3.0    4.0   -1.4441  0.1826    1.0    False 
 3.0    5.0   -1.4441  0.1826    1.0    False 
 3.0    6.0   -0.4473  0.6652    1.0    False 
 3.0    7.0    1.0136  0.3372    1.0    False 
 3.0    8.0    0.8516  0.4165    1.0    False 
 3.0    9.0   -0.9026  0.3903    1.0    False 
 3.0    10.0   1.0819  0.3074    1.0    False 
 3.0    11.0   1.0819  0.3074    1.0    False 
 3.0    12.0  -1.1123  0.2948    1.0    False 
 3.0    13.0  -0.5404  0.6021    1.0    False 
 3.0    14.0  -0.3241  0.7532    1.0    False 
 3.0    15.0  -0.7076  0.4971    1.0    False 
 3.0    16.0  -0.3403  0.7414    1.0    False 
 3.0    17.0   0.817   0.435     1.0    False 
 3.0    18.0   0.8533  0.4156    1.0    False 
 3.0    19.0    1.04   0.3255    1.0    False 
 3.0    20.0  -0.1474  0.8861    1.0    False 
 3.0    21.0   0.5258  0.6117    1.0    False 
 3.0    22.0   -0.876  0.4038    1.0    False 
 3.0    23.0   -0.282  0.7843    1.0    False 
 3.0    24.0   0.1717  0.8675    1.0    False 
 3.0    25.0   0.5605  0.5888    1.0    False 
 3.0    26.0  -0.3458  0.7375    1.0    False 
 3.0    27.0  -0.3458  0.7375    1.0    False 
 3.0    28.0   0.512   0.621     1.0    False 
 3.0    29.0  -0.1389  0.8926    1.0    False 
 3.0    30.0  -0.5199  0.6157    1.0    False 
 3.0    31.0   0.1025  0.9206    1.0    False 
 3.0    32.0  -0.4634  0.6541    1.0    False 
 3.0    33.0  -0.3372  0.7437    1.0    False 
 3.0    34.0   0.1443  0.8884    1.0    False 
 3.0    35.0   0.0973  0.9246    1.0    False 
 3.0    36.0   0.127   0.9017    1.0    False 
 3.0    37.0   0.127   0.9017    1.0    False 
 3.0    38.0  -0.1474  0.8861    1.0    False 
 3.0    39.0   0.5258  0.6117    1.0    False 
 3.0    40.0   0.2363  0.8185    1.0    False 
 3.0    41.0  -4.4313  0.0016    1.0    False 
 3.0    42.0   0.2326  0.8213    1.0    False 
 3.0    43.0  -6.2743  0.0001   0.4143  False 
 3.0    44.0  -3.5914  0.0058    1.0    False 
 3.0    45.0  -3.5914  0.0058    1.0    False 
 3.0    46.0   1.5305  0.1602    1.0    False 
 3.0    47.0   1.1524  0.2788    1.0    False 
 3.0    48.0  -2.6236  0.0276    1.0    False 
 3.0    49.0  -3.4124  0.0077    1.0    False 
 3.0    50.0  -6.2743  0.0001   0.4143  False 
 3.0    51.0  -1.3146  0.2212    1.0    False 
 3.0    52.0  -6.2743  0.0001   0.4143  False 
 3.0    53.0  -6.2743  0.0001   0.4143  False 
 3.0    54.0  -3.5592  0.0061    1.0    False 
 3.0    55.0  -3.1415  0.0119    1.0    False 
 3.0    56.0   1.1413  0.2832    1.0    False 
 3.0    57.0   1.1413  0.2832    1.0    False 
 3.0    58.0  -4.4313  0.0016    1.0    False 
 3.0    59.0  -1.3146  0.2212    1.0    False 
 3.0    60.0   1.6599  0.1313    1.0    False 
 3.0    61.0   1.6599  0.1313    1.0    False 
 3.0    62.0  -0.8253  0.4305    1.0    False 
 3.0    63.0  -1.4335  0.1855    1.0    False 
 3.0    64.0  -0.8782  0.4027    1.0    False 
 3.0    65.0   -1.121  0.2913    1.0    False 
 3.0    66.0  -0.6831  0.5117    1.0    False 
 3.0    67.0  -0.6031  0.5613    1.0    False 
 3.0    68.0   0.4075  0.6932    1.0    False 
 3.0    69.0   0.4075  0.6932    1.0    False 
 3.0    70.0  -1.6009  0.1439    1.0    False 
 3.0    71.0  -0.8782  0.4027    1.0    False 
 3.0    72.0  -1.5013  0.1675    1.0    False 
 3.0    73.0  -0.8642  0.4099    1.0    False 
 3.0    74.0  -0.6831  0.5117    1.0    False 
 3.0    75.0  -0.8133  0.437     1.0    False 
 4.0    5.0     nan     nan      nan    False 
 4.0    6.0    0.8386  0.4234    1.0    False 
 4.0    7.0    2.5735   0.03     1.0    False 
 4.0    8.0    1.9533  0.0825    1.0    False 
 4.0    9.0    0.0572  0.9556    1.0    False 
 4.0    10.0   2.0585  0.0696    1.0    False 
 4.0    11.0   2.0585  0.0696    1.0    False 
 4.0    12.0   0.6388  0.5389    1.0    False 
 4.0    13.0   0.5909  0.5691    1.0    False 
 4.0    14.0   0.941   0.3713    1.0    False 
 4.0    15.0   1.0205  0.3341    1.0    False 
 4.0    16.0   1.7523  0.1136    1.0    False 
 4.0    17.0   2.0726  0.0681    1.0    False 
 4.0    18.0   2.153   0.0597    1.0    False 
 4.0    19.0   2.1657  0.0585    1.0    False 
 4.0    20.0   0.7979  0.4455    1.0    False 
 4.0    21.0   3.515   0.0066    1.0    False 
 4.0    22.0   0.1843  0.8579    1.0    False 
 4.0    23.0   0.9806  0.3524    1.0    False 
 4.0    24.0   1.5877  0.1468    1.0    False 
 4.0    25.0   1.8325  0.1001    1.0    False 
 4.0    26.0   0.7685  0.4619    1.0    False 
 4.0    27.0   0.7685  0.4619    1.0    False 
 4.0    28.0   1.9221  0.0868    1.0    False 
 4.0    29.0   1.0689  0.3129    1.0    False 
 4.0    30.0   1.176   0.2697    1.0    False 
 4.0    31.0   2.1544  0.0596    1.0    False 
 4.0    32.0   0.7876  0.4512    1.0    False 
 4.0    33.0   0.8638  0.4101    1.0    False 
 4.0    34.0   1.4541  0.1799    1.0    False 
 4.0    35.0   1.8447  0.0982    1.0    False 
 4.0    36.0   2.0204  0.0741    1.0    False 
 4.0    37.0   2.0204  0.0741    1.0    False 
 4.0    38.0   0.7979  0.4455    1.0    False 
 4.0    39.0   3.515   0.0066    1.0    False 
 4.0    40.0   2.1663  0.0585    1.0    False 
 4.0    41.0   -2.952  0.0162    1.0    False 
 4.0    42.0   3.2564  0.0099    1.0    False 
 4.0    43.0   -2.768  0.0218    1.0    False 
 4.0    44.0  -2.4641  0.0359    1.0    False 
 4.0    45.0  -2.4641  0.0359    1.0    False 
 4.0    46.0   3.7478  0.0046    1.0    False 
 4.0    47.0   2.5065  0.0335    1.0    False 
 4.0    48.0  -1.8207  0.102     1.0    False 
 4.0    49.0  -3.9283  0.0035    1.0    False 
 4.0    50.0   -2.768  0.0218    1.0    False 
 4.0    51.0   0.3484  0.7355    1.0    False 
 4.0    52.0   -2.768  0.0218    1.0    False 
 4.0    53.0   -2.768  0.0218    1.0    False 
 4.0    54.0  -1.7666  0.1111    1.0    False 
 4.0    55.0   -1.853  0.0969    1.0    False 
 4.0    56.0   2.6344  0.0272    1.0    False 
 4.0    57.0   2.6344  0.0272    1.0    False 
 4.0    58.0   -2.952  0.0162    1.0    False 
 4.0    59.0   0.3484  0.7355    1.0    False 
 4.0    60.0   4.0354  0.0029    1.0    False 
 4.0    61.0   4.0354  0.0029    1.0    False 
 4.0    62.0   0.2095  0.8387    1.0    False 
 4.0    63.0  -0.3836  0.7102    1.0    False 
 4.0    64.0   0.2759  0.7889    1.0    False 
 4.0    65.0  -0.1069  0.9172    1.0    False 
 4.0    66.0   0.292   0.7769    1.0    False 
 4.0    67.0   0.6135  0.5547    1.0    False 
 4.0    68.0   1.5711  0.1506    1.0    False 
 4.0    69.0   1.5711  0.1506    1.0    False 
 4.0    70.0   -0.92   0.3816    1.0    False 
 4.0    71.0   0.2759  0.7889    1.0    False 
 4.0    72.0  -0.5574  0.5909    1.0    False 
 4.0    73.0   0.3336  0.7464    1.0    False 
 4.0    74.0   0.292   0.7769    1.0    False 
 4.0    75.0   0.1874  0.8555    1.0    False 
 5.0    6.0    0.8386  0.4234    1.0    False 
 5.0    7.0    2.5735   0.03     1.0    False 
 5.0    8.0    1.9533  0.0825    1.0    False 
 5.0    9.0    0.0572  0.9556    1.0    False 
 5.0    10.0   2.0585  0.0696    1.0    False 
 5.0    11.0   2.0585  0.0696    1.0    False 
 5.0    12.0   0.6388  0.5389    1.0    False 
 5.0    13.0   0.5909  0.5691    1.0    False 
 5.0    14.0   0.941   0.3713    1.0    False 
 5.0    15.0   1.0205  0.3341    1.0    False 
 5.0    16.0   1.7523  0.1136    1.0    False 
 5.0    17.0   2.0726  0.0681    1.0    False 
 5.0    18.0   2.153   0.0597    1.0    False 
 5.0    19.0   2.1657  0.0585    1.0    False 
 5.0    20.0   0.7979  0.4455    1.0    False 
 5.0    21.0   3.515   0.0066    1.0    False 
 5.0    22.0   0.1843  0.8579    1.0    False 
 5.0    23.0   0.9806  0.3524    1.0    False 
 5.0    24.0   1.5877  0.1468    1.0    False 
 5.0    25.0   1.8325  0.1001    1.0    False 
 5.0    26.0   0.7685  0.4619    1.0    False 
 5.0    27.0   0.7685  0.4619    1.0    False 
 5.0    28.0   1.9221  0.0868    1.0    False 
 5.0    29.0   1.0689  0.3129    1.0    False 
 5.0    30.0   1.176   0.2697    1.0    False 
 5.0    31.0   2.1544  0.0596    1.0    False 
 5.0    32.0   0.7876  0.4512    1.0    False 
 5.0    33.0   0.8638  0.4101    1.0    False 
 5.0    34.0   1.4541  0.1799    1.0    False 
 5.0    35.0   1.8447  0.0982    1.0    False 
 5.0    36.0   2.0204  0.0741    1.0    False 
 5.0    37.0   2.0204  0.0741    1.0    False 
 5.0    38.0   0.7979  0.4455    1.0    False 
 5.0    39.0   3.515   0.0066    1.0    False 
 5.0    40.0   2.1663  0.0585    1.0    False 
 5.0    41.0   -2.952  0.0162    1.0    False 
 5.0    42.0   3.2564  0.0099    1.0    False 
 5.0    43.0   -2.768  0.0218    1.0    False 
 5.0    44.0  -2.4641  0.0359    1.0    False 
 5.0    45.0  -2.4641  0.0359    1.0    False 
 5.0    46.0   3.7478  0.0046    1.0    False 
 5.0    47.0   2.5065  0.0335    1.0    False 
 5.0    48.0  -1.8207  0.102     1.0    False 
 5.0    49.0  -3.9283  0.0035    1.0    False 
 5.0    50.0   -2.768  0.0218    1.0    False 
 5.0    51.0   0.3484  0.7355    1.0    False 
 5.0    52.0   -2.768  0.0218    1.0    False 
 5.0    53.0   -2.768  0.0218    1.0    False 
 5.0    54.0  -1.7666  0.1111    1.0    False 
 5.0    55.0   -1.853  0.0969    1.0    False 
 5.0    56.0   2.6344  0.0272    1.0    False 
 5.0    57.0   2.6344  0.0272    1.0    False 
 5.0    58.0   -2.952  0.0162    1.0    False 
 5.0    59.0   0.3484  0.7355    1.0    False 
 5.0    60.0   4.0354  0.0029    1.0    False 
 5.0    61.0   4.0354  0.0029    1.0    False 
 5.0    62.0   0.2095  0.8387    1.0    False 
 5.0    63.0  -0.3836  0.7102    1.0    False 
 5.0    64.0   0.2759  0.7889    1.0    False 
 5.0    65.0  -0.1069  0.9172    1.0    False 
 5.0    66.0   0.292   0.7769    1.0    False 
 5.0    67.0   0.6135  0.5547    1.0    False 
 5.0    68.0   1.5711  0.1506    1.0    False 
 5.0    69.0   1.5711  0.1506    1.0    False 
 5.0    70.0   -0.92   0.3816    1.0    False 
 5.0    71.0   0.2759  0.7889    1.0    False 
 5.0    72.0  -0.5574  0.5909    1.0    False 
 5.0    73.0   0.3336  0.7464    1.0    False 
 5.0    74.0   0.292   0.7769    1.0    False 
 5.0    75.0   0.1874  0.8555    1.0    False 
 6.0    7.0    1.8335  0.0999    1.0    False 
 6.0    8.0    0.8866  0.3984    1.0    False 
 6.0    9.0   -0.6048  0.5602    1.0    False 
 6.0    10.0   0.9281  0.3776    1.0    False 
 6.0    11.0   0.9281  0.3776    1.0    False 
 6.0    12.0   -0.389  0.7063    1.0    False 
 6.0    13.0  -0.1108  0.9142    1.0    False 
 6.0    14.0   0.1614  0.8753    1.0    False 
 6.0    15.0  -0.1544  0.8807    1.0    False 
 6.0    16.0   0.267   0.7955    1.0    False 
 6.0    17.0   0.974   0.3555    1.0    False 
 6.0    18.0   0.9948  0.3458    1.0    False 
 6.0    19.0   1.0081  0.3397    1.0    False 
 6.0    20.0   0.2564  0.8034    1.0    False 
 6.0    21.0   1.0911  0.3036    1.0    False 
 6.0    22.0  -0.3928  0.7036    1.0    False 
 6.0    23.0   0.1442  0.8885    1.0    False 
 6.0    24.0   0.7128  0.494     1.0    False 
 6.0    25.0   1.0187  0.335     1.0    False 
 6.0    26.0   0.0985  0.9237    1.0    False 
 6.0    27.0   0.0985  0.9237    1.0    False 
 6.0    28.0   0.9023  0.3904    1.0    False 
 6.0    29.0   0.2763  0.7886    1.0    False 
 6.0    30.0   0.1244  0.9037    1.0    False 
 6.0    31.0   0.5607  0.5887    1.0    False 
 6.0    32.0   -0.039  0.9697    1.0    False 
 6.0    33.0   0.0837  0.9351    1.0    False 
 6.0    34.0   0.5976  0.5648    1.0    False 
 6.0    35.0   0.6392  0.5386    1.0    False 
 6.0    36.0   0.8677  0.4081    1.0    False 
 6.0    37.0   0.8677  0.4081    1.0    False 
 6.0    38.0   0.2564  0.8034    1.0    False 
 6.0    39.0   1.0911  0.3036    1.0    False 
 6.0    40.0   1.0099  0.3389    1.0    False 
 6.0    41.0  -2.3683  0.042     1.0    False 
 6.0    42.0   0.7685  0.4619    1.0    False 
 6.0    43.0  -2.5225  0.0326    1.0    False 
 6.0    44.0  -2.0283  0.0731    1.0    False 
 6.0    45.0  -2.0283  0.0731    1.0    False 
 6.0    46.0   2.6851  0.025     1.0    False 
 6.0    47.0   1.1388  0.2842    1.0    False 
 6.0    48.0   -2.35   0.0433    1.0    False 
 6.0    49.0   -2.501  0.0338    1.0    False 
 6.0    50.0  -2.5225  0.0326    1.0    False 
 6.0    51.0  -0.4682  0.6508    1.0    False 
 6.0    52.0  -2.5225  0.0326    1.0    False 
 6.0    53.0  -2.5225  0.0326    1.0    False 
 6.0    54.0  -1.6917  0.125     1.0    False 
 6.0    55.0  -1.7542  0.1133    1.0    False 
 6.0    56.0   1.4621  0.1777    1.0    False 
 6.0    57.0   1.4621  0.1777    1.0    False 
 6.0    58.0  -2.3683  0.042     1.0    False 
 6.0    59.0  -0.4682  0.6508    1.0    False 
 6.0    60.0   2.2508  0.0509    1.0    False 
 6.0    61.0   2.2508  0.0509    1.0    False 
 6.0    62.0  -0.6303  0.5442    1.0    False 
 6.0    63.0  -1.3357  0.2144    1.0    False 
 6.0    64.0  -0.6886  0.5084    1.0    False 
 6.0    65.0  -1.3489  0.2103    1.0    False 
 6.0    66.0  -0.5499  0.5957    1.0    False 
 6.0    67.0  -0.2273  0.8253    1.0    False 
 6.0    68.0   1.6461  0.1342    1.0    False 
 6.0    69.0   1.6461  0.1342    1.0    False 
 6.0    70.0  -1.2888  0.2296    1.0    False 
 6.0    71.0  -0.6886  0.5084    1.0    False 
 6.0    72.0  -1.6121  0.1414    1.0    False 
 6.0    73.0  -0.7922  0.4486    1.0    False 
 6.0    74.0  -0.5499  0.5957    1.0    False 
 6.0    75.0  -0.7143  0.4931    1.0    False 
 7.0    8.0   -0.2712  0.7923    1.0    False 
 7.0    9.0   -2.0921  0.066     1.0    False 
 7.0    10.0  -0.3936  0.703     1.0    False 
 7.0    11.0  -0.3936  0.703     1.0    False 
 7.0    12.0  -2.3784  0.0413    1.0    False 
 7.0    13.0  -1.6104  0.1418    1.0    False 
 7.0    14.0  -1.3244  0.218     1.0    False 
 7.0    15.0  -1.5653  0.152     1.0    False 
 7.0    16.0  -1.3183   0.22     1.0    False 
 7.0    17.0  -0.3093  0.7641    1.0    False 
 7.0    18.0  -0.3158  0.7593    1.0    False 
 7.0    19.0  -0.3515  0.7333    1.0    False 
 7.0    20.0  -1.0147  0.3368    1.0    False 
 7.0    21.0   -0.696  0.504     1.0    False 
 7.0    22.0  -1.8195  0.1022    1.0    False 
 7.0    23.0  -1.1086  0.2963    1.0    False 
 7.0    24.0  -0.7006  0.5012    1.0    False 
 7.0    25.0  -0.1395  0.8922    1.0    False 
 7.0    26.0  -1.3295  0.2164    1.0    False 
 7.0    27.0  -1.3295  0.2164    1.0    False 
 7.0    28.0  -0.2472  0.8103    1.0    False 
 7.0    29.0  -0.8768  0.4034    1.0    False 
 7.0    30.0  -1.8506  0.0973    1.0    False 
 7.0    31.0  -0.9488  0.3675    1.0    False 
 7.0    32.0  -1.2699  0.236     1.0    False 
 7.0    33.0  -1.1599  0.2759    1.0    False 
 7.0    34.0  -0.9798  0.3528    1.0    False 
 7.0    35.0  -0.8234  0.4316    1.0    False 
 7.0    36.0  -0.9195  0.3818    1.0    False 
 7.0    37.0  -0.9195  0.3818    1.0    False 
 7.0    38.0  -1.0147  0.3368    1.0    False 
 7.0    39.0   -0.696  0.504     1.0    False 
 7.0    40.0  -1.0306  0.3296    1.0    False 
 7.0    41.0  -6.5191  0.0001   0.3107  False 
 7.0    42.0  -0.7329  0.4823    1.0    False 
 7.0    43.0  -6.6119  0.0001   0.2791  False 
 7.0    44.0  -5.0371  0.0007    1.0    False 
 7.0    45.0  -5.0371  0.0007    1.0    False 
 7.0    46.0   0.6947  0.5048    1.0    False 
 7.0    47.0  -0.0847  0.9344    1.0    False 
 7.0    48.0  -6.2425  0.0002   0.4303  False 
 7.0    49.0  -6.1755  0.0002   0.4663  False 
 7.0    50.0  -6.6119  0.0001   0.2791  False 
 7.0    51.0  -2.0486  0.0708    1.0    False 
 7.0    52.0  -6.6119  0.0001   0.2791  False 
 7.0    53.0  -6.6119  0.0001   0.2791  False 
 7.0    54.0  -4.6342  0.0012    1.0    False 
 7.0    55.0  -4.1226  0.0026    1.0    False 
 7.0    56.0   0.4808  0.6421    1.0    False 
 7.0    57.0   0.4808  0.6421    1.0    False 
 7.0    58.0  -6.5191  0.0001   0.3107  False 
 7.0    59.0  -2.0486  0.0708    1.0    False 
 7.0    60.0   0.8237  0.4314    1.0    False 
 7.0    61.0   0.8237  0.4314    1.0    False 
 7.0    62.0  -2.3016  0.0469    1.0    False 
 7.0    63.0  -3.4455  0.0073    1.0    False 
 7.0    64.0  -2.4675  0.0357    1.0    False 
 7.0    65.0  -2.4952  0.0341    1.0    False 
 7.0    66.0  -1.9318  0.0854    1.0    False 
 7.0    67.0  -1.9606  0.0816    1.0    False 
 7.0    68.0  -0.3565  0.7297    1.0    False 
 7.0    69.0  -0.3565  0.7297    1.0    False 
 7.0    70.0  -3.0773  0.0132    1.0    False 
 7.0    71.0  -2.4675  0.0357    1.0    False 
 7.0    72.0  -2.9947  0.0151    1.0    False 
 7.0    73.0  -2.3364  0.0443    1.0    False 
 7.0    74.0  -1.9318  0.0854    1.0    False 
 7.0    75.0  -1.9986  0.0767    1.0    False 
 8.0    9.0   -1.3066  0.2237    1.0    False 
 8.0    10.0  -0.0951  0.9263    1.0    False 
 8.0    11.0  -0.0951  0.9263    1.0    False 
 8.0    12.0  -1.4506  0.1808    1.0    False 
 8.0    13.0  -0.9283  0.3775    1.0    False 
 8.0    14.0  -0.6597  0.526     1.0    False 
 8.0    15.0  -1.1811  0.2678    1.0    False 
 8.0    16.0  -1.0026  0.3423    1.0    False 
 8.0    17.0  -0.0374  0.971     1.0    False 
 8.0    18.0  -0.0102  0.9921    1.0    False 
 8.0    19.0  -0.0244  0.981     1.0    False 
 8.0    20.0  -0.4513  0.6625    1.0    False 
 8.0    21.0  -0.1133  0.9123    1.0    False 
 8.0    22.0  -1.1931  0.2633    1.0    False 
 8.0    23.0   -0.63   0.5443    1.0    False 
 8.0    24.0  -0.2744  0.7899    1.0    False 
 8.0    25.0   0.1255  0.9029    1.0    False 
 8.0    26.0   -0.653  0.5301    1.0    False 
 8.0    27.0   -0.653  0.5301    1.0    False 
 8.0    28.0   0.0459  0.9644    1.0    False 
 8.0    29.0  -0.5066  0.6246    1.0    False 
 8.0    30.0  -0.9635  0.3605    1.0    False 
 8.0    31.0  -0.4385  0.6714    1.0    False 
 8.0    32.0  -0.8094  0.4392    1.0    False 
 8.0    33.0  -0.6851  0.5106    1.0    False 
 8.0    34.0  -0.3399  0.7418    1.0    False 
 8.0    35.0   -0.33   0.7489    1.0    False 
 8.0    36.0  -0.3123  0.7619    1.0    False 
 8.0    37.0  -0.3123  0.7619    1.0    False 
 8.0    38.0  -0.4513  0.6625    1.0    False 
 8.0    39.0  -0.1133  0.9123    1.0    False 
 8.0    40.0  -0.4279  0.6788    1.0    False 
 8.0    41.0  -3.8302  0.004     1.0    False 
 8.0    42.0  -0.3917  0.7044    1.0    False 
 8.0    43.0  -4.4618  0.0016    1.0    False 
 8.0    44.0  -3.1498  0.0117    1.0    False 
 8.0    45.0  -3.1498  0.0117    1.0    False 
 8.0    46.0   0.7635  0.4647    1.0    False 
 8.0    47.0   0.2341  0.8201    1.0    False 
 8.0    48.0  -2.6794  0.0252    1.0    False 
 8.0    49.0  -3.2473   0.01     1.0    False 
 8.0    50.0  -4.4618  0.0016    1.0    False 
 8.0    51.0   -1.783  0.1083    1.0    False 
 8.0    52.0  -4.4618  0.0016    1.0    False 
 8.0    53.0  -4.4618  0.0016    1.0    False 
 8.0    54.0  -3.1938  0.0109    1.0    False 
 8.0    55.0  -2.8458  0.0192    1.0    False 
 8.0    56.0   0.5854  0.5727    1.0    False 
 8.0    57.0   0.5854  0.5727    1.0    False 
 8.0    58.0  -3.8302  0.004     1.0    False 
 8.0    59.0   -1.783  0.1083    1.0    False 
 8.0    60.0   1.164   0.2743    1.0    False 
 8.0    61.0   1.164   0.2743    1.0    False 
 8.0    62.0  -1.1283  0.2884    1.0    False 
 8.0    63.0  -1.7105  0.1213    1.0    False 
 8.0    64.0  -1.1695  0.2722    1.0    False 
 8.0    65.0  -1.5684  0.1512    1.0    False 
 8.0    66.0  -0.9854  0.3502    1.0    False 
 8.0    67.0   -0.931  0.3761    1.0    False 
 8.0    68.0   0.0135  0.9896    1.0    False 
 8.0    69.0   0.0135  0.9896    1.0    False 
 8.0    70.0  -1.9467  0.0834    1.0    False 
 8.0    71.0  -1.1695  0.2722    1.0    False 
 8.0    72.0  -1.9653  0.081     1.0    False 
 8.0    73.0  -1.2172  0.2545    1.0    False 
 8.0    74.0  -0.9854  0.3502    1.0    False 
 8.0    75.0  -1.1245  0.2899    1.0    False 
 9.0    10.0   1.2124  0.2562    1.0    False 
 9.0    11.0   1.2124  0.2562    1.0    False 
 9.0    12.0   0.3514  0.7334    1.0    False 
 9.0    13.0   1.0327  0.3287    1.0    False 
 9.0    14.0   0.6857  0.5102    1.0    False 
 9.0    15.0   0.5695  0.5829    1.0    False 
 9.0    16.0   1.2038  0.2594    1.0    False 
 9.0    17.0   1.2163  0.2548    1.0    False 
 9.0    18.0   1.2813  0.2321    1.0    False 
 9.0    19.0   1.2383  0.2469    1.0    False 
 9.0    20.0   1.1305  0.2875    1.0    False 
 9.0    21.0   2.5381  0.0318    1.0    False 
 9.0    22.0   0.2152  0.8344    1.0    False 
 9.0    23.0   1.2643  0.2379    1.0    False 
 9.0    24.0   2.1848  0.0567    1.0    False 
 9.0    25.0   2.7084  0.0241    1.0    False 
 9.0    26.0   0.6375  0.5397    1.0    False 
 9.0    27.0   0.6375  0.5397    1.0    False 
 9.0    28.0   2.3268  0.045     1.0    False 
 9.0    29.0   1.2176  0.2544    1.0    False 
 9.0    30.0   1.0382  0.3263    1.0    False 
 9.0    31.0   1.9355  0.0849    1.0    False 
 9.0    32.0   0.7596  0.4669    1.0    False 
 9.0    33.0   1.0978  0.3008    1.0    False 
 9.0    34.0   1.7603  0.1122    1.0    False 
 9.0    35.0   2.5515  0.0311    1.0    False 
 9.0    36.0   1.3279  0.2169    1.0    False 
 9.0    37.0   1.3279  0.2169    1.0    False 
 9.0    38.0   1.1305  0.2875    1.0    False 
 9.0    39.0   2.5381  0.0318    1.0    False 
 9.0    40.0   1.3905  0.1978    1.0    False 
 9.0    41.0  -2.1459  0.0604    1.0    False 
 9.0    42.0   1.5529  0.1549    1.0    False 
 9.0    43.0  -1.8831  0.0923    1.0    False 
 9.0    44.0   -1.448  0.1815    1.0    False 
 9.0    45.0   -1.448  0.1815    1.0    False 
 9.0    46.0   2.6293  0.0274    1.0    False 
 9.0    47.0   2.2534  0.0507    1.0    False 
 9.0    48.0  -1.4628  0.1776    1.0    False 
 9.0    49.0  -1.9858  0.0783    1.0    False 
 9.0    50.0  -1.8831  0.0923    1.0    False 
 9.0    51.0   0.1434  0.8891    1.0    False 
 9.0    52.0  -1.8831  0.0923    1.0    False 
 9.0    53.0  -1.8831  0.0923    1.0    False 
 9.0    54.0  -1.1162  0.2932    1.0    False 
 9.0    55.0  -1.1948  0.2627    1.0    False 
 9.0    56.0   3.3699  0.0083    1.0    False 
 9.0    57.0   3.3699  0.0083    1.0    False 
 9.0    58.0  -2.1459  0.0604    1.0    False 
 9.0    59.0   0.1434  0.8891    1.0    False 
 9.0    60.0   3.0986  0.0128    1.0    False 
 9.0    61.0   3.0986  0.0128    1.0    False 
 9.0    62.0   0.2009  0.8452    1.0    False 
 9.0    63.0   -0.364  0.7242    1.0    False 
 9.0    64.0   0.2226  0.8288    1.0    False 
 9.0    65.0  -0.1591  0.8771    1.0    False 
 9.0    66.0   0.3369  0.7439    1.0    False 
 9.0    67.0   0.5915  0.5687    1.0    False 
 9.0    68.0   1.9871  0.0782    1.0    False 
 9.0    69.0   1.9871  0.0782    1.0    False 
 9.0    70.0  -0.8984  0.3924    1.0    False 
 9.0    71.0   0.2226  0.8288    1.0    False 
 9.0    72.0  -0.6266  0.5465    1.0    False 
 9.0    73.0   0.2328  0.8212    1.0    False 
 9.0    74.0   0.3369  0.7439    1.0    False 
 9.0    75.0   0.1556  0.8798    1.0    False 
 10.0   11.0    nan     nan      nan    False 
 10.0   12.0  -1.6758  0.1281    1.0    False 
 10.0   13.0  -0.8848  0.3993    1.0    False 
 10.0   14.0  -0.6837  0.5114    1.0    False 
 10.0   15.0  -1.1891  0.2648    1.0    False 
 10.0   16.0  -0.8528  0.4159    1.0    False 
 10.0   17.0    0.05   0.9612    1.0    False 
 10.0   18.0   0.0775  0.9399    1.0    False 
 10.0   19.0   0.0698  0.9458    1.0    False 
 10.0   20.0  -0.4434  0.668     1.0    False 
 10.0   21.0  -0.0602  0.9533    1.0    False 
 10.0   22.0  -1.1656  0.2737    1.0    False 
 10.0   23.0   -0.605  0.5601    1.0    False 
 10.0   24.0  -0.2118  0.837     1.0    False 
 10.0   25.0   0.1531  0.8817    1.0    False 
 10.0   26.0  -0.7204  0.4895    1.0    False 
 10.0   27.0  -0.7204  0.4895    1.0    False 
 10.0   28.0   0.0936  0.9275    1.0    False 
 10.0   29.0  -0.4798  0.6428    1.0    False 
 10.0   30.0  -0.9215  0.3808    1.0    False 
 10.0   31.0  -0.3895  0.706     1.0    False 
 10.0   32.0  -0.8133  0.437     1.0    False 
 10.0   33.0  -0.6705  0.5194    1.0    False 
 10.0   34.0  -0.2952  0.7745    1.0    False 
 10.0   35.0  -0.3076  0.7654    1.0    False 
 10.0   36.0  -0.3135  0.7611    1.0    False 
 10.0   37.0  -0.3135  0.7611    1.0    False 
 10.0   38.0  -0.4434  0.668     1.0    False 
 10.0   39.0  -0.0602  0.9533    1.0    False 
 10.0   40.0  -0.3582  0.7284    1.0    False 
 10.0   41.0  -4.6564  0.0012    1.0    False 
 10.0   42.0   -0.39   0.7056    1.0    False 
 10.0   43.0  -6.5359  0.0001   0.3047  False 
 10.0   44.0  -4.0943  0.0027    1.0    False 
 10.0   45.0  -4.0943  0.0027    1.0    False 
 10.0   46.0   0.9267  0.3782    1.0    False 
 10.0   47.0   0.3076  0.7654    1.0    False 
 10.0   48.0  -3.1518  0.0117    1.0    False 
 10.0   49.0  -3.6275  0.0055    1.0    False 
 10.0   50.0  -6.5359  0.0001   0.3047  False 
 10.0   51.0  -1.9695  0.0804    1.0    False 
 10.0   52.0  -6.5359  0.0001   0.3047  False 
 10.0   53.0  -6.5359  0.0001   0.3047  False 
 10.0   54.0  -3.7343  0.0047    1.0    False 
 10.0   55.0  -3.7737  0.0044    1.0    False 
 10.0   56.0   0.5927  0.568     1.0    False 
 10.0   57.0   0.5927  0.568     1.0    False 
 10.0   58.0  -4.6564  0.0012    1.0    False 
 10.0   59.0  -1.9695  0.0804    1.0    False 
 10.0   60.0   1.4014  0.1946    1.0    False 
 10.0   61.0   1.4014  0.1946    1.0    False 
 10.0   62.0   -1.179  0.2686    1.0    False 
 10.0   63.0  -1.8851  0.0921    1.0    False 
 10.0   64.0  -1.3002  0.2258    1.0    False 
 10.0   65.0  -1.6867  0.1259    1.0    False 
 10.0   66.0  -0.9873  0.3493    1.0    False 
 10.0   67.0  -0.9871  0.3494    1.0    False 
 10.0   68.0   0.0537  0.9583    1.0    False 
 10.0   69.0   0.0537  0.9583    1.0    False 
 10.0   70.0  -1.9903  0.0778    1.0    False 
 10.0   71.0  -1.3002  0.2258    1.0    False 
 10.0   72.0  -2.0985  0.0653    1.0    False 
 10.0   73.0  -1.3959  0.1962    1.0    False 
 10.0   74.0  -0.9873  0.3493    1.0    False 
 10.0   75.0  -1.1739  0.2706    1.0    False 
 11.0   12.0  -1.6758  0.1281    1.0    False 
 11.0   13.0  -0.8848  0.3993    1.0    False 
 11.0   14.0  -0.6837  0.5114    1.0    False 
 11.0   15.0  -1.1891  0.2648    1.0    False 
 11.0   16.0  -0.8528  0.4159    1.0    False 
 11.0   17.0    0.05   0.9612    1.0    False 
 11.0   18.0   0.0775  0.9399    1.0    False 
 11.0   19.0   0.0698  0.9458    1.0    False 
 11.0   20.0  -0.4434  0.668     1.0    False 
 11.0   21.0  -0.0602  0.9533    1.0    False 
 11.0   22.0  -1.1656  0.2737    1.0    False 
 11.0   23.0   -0.605  0.5601    1.0    False 
 11.0   24.0  -0.2118  0.837     1.0    False 
 11.0   25.0   0.1531  0.8817    1.0    False 
 11.0   26.0  -0.7204  0.4895    1.0    False 
 11.0   27.0  -0.7204  0.4895    1.0    False 
 11.0   28.0   0.0936  0.9275    1.0    False 
 11.0   29.0  -0.4798  0.6428    1.0    False 
 11.0   30.0  -0.9215  0.3808    1.0    False 
 11.0   31.0  -0.3895  0.706     1.0    False 
 11.0   32.0  -0.8133  0.437     1.0    False 
 11.0   33.0  -0.6705  0.5194    1.0    False 
 11.0   34.0  -0.2952  0.7745    1.0    False 
 11.0   35.0  -0.3076  0.7654    1.0    False 
 11.0   36.0  -0.3135  0.7611    1.0    False 
 11.0   37.0  -0.3135  0.7611    1.0    False 
 11.0   38.0  -0.4434  0.668     1.0    False 
 11.0   39.0  -0.0602  0.9533    1.0    False 
 11.0   40.0  -0.3582  0.7284    1.0    False 
 11.0   41.0  -4.6564  0.0012    1.0    False 
 11.0   42.0   -0.39   0.7056    1.0    False 
 11.0   43.0  -6.5359  0.0001   0.3047  False 
 11.0   44.0  -4.0943  0.0027    1.0    False 
 11.0   45.0  -4.0943  0.0027    1.0    False 
 11.0   46.0   0.9267  0.3782    1.0    False 
 11.0   47.0   0.3076  0.7654    1.0    False 
 11.0   48.0  -3.1518  0.0117    1.0    False 
 11.0   49.0  -3.6275  0.0055    1.0    False 
 11.0   50.0  -6.5359  0.0001   0.3047  False 
 11.0   51.0  -1.9695  0.0804    1.0    False 
 11.0   52.0  -6.5359  0.0001   0.3047  False 
 11.0   53.0  -6.5359  0.0001   0.3047  False 
 11.0   54.0  -3.7343  0.0047    1.0    False 
 11.0   55.0  -3.7737  0.0044    1.0    False 
 11.0   56.0   0.5927  0.568     1.0    False 
 11.0   57.0   0.5927  0.568     1.0    False 
 11.0   58.0  -4.6564  0.0012    1.0    False 
 11.0   59.0  -1.9695  0.0804    1.0    False 
 11.0   60.0   1.4014  0.1946    1.0    False 
 11.0   61.0   1.4014  0.1946    1.0    False 
 11.0   62.0   -1.179  0.2686    1.0    False 
 11.0   63.0  -1.8851  0.0921    1.0    False 
 11.0   64.0  -1.3002  0.2258    1.0    False 
 11.0   65.0  -1.6867  0.1259    1.0    False 
 11.0   66.0  -0.9873  0.3493    1.0    False 
 11.0   67.0  -0.9871  0.3494    1.0    False 
 11.0   68.0   0.0537  0.9583    1.0    False 
 11.0   69.0   0.0537  0.9583    1.0    False 
 11.0   70.0  -1.9903  0.0778    1.0    False 
 11.0   71.0  -1.3002  0.2258    1.0    False 
 11.0   72.0  -2.0985  0.0653    1.0    False 
 11.0   73.0  -1.3959  0.1962    1.0    False 
 11.0   74.0  -0.9873  0.3493    1.0    False 
 11.0   75.0  -1.1739  0.2706    1.0    False 
 12.0   13.0   0.3488  0.7352    1.0    False 
 12.0   14.0   0.5335  0.6066    1.0    False 
 12.0   15.0   0.4384  0.6714    1.0    False 
 12.0   16.0   1.1734  0.2707    1.0    False 
 12.0   17.0   1.4409  0.1835    1.0    False 
 12.0   18.0   1.498   0.1684    1.0    False 
 12.0   19.0   1.5905  0.1462    1.0    False 
 12.0   20.0   0.6531   0.53     1.0    False 
 12.0   21.0   3.2585  0.0099    1.0    False 
 12.0   22.0  -0.1964  0.8486    1.0    False 
 12.0   23.0   0.7348  0.4812    1.0    False 
 12.0   24.0   1.3402  0.213     1.0    False 
 12.0   25.0   1.6749  0.1283    1.0    False 
 12.0   26.0   0.4972  0.631     1.0    False 
 12.0   27.0   0.4972  0.631     1.0    False 
 12.0   28.0   2.2127  0.0542    1.0    False 
 12.0   29.0   0.8569  0.4137    1.0    False 
 12.0   30.0   0.906   0.3885    1.0    False 
 12.0   31.0   2.1387  0.0612    1.0    False 
 12.0   32.0   0.5189  0.6164    1.0    False 
 12.0   33.0   0.7247  0.4871    1.0    False 
 12.0   34.0   1.4133  0.1912    1.0    False 
 12.0   35.0   1.9865  0.0782    1.0    False 
 12.0   36.0   1.3643  0.2056    1.0    False 
 12.0   37.0   1.3643  0.2056    1.0    False 
 12.0   38.0   0.6531   0.53     1.0    False 
 12.0   39.0   3.2585  0.0099    1.0    False 
 12.0   40.0   1.4121  0.1916    1.0    False 
 12.0   41.0  -6.2409  0.0002   0.4311  False 
 12.0   42.0   2.6224  0.0277    1.0    False 
 12.0   43.0  -4.1211  0.0026    1.0    False 
 12.0   44.0   -4.786  0.001     1.0    False 
 12.0   45.0   -4.786  0.001     1.0    False 
 12.0   46.0   2.9111  0.0173    1.0    False 
 12.0   47.0   2.701   0.0244    1.0    False 
 12.0   48.0   -2.928  0.0168    1.0    False 
 12.0   49.0   -4.448  0.0016    1.0    False 
 12.0   50.0  -4.1211  0.0026    1.0    False 
 12.0   51.0  -0.2934  0.7759    1.0    False 
 12.0   52.0  -4.1211  0.0026    1.0    False 
 12.0   53.0  -4.1211  0.0026    1.0    False 
 12.0   54.0  -2.8223   0.02     1.0    False 
 12.0   55.0  -3.7625  0.0045    1.0    False 
 12.0   56.0   2.5941  0.029     1.0    False 
 12.0   57.0   2.5941  0.029     1.0    False 
 12.0   58.0  -6.2409  0.0002   0.4311  False 
 12.0   59.0  -0.2934  0.7759    1.0    False 
 12.0   60.0   4.2607  0.0021    1.0    False 
 12.0   61.0   4.2607  0.0021    1.0    False 
 12.0   62.0  -0.1032  0.9201    1.0    False 
 12.0   63.0  -0.9008  0.3911    1.0    False 
 12.0   64.0  -0.0708  0.9451    1.0    False 
 12.0   65.0  -0.4486  0.6644    1.0    False 
 12.0   66.0  -0.0309  0.976     1.0    False 
 12.0   67.0   0.2731  0.7909    1.0    False 
 12.0   68.0   1.3602  0.2069    1.0    False 
 12.0   69.0   1.3602  0.2069    1.0    False 
 12.0   70.0  -1.6414  0.1351    1.0    False 
 12.0   71.0  -0.0708  0.9451    1.0    False 
 12.0   72.0  -0.9846  0.3506    1.0    False 
 12.0   73.0  -0.0543  0.9579    1.0    False 
 12.0   74.0  -0.0309  0.976     1.0    False 
 12.0   75.0  -0.1268  0.9019    1.0    False 
 13.0   14.0   0.2581  0.8021    1.0    False 
 13.0   15.0  -0.0635  0.9508    1.0    False 
 13.0   16.0   0.5525  0.594     1.0    False 
 13.0   17.0   0.9258  0.3787    1.0    False 
 13.0   18.0   0.9893  0.3483    1.0    False 
 13.0   19.0   0.9471  0.3683    1.0    False 
 13.0   20.0   0.5945  0.5668    1.0    False 
 13.0   21.0   1.5356  0.159     1.0    False 
 13.0   22.0  -0.6397  0.5383    1.0    False 
 13.0   23.0   0.4954  0.6322    1.0    False 
 13.0   24.0   1.2256  0.2514    1.0    False 
 13.0   25.0   2.1264  0.0624    1.0    False 
 13.0   26.0   0.2092  0.839     1.0    False 
 13.0   27.0   0.2092  0.839     1.0    False 
 13.0   28.0   1.603   0.1434    1.0    False 
 13.0   29.0   0.5662  0.5851    1.0    False 
 13.0   30.0   0.3705  0.7196    1.0    False 
 13.0   31.0   1.1035  0.2984    1.0    False 
 13.0   32.0   0.0744  0.9423    1.0    False 
 13.0   33.0   0.3309  0.7483    1.0    False 
 13.0   34.0   0.9879  0.349     1.0    False 
 13.0   35.0   1.5095  0.1655    1.0    False 
 13.0   36.0   0.8364  0.4246    1.0    False 
 13.0   37.0   0.8364  0.4246    1.0    False 
 13.0   38.0   0.5945  0.5668    1.0    False 
 13.0   39.0   1.5356  0.159     1.0    False 
 13.0   40.0   0.9069  0.3881    1.0    False 
 13.0   41.0  -2.9363  0.0166    1.0    False 
 13.0   42.0   0.9399  0.3718    1.0    False 
 13.0   43.0  -2.7545  0.0223    1.0    False 
 13.0   44.0  -2.2751  0.049     1.0    False 
 13.0   45.0  -2.2751  0.049     1.0    False 
 13.0   46.0   2.5497  0.0312    1.0    False 
 13.0   47.0   1.7839  0.1081    1.0    False 
 13.0   48.0  -2.2769  0.0488    1.0    False 
 13.0   49.0  -2.4261  0.0382    1.0    False 
 13.0   50.0  -2.7545  0.0223    1.0    False 
 13.0   51.0  -0.4693   0.65     1.0    False 
 13.0   52.0  -2.7545  0.0223    1.0    False 
 13.0   53.0  -2.7545  0.0223    1.0    False 
 13.0   54.0  -1.9884  0.078     1.0    False 
 13.0   55.0  -2.0014  0.0764    1.0    False 
 13.0   56.0   2.7594  0.0221    1.0    False 
 13.0   57.0   2.7594  0.0221    1.0    False 
 13.0   58.0  -2.9363  0.0166    1.0    False 
 13.0   59.0  -0.4693   0.65     1.0    False 
 13.0   60.0   2.6044  0.0285    1.0    False 
 13.0   61.0   2.6044  0.0285    1.0    False 
 13.0   62.0  -0.6986  0.5025    1.0    False 
 13.0   63.0  -1.1146  0.2939    1.0    False 
 13.0   64.0  -0.5602  0.589     1.0    False 
 13.0   65.0  -0.9176  0.3827    1.0    False 
 13.0   66.0  -0.4325  0.6756    1.0    False 
 13.0   67.0  -0.0961  0.9255    1.0    False 
 13.0   68.0   1.6543  0.1325    1.0    False 
 13.0   69.0   1.6543  0.1325    1.0    False 
 13.0   70.0  -1.4789  0.1733    1.0    False 
 13.0   71.0  -0.5602  0.589     1.0    False 
 13.0   72.0  -1.6272  0.1381    1.0    False 
 13.0   73.0   -0.456  0.6592    1.0    False 
 13.0   74.0  -0.4325  0.6756    1.0    False 
 13.0   75.0  -0.6577  0.5272    1.0    False 
 14.0   15.0  -0.3899  0.7057    1.0    False 
 14.0   16.0   0.1481  0.8855    1.0    False 
 14.0   17.0   0.7876  0.4511    1.0    False 
 14.0   18.0   0.8569  0.4137    1.0    False 
 14.0   19.0   0.849   0.4179    1.0    False 
 14.0   20.0   0.1665  0.8714    1.0    False 
 14.0   21.0   1.0023  0.3424    1.0    False 
 14.0   22.0  -0.6193  0.551     1.0    False 
 14.0   23.0   0.0268  0.9792    1.0    False 
 14.0   24.0   0.6176  0.5522    1.0    False 
 14.0   25.0   1.0935  0.3026    1.0    False 
 14.0   26.0  -0.0705  0.9454    1.0    False 
 14.0   27.0  -0.0705  0.9454    1.0    False 
 14.0   28.0   0.7964  0.4463    1.0    False 
 14.0   29.0   0.2124  0.8365    1.0    False 
 14.0   30.0  -0.0213  0.9835    1.0    False 
 14.0   31.0   0.5559  0.5919    1.0    False 
 14.0   32.0  -0.2174  0.8328    1.0    False 
 14.0   33.0  -0.0414  0.9678    1.0    False 
 14.0   34.0    0.45   0.6634    1.0    False 
 14.0   35.0   0.5709  0.5821    1.0    False 
 14.0   36.0   1.1415  0.2831    1.0    False 
 14.0   37.0   1.1415  0.2831    1.0    False 
 14.0   38.0   0.1665  0.8714    1.0    False 
 14.0   39.0   1.0023  0.3424    1.0    False 
 14.0   40.0   0.7097  0.4959    1.0    False 
 14.0   41.0  -2.6362  0.0271    1.0    False 
 14.0   42.0   0.5688  0.5834    1.0    False 
 14.0   43.0  -2.8466  0.0192    1.0    False 
 14.0   44.0  -2.3679  0.0421    1.0    False 
 14.0   45.0  -2.3679  0.0421    1.0    False 
 14.0   46.0   2.5683  0.0303    1.0    False 
 14.0   47.0   1.0599  0.3168    1.0    False 
 14.0   48.0  -2.2467  0.0513    1.0    False 
 14.0   49.0  -3.0996  0.0127    1.0    False 
 14.0   50.0  -2.8466  0.0192    1.0    False 
 14.0   51.0  -0.6962  0.5039    1.0    False 
 14.0   52.0  -2.8466  0.0192    1.0    False 
 14.0   53.0  -2.8466  0.0192    1.0    False 
 14.0   54.0  -1.9839  0.0786    1.0    False 
 14.0   55.0  -1.9165  0.0875    1.0    False 
 14.0   56.0   1.5063  0.1663    1.0    False 
 14.0   57.0   1.5063  0.1663    1.0    False 
 14.0   58.0  -2.6362  0.0271    1.0    False 
 14.0   59.0  -0.6962  0.5039    1.0    False 
 14.0   60.0   1.5533  0.1548    1.0    False 
 14.0   61.0   1.5533  0.1548    1.0    False 
 14.0   62.0  -0.8451  0.4199    1.0    False 
 14.0   63.0  -1.5028  0.1671    1.0    False 
 14.0   64.0  -0.8103  0.4386    1.0    False 
 14.0   65.0  -0.9797  0.3528    1.0    False 
 14.0   66.0  -0.6371  0.5399    1.0    False 
 14.0   67.0   -0.554  0.5931    1.0    False 
 14.0   68.0   0.9156  0.3838    1.0    False 
 14.0   69.0   0.9156  0.3838    1.0    False 
 14.0   70.0  -1.4661  0.1767    1.0    False 
 14.0   71.0  -0.8103  0.4386    1.0    False 
 14.0   72.0  -1.3634  0.2059    1.0    False 
 14.0   73.0  -0.7487  0.4732    1.0    False 
 14.0   74.0  -0.6371  0.5399    1.0    False 
 14.0   75.0  -0.8003  0.4441    1.0    False 
 15.0   16.0   0.9628  0.3608    1.0    False 
 15.0   17.0   1.1676  0.273     1.0    False 
 15.0   18.0   1.2781  0.2332    1.0    False 
 15.0   19.0   1.2039  0.2593    1.0    False 
 15.0   20.0   0.4609  0.6558    1.0    False 
 15.0   21.0   2.1794  0.0572    1.0    False 
 15.0   22.0   -0.55   0.5957    1.0    False 
 15.0   23.0   0.5713  0.5818    1.0    False 
 15.0   24.0   1.243   0.2453    1.0    False 
 15.0   25.0   1.6016  0.1437    1.0    False 
 15.0   26.0   0.3115  0.7625    1.0    False 
 15.0   27.0   0.3115  0.7625    1.0    False 
 15.0   28.0   1.4214  0.1889    1.0    False 
 15.0   29.0   0.871   0.4064    1.0    False 
 15.0   30.0   0.4768  0.6449    1.0    False 
 15.0   31.0   1.5377  0.1585    1.0    False 
 15.0   32.0   0.2873  0.7804    1.0    False 
 15.0   33.0   0.5041  0.6263    1.0    False 
 15.0   34.0   0.9125  0.3853    1.0    False 
 15.0   35.0   1.5533  0.1548    1.0    False 
 15.0   36.0   1.2683  0.2365    1.0    False 
 15.0   37.0   1.2683  0.2365    1.0    False 
 15.0   38.0   0.4609  0.6558    1.0    False 
 15.0   39.0   2.1794  0.0572    1.0    False 
 15.0   40.0   1.1283  0.2884    1.0    False 
 15.0   41.0  -3.4907  0.0068    1.0    False 
 15.0   42.0   1.8638  0.0952    1.0    False 
 15.0   43.0  -3.2303  0.0103    1.0    False 
 15.0   44.0  -3.1473  0.0118    1.0    False 
 15.0   45.0  -3.1473  0.0118    1.0    False 
 15.0   46.0   2.6846  0.025     1.0    False 
 15.0   47.0   1.639   0.1356    1.0    False 
 15.0   48.0  -2.1714  0.058     1.0    False 
 15.0   49.0  -3.6972  0.0049    1.0    False 
 15.0   50.0  -3.2303  0.0103    1.0    False 
 15.0   51.0  -1.0382  0.3263    1.0    False 
 15.0   52.0  -3.2303  0.0103    1.0    False 
 15.0   53.0  -3.2303  0.0103    1.0    False 
 15.0   54.0  -2.3846  0.0409    1.0    False 
 15.0   55.0  -2.4877  0.0346    1.0    False 
 15.0   56.0   2.0705  0.0683    1.0    False 
 15.0   57.0   2.0705  0.0683    1.0    False 
 15.0   58.0  -3.4907  0.0068    1.0    False 
 15.0   59.0  -1.0382  0.3263    1.0    False 
 15.0   60.0   2.7388  0.0229    1.0    False 
 15.0   61.0   2.7388  0.0229    1.0    False 
 15.0   62.0  -0.3468  0.7367    1.0    False 
 15.0   63.0  -1.2087  0.2576    1.0    False 
 15.0   64.0  -0.3161  0.7592    1.0    False 
 15.0   65.0  -0.6801  0.5136    1.0    False 
 15.0   66.0  -0.2569  0.803     1.0    False 
 15.0   67.0  -0.0022  0.9983    1.0    False 
 15.0   68.0    1.03   0.3299    1.0    False 
 15.0   69.0    1.03   0.3299    1.0    False 
 15.0   70.0  -1.9423  0.084     1.0    False 
 15.0   71.0  -0.3161  0.7592    1.0    False 
 15.0   72.0  -1.2561  0.2407    1.0    False 
 15.0   73.0  -0.3144  0.7604    1.0    False 
 15.0   74.0  -0.2569  0.803     1.0    False 
 15.0   75.0  -0.3592  0.7277    1.0    False 
 16.0   17.0   0.9903  0.3479    1.0    False 
 16.0   18.0   1.1264  0.2891    1.0    False 
 16.0   19.0   0.9867  0.3496    1.0    False 
 16.0   20.0   0.0304  0.9764    1.0    False 
 16.0   21.0   1.5888  0.1466    1.0    False 
 16.0   22.0  -1.1344  0.2859    1.0    False 
 16.0   23.0  -0.1555  0.8798    1.0    False 
 16.0   24.0   0.6791  0.5142    1.0    False 
 16.0   25.0   1.3969  0.1959    1.0    False 
 16.0   26.0  -0.1677  0.8705    1.0    False 
 16.0   27.0  -0.1677  0.8705    1.0    False 
 16.0   28.0   1.1163  0.2932    1.0    False 
 16.0   29.0   0.0843  0.9347    1.0    False 
 16.0   30.0  -0.4051  0.6949    1.0    False 
 16.0   31.0   1.0426  0.3243    1.0    False 
 16.0   32.0  -0.4386  0.6713    1.0    False 
 16.0   33.0  -0.2337  0.8204    1.0    False 
 16.0   34.0   0.4984  0.6302    1.0    False 
 16.0   35.0   0.6146  0.5541    1.0    False 
 16.0   36.0   0.5106  0.6219    1.0    False 
 16.0   37.0   0.5106  0.6219    1.0    False 
 16.0   38.0   0.0304  0.9764    1.0    False 
 16.0   39.0   1.5888  0.1466    1.0    False 
 16.0   40.0   0.7899  0.4499    1.0    False 
 16.0   41.0  -5.5537  0.0004    1.0    False 
 16.0   42.0   0.8364  0.4246    1.0    False 
 16.0   43.0  -5.0682  0.0007    1.0    False 
 16.0   44.0  -4.4151  0.0017    1.0    False 
 16.0   45.0  -4.4151  0.0017    1.0    False 
 16.0   46.0   2.361   0.0425    1.0    False 
 16.0   47.0   1.7416  0.1156    1.0    False 
 16.0   48.0   -3.299  0.0092    1.0    False 
 16.0   49.0  -4.9837  0.0008    1.0    False 
 16.0   50.0  -5.0682  0.0007    1.0    False 
 16.0   51.0  -1.8634  0.0953    1.0    False 
 16.0   52.0  -5.0682  0.0007    1.0    False 
 16.0   53.0  -5.0682  0.0007    1.0    False 
 16.0   54.0  -4.8988  0.0008    1.0    False 
 16.0   55.0   -3.39   0.008     1.0    False 
 16.0   56.0   2.4208  0.0386    1.0    False 
 16.0   57.0   2.4208  0.0386    1.0    False 
 16.0   58.0  -5.5537  0.0004    1.0    False 
 16.0   59.0  -1.8634  0.0953    1.0    False 
 16.0   60.0   2.5086  0.0334    1.0    False 
 16.0   61.0   2.5086  0.0334    1.0    False 
 16.0   62.0  -0.8737  0.405     1.0    False 
 16.0   63.0  -1.7721  0.1101    1.0    False 
 16.0   64.0  -0.8653  0.4094    1.0    False 
 16.0   65.0  -1.1838  0.2668    1.0    False 
 16.0   66.0  -0.7031  0.4998    1.0    False 
 16.0   67.0  -0.5762  0.5786    1.0    False 
 16.0   68.0   0.7393  0.4786    1.0    False 
 16.0   69.0   0.7393  0.4786    1.0    False 
 16.0   70.0  -2.4377  0.0375    1.0    False 
 16.0   71.0  -0.8653  0.4094    1.0    False 
 16.0   72.0  -1.8247  0.1013    1.0    False 
 16.0   73.0  -0.8592  0.4125    1.0    False 
 16.0   74.0  -0.7031  0.4998    1.0    False 
 16.0   75.0  -0.8533  0.4156    1.0    False 
 17.0   18.0   0.0439  0.9659    1.0    False 
 17.0   19.0   0.0244  0.9811    1.0    False 
 17.0   20.0  -0.4421  0.6689    1.0    False 
 17.0   21.0  -0.0849  0.9342    1.0    False 
 17.0   22.0  -1.1003  0.2998    1.0    False 
 17.0   23.0  -0.6471  0.5337    1.0    False 
 17.0   24.0  -0.2229  0.8286    1.0    False 
 17.0   25.0   0.1326  0.8974    1.0    False 
 17.0   26.0  -0.6618  0.5247    1.0    False 
 17.0   27.0  -0.6618  0.5247    1.0    False 
 17.0   28.0   0.0704  0.9454    1.0    False 
 17.0   29.0  -0.4672  0.6515    1.0    False 
 17.0   30.0  -1.0103  0.3388    1.0    False 
 17.0   31.0  -0.4301  0.6772    1.0    False 
 17.0   32.0   -0.775  0.4582    1.0    False 
 17.0   33.0  -0.6601  0.5257    1.0    False 
 17.0   34.0  -0.2706  0.7928    1.0    False 
 17.0   35.0  -0.3199  0.7563    1.0    False 
 17.0   36.0  -0.3273  0.7509    1.0    False 
 17.0   37.0  -0.3273  0.7509    1.0    False 
 17.0   38.0  -0.4421  0.6689    1.0    False 
 17.0   39.0  -0.0849  0.9342    1.0    False 
 17.0   40.0  -0.4665  0.652     1.0    False 
 17.0   41.0  -4.1522  0.0025    1.0    False 
 17.0   42.0  -0.3626  0.7253    1.0    False 
 17.0   43.0  -5.4806  0.0004    1.0    False 
 17.0   44.0  -3.6477  0.0053    1.0    False 
 17.0   45.0  -3.6477  0.0053    1.0    False 
 17.0   46.0   0.9082  0.3875    1.0    False 
 17.0   47.0   0.2862  0.7812    1.0    False 
 17.0   48.0  -3.1264  0.0122    1.0    False 
 17.0   49.0  -3.6171  0.0056    1.0    False 
 17.0   50.0  -5.4806  0.0004    1.0    False 
 17.0   51.0  -1.7904  0.107     1.0    False 
 17.0   52.0  -5.4806  0.0004    1.0    False 
 17.0   53.0  -5.4806  0.0004    1.0    False 
 17.0   54.0  -3.6305  0.0055    1.0    False 
 17.0   55.0  -3.2469   0.01     1.0    False 
 17.0   56.0   0.625   0.5475    1.0    False 
 17.0   57.0   0.625   0.5475    1.0    False 
 17.0   58.0  -4.1522  0.0025    1.0    False 
 17.0   59.0  -1.7904  0.107     1.0    False 
 17.0   60.0   1.2398  0.2464    1.0    False 
 17.0   61.0   1.2398  0.2464    1.0    False 
 17.0   62.0  -1.1769  0.2694    1.0    False 
 17.0   63.0  -1.7729   0.11     1.0    False 
 17.0   64.0  -1.3023  0.2252    1.0    False 
 17.0   65.0  -1.5894  0.1464    1.0    False 
 17.0   66.0  -1.0019  0.3425    1.0    False 
 17.0   67.0  -1.0042  0.3415    1.0    False 
 17.0   68.0   0.0311  0.9759    1.0    False 
 17.0   69.0   0.0311  0.9759    1.0    False 
 17.0   70.0  -1.9145  0.0878    1.0    False 
 17.0   71.0  -1.3023  0.2252    1.0    False 
 17.0   72.0  -1.9132  0.088     1.0    False 
 17.0   73.0   -1.443  0.1829    1.0    False 
 17.0   74.0  -1.0019  0.3425    1.0    False 
 17.0   75.0  -1.2131  0.256     1.0    False 
 18.0   19.0   -0.025  0.9806    1.0    False 
 18.0   20.0  -0.4843  0.6398    1.0    False 
 18.0   21.0  -0.1181  0.9086    1.0    False 
 18.0   22.0  -1.1925  0.2636    1.0    False 
 18.0   23.0  -0.7011  0.501     1.0    False 
 18.0   24.0  -0.2694  0.7937    1.0    False 
 18.0   25.0   0.1357  0.895     1.0    False 
 18.0   26.0  -0.7513  0.4717    1.0    False 
 18.0   27.0  -0.7513  0.4717    1.0    False 
 18.0   28.0   0.0539  0.9582    1.0    False 
 18.0   29.0   -0.518  0.617     1.0    False 
 18.0   30.0  -1.1133  0.2944    1.0    False 
 18.0   31.0  -0.4729  0.6476    1.0    False 
 18.0   32.0  -0.8449  0.4201    1.0    False 
 18.0   33.0  -0.7215  0.4889    1.0    False 
 18.0   34.0  -0.3359  0.7446    1.0    False 
 18.0   35.0  -0.3613  0.7262    1.0    False 
 18.0   36.0  -0.3904  0.7053    1.0    False 
 18.0   37.0  -0.3904  0.7053    1.0    False 
 18.0   38.0  -0.4843  0.6398    1.0    False 
 18.0   39.0  -0.1181  0.9086    1.0    False 
 18.0   40.0  -0.5417  0.6012    1.0    False 
 18.0   41.0   -4.37   0.0018    1.0    False 
 18.0   42.0  -0.4407  0.6699    1.0    False 
 18.0   43.0  -5.9213  0.0002   0.6359  False 
 18.0   44.0  -3.8452  0.0039    1.0    False 
 18.0   45.0  -3.8452  0.0039    1.0    False 
 18.0   46.0   0.9167  0.3832    1.0    False 
 18.0   47.0   0.2544  0.8049    1.0    False 
 18.0   48.0  -3.0305  0.0142    1.0    False 
 18.0   49.0  -3.7793  0.0044    1.0    False 
 18.0   50.0  -5.9213  0.0002   0.6359  False 
 18.0   51.0  -2.0272  0.0733    1.0    False 
 18.0   52.0  -5.9213  0.0002   0.6359  False 
 18.0   53.0  -5.9213  0.0002   0.6359  False 
 18.0   54.0  -4.1018  0.0027    1.0    False 
 18.0   55.0   -3.404  0.0078    1.0    False 
 18.0   56.0   0.6871  0.5093    1.0    False 
 18.0   57.0   0.6871  0.5093    1.0    False 
 18.0   58.0   -4.37   0.0018    1.0    False 
 18.0   59.0  -2.0272  0.0733    1.0    False 
 18.0   60.0   1.1115  0.2952    1.0    False 
 18.0   61.0   1.1115  0.2952    1.0    False 
 18.0   62.0   -1.25   0.2428    1.0    False 
 18.0   63.0  -1.9208  0.0869    1.0    False 
 18.0   64.0  -1.4038  0.1939    1.0    False 
 18.0   65.0  -1.6287  0.1378    1.0    False 
 18.0   66.0  -1.0534  0.3196    1.0    False 
 18.0   67.0  -1.0779  0.3091    1.0    False 
 18.0   68.0   0.0192  0.9851    1.0    False 
 18.0   69.0   0.0192  0.9851    1.0    False 
 18.0   70.0  -2.0153  0.0747    1.0    False 
 18.0   71.0  -1.4038  0.1939    1.0    False 
 18.0   72.0  -2.0573  0.0698    1.0    False 
 18.0   73.0  -1.4508  0.1808    1.0    False 
 18.0   74.0  -1.0534  0.3196    1.0    False 
 18.0   75.0  -1.2668  0.237     1.0    False 
 19.0   20.0  -0.4676  0.6512    1.0    False 
 19.0   21.0  -0.0984  0.9238    1.0    False 
 19.0   22.0  -1.1522  0.2789    1.0    False 
 19.0   23.0   -0.672  0.5185    1.0    False 
 19.0   24.0   -0.229  0.824     1.0    False 
 19.0   25.0   0.1288  0.9003    1.0    False 
 19.0   26.0   -0.721  0.4892    1.0    False 
 19.0   27.0   -0.721  0.4892    1.0    False 
 19.0   28.0   0.0677  0.9475    1.0    False 
 19.0   29.0  -0.4839   0.64     1.0    False 
 19.0   30.0  -1.1006  0.2996    1.0    False 
 19.0   31.0  -0.4657  0.6525    1.0    False 
 19.0   32.0  -0.8135  0.4369    1.0    False 
 19.0   33.0  -0.6935  0.5055    1.0    False 
 19.0   34.0  -0.2916  0.7772    1.0    False 
 19.0   35.0  -0.3383  0.7429    1.0    False 
 19.0   36.0  -0.3615  0.7261    1.0    False 
 19.0   37.0  -0.3615  0.7261    1.0    False 
 19.0   38.0  -0.4676  0.6512    1.0    False 
 19.0   39.0  -0.0984  0.9238    1.0    False 
 19.0   40.0  -0.4703  0.6493    1.0    False 
 19.0   41.0  -4.7979  0.001     1.0    False 
 19.0   42.0  -0.3783  0.714     1.0    False 
 19.0   43.0  -6.9517  0.0001   0.1901  False 
 19.0   44.0   -4.248  0.0021    1.0    False 
 19.0   45.0   -4.248  0.0021    1.0    False 
 19.0   46.0   0.9671  0.3588    1.0    False 
 19.0   47.0   0.3153  0.7598    1.0    False 
 19.0   48.0  -3.5361  0.0064    1.0    False 
 19.0   49.0   -4.081  0.0028    1.0    False 
 19.0   50.0  -6.9517  0.0001   0.1901  False 
 19.0   51.0  -1.8654  0.095     1.0    False 
 19.0   52.0  -6.9517  0.0001   0.1901  False 
 19.0   53.0  -6.9517  0.0001   0.1901  False 
 19.0   54.0  -4.1023  0.0027    1.0    False 
 19.0   55.0  -3.7101  0.0048    1.0    False 
 19.0   56.0   0.6332  0.5423    1.0    False 
 19.0   57.0   0.6332  0.5423    1.0    False 
 19.0   58.0  -4.7979  0.001     1.0    False 
 19.0   59.0  -1.8654  0.095     1.0    False 
 19.0   60.0   1.2249  0.2517    1.0    False 
 19.0   61.0   1.2249  0.2517    1.0    False 
 19.0   62.0  -1.2433  0.2452    1.0    False 
 19.0   63.0  -1.9144  0.0878    1.0    False 
 19.0   64.0   -1.397  0.1959    1.0    False 
 19.0   65.0  -1.6287  0.1378    1.0    False 
 19.0   66.0  -1.0469  0.3225    1.0    False 
 19.0   67.0  -1.0708  0.3121    1.0    False 
 19.0   68.0   0.028   0.9783    1.0    False 
 19.0   69.0   0.028   0.9783    1.0    False 
 19.0   70.0  -2.0087  0.0755    1.0    False 
 19.0   71.0   -1.397  0.1959    1.0    False 
 19.0   72.0   -1.961  0.0815    1.0    False 
 19.0   73.0  -1.5302  0.1603    1.0    False 
 19.0   74.0  -1.0469  0.3225    1.0    False 
 19.0   75.0  -1.2601  0.2393    1.0    False 
 20.0   21.0   0.709   0.4963    1.0    False 
 20.0   22.0  -1.1035  0.2984    1.0    False 
 20.0   23.0   -0.203  0.8436    1.0    False 
 20.0   24.0   0.6147  0.554     1.0    False 
 20.0   25.0   1.2333  0.2487    1.0    False 
 20.0   26.0  -0.2643  0.7975    1.0    False 
 20.0   27.0  -0.2643  0.7975    1.0    False 
 20.0   28.0   0.7407  0.4778    1.0    False 
 20.0   29.0   0.055   0.9574    1.0    False 
 20.0   30.0  -0.1828  0.859     1.0    False 
 20.0   31.0   0.3233  0.7539    1.0    False 
 20.0   32.0  -0.4344  0.6742    1.0    False 
 20.0   33.0  -0.2867  0.7809    1.0    False 
 20.0   34.0   0.4014  0.6975    1.0    False 
 20.0   35.0   0.5104  0.622     1.0    False 
 20.0   36.0   0.4122  0.6898    1.0    False 
 20.0   37.0   0.4122  0.6898    1.0    False 
 20.0   38.0    nan     nan      nan    False 
 20.0   39.0   0.709   0.4963    1.0    False 
 20.0   40.0   0.3601  0.7271    1.0    False 
 20.0   41.0   -2.468  0.0357    1.0    False 
 20.0   42.0   0.3512  0.7335    1.0    False 
 20.0   43.0  -2.4047  0.0396    1.0    False 
 20.0   44.0   -2.029  0.073     1.0    False 
 20.0   45.0   -2.029  0.073     1.0    False 
 20.0   46.0   1.5266  0.1612    1.0    False 
 20.0   47.0   0.8161  0.4355    1.0    False 
 20.0   48.0  -2.0835  0.0669    1.0    False 
 20.0   49.0  -2.3711  0.0418    1.0    False 
 20.0   50.0  -2.4047  0.0396    1.0    False 
 20.0   51.0  -0.7117  0.4947    1.0    False 
 20.0   52.0  -2.4047  0.0396    1.0    False 
 20.0   53.0  -2.4047  0.0396    1.0    False 
 20.0   54.0  -1.6921  0.1249    1.0    False 
 20.0   55.0  -1.7632  0.1117    1.0    False 
 20.0   56.0   1.3795  0.2011    1.0    False 
 20.0   57.0   1.3795  0.2011    1.0    False 
 20.0   58.0   -2.468  0.0357    1.0    False 
 20.0   59.0  -0.7117  0.4947    1.0    False 
 20.0   60.0   1.3595  0.2071    1.0    False 
 20.0   61.0   1.3595  0.2071    1.0    False 
 20.0   62.0  -1.4322  0.1859    1.0    False 
 20.0   63.0  -1.4629  0.1775    1.0    False 
 20.0   64.0  -0.9873  0.3493    1.0    False 
 20.0   65.0  -1.1705  0.2719    1.0    False 
 20.0   66.0  -0.9712  0.3568    1.0    False 
 20.0   67.0  -0.8055  0.4413    1.0    False 
 20.0   68.0   1.0047  0.3413    1.0    False 
 20.0   69.0   1.0047  0.3413    1.0    False 
 20.0   70.0  -1.5634  0.1524    1.0    False 
 20.0   71.0  -0.9873  0.3493    1.0    False 
 20.0   72.0   -1.666  0.1301    1.0    False 
 20.0   73.0  -0.8059  0.4411    1.0    False 
 20.0   74.0  -0.9712  0.3568    1.0    False 
 20.0   75.0  -1.0364  0.3271    1.0    False 
 21.0   22.0  -2.4235  0.0384    1.0    False 
 21.0   23.0  -1.1902  0.2644    1.0    False 
 21.0   24.0  -0.3578  0.7287    1.0    False 
 21.0   25.0   0.3901  0.7055    1.0    False 
 21.0   26.0  -1.0321  0.3289    1.0    False 
 21.0   27.0  -1.0321  0.3289    1.0    False 
 21.0   28.0   0.2054  0.8418    1.0    False 
 21.0   29.0  -0.8092  0.4393    1.0    False 
 21.0   30.0  -2.0081  0.0756    1.0    False 
 21.0   31.0  -0.9392  0.3722    1.0    False 
 21.0   32.0  -1.5437  0.157     1.0    False 
 21.0   33.0  -1.2865  0.2304    1.0    False 
 21.0   34.0  -0.5186  0.6165    1.0    False 
 21.0   35.0  -0.6191  0.5512    1.0    False 
 21.0   36.0   -0.505  0.6257    1.0    False 
 21.0   37.0   -0.505  0.6257    1.0    False 
 21.0   38.0   -0.709  0.4963    1.0    False 
 21.0   39.0    nan     nan      nan    False 
 21.0   40.0  -0.3587  0.7281    1.0    False 
 21.0   41.0  -8.3984   0.0     0.0427   True 
 21.0   42.0  -0.4259  0.6802    1.0    False 
 21.0   43.0  -6.1994  0.0002   0.4531  False 
 21.0   44.0  -6.9542  0.0001   0.1896  False 
 21.0   45.0  -6.9542  0.0001   0.1896  False 
 21.0   46.0   1.4659  0.1767    1.0    False 
 21.0   47.0   0.5474  0.5974    1.0    False 
 21.0   48.0  -5.7322  0.0003   0.8053  False 
 21.0   49.0  -10.4252  0.0     0.0072   True 
 21.0   50.0  -6.1994  0.0002   0.4531  False 
 21.0   51.0  -2.8683  0.0185    1.0    False 
 21.0   52.0  -6.1994  0.0002   0.4531  False 
 21.0   53.0  -6.1994  0.0002   0.4531  False 
 21.0   54.0  -6.8578  0.0001   0.2111  False 
 21.0   55.0  -5.1701  0.0006    1.0    False 
 21.0   56.0   1.2517  0.2422    1.0    False 
 21.0   57.0   1.2517  0.2422    1.0    False 
 21.0   58.0  -8.3984   0.0     0.0427   True 
 21.0   59.0  -2.8683  0.0185    1.0    False 
 21.0   60.0   1.442   0.1832    1.0    False 
 21.0   61.0   1.442   0.1832    1.0    False 
 21.0   62.0  -1.9779  0.0793    1.0    False 
 21.0   63.0   -4.62   0.0013    1.0    False 
 21.0   64.0  -2.0303  0.0729    1.0    False 
 21.0   65.0  -2.1719  0.0579    1.0    False 
 21.0   66.0  -1.8156  0.1028    1.0    False 
 21.0   67.0  -1.7497  0.1141    1.0    False 
 21.0   68.0   0.1417  0.8905    1.0    False 
 21.0   69.0   0.1417  0.8905    1.0    False 
 21.0   70.0  -5.5534  0.0004    1.0    False 
 21.0   71.0  -2.0303  0.0729    1.0    False 
 21.0   72.0  -3.1376  0.012     1.0    False 
 21.0   73.0  -1.8675  0.0947    1.0    False 
 21.0   74.0  -1.8156  0.1028    1.0    False 
 21.0   75.0  -1.8021  0.105     1.0    False 
 22.0   23.0   1.5034  0.167     1.0    False 
 22.0   24.0   1.9288  0.0858    1.0    False 
 22.0   25.0   2.6458  0.0267    1.0    False 
 22.0   26.0   0.643   0.5363    1.0    False 
 22.0   27.0   0.643   0.5363    1.0    False 
 22.0   28.0   1.9541  0.0824    1.0    False 
 22.0   29.0   1.6648  0.1303    1.0    False 
 22.0   30.0   1.0009  0.343     1.0    False 
 22.0   31.0   2.1876  0.0565    1.0    False 
 22.0   32.0   1.1154  0.2936    1.0    False 
 22.0   33.0   2.571   0.0301    1.0    False 
 22.0   34.0   1.6763  0.128     1.0    False 
 22.0   35.0   2.5519  0.0311    1.0    False 
 22.0   36.0   1.2838  0.2313    1.0    False 
 22.0   37.0   1.2838  0.2313    1.0    False 
 22.0   38.0   1.1035  0.2984    1.0    False 
 22.0   39.0   2.4235  0.0384    1.0    False 
 22.0   40.0   1.1365  0.2851    1.0    False 
 22.0   41.0   -2.471  0.0355    1.0    False 
 22.0   42.0   1.4502  0.1809    1.0    False 
 22.0   43.0   -2.195  0.0558    1.0    False 
 22.0   44.0  -1.7631  0.1117    1.0    False 
 22.0   45.0  -1.7631  0.1117    1.0    False 
 22.0   46.0   2.4884  0.0345    1.0    False 
 22.0   47.0   2.1201  0.063     1.0    False 
 22.0   48.0  -1.4144  0.1909    1.0    False 
 22.0   49.0  -2.1282  0.0622    1.0    False 
 22.0   50.0   -2.195  0.0558    1.0    False 
 22.0   51.0   0.0085  0.9934    1.0    False 
 22.0   52.0   -2.195  0.0558    1.0    False 
 22.0   53.0   -2.195  0.0558    1.0    False 
 22.0   54.0  -1.3417  0.2126    1.0    False 
 22.0   55.0   -1.46   0.1783    1.0    False 
 22.0   56.0   2.8278  0.0198    1.0    False 
 22.0   57.0   2.8278  0.0198    1.0    False 
 22.0   58.0   -2.471  0.0355    1.0    False 
 22.0   59.0   0.0085  0.9934    1.0    False 
 22.0   60.0   2.546   0.0314    1.0    False 
 22.0   61.0   2.546   0.0314    1.0    False 
 22.0   62.0   0.0407  0.9685    1.0    False 
 22.0   63.0  -0.5063  0.6248    1.0    False 
 22.0   64.0   0.0737  0.9429    1.0    False 
 22.0   65.0  -0.2556  0.804     1.0    False 
 22.0   66.0   0.1101  0.9148    1.0    False 
 22.0   67.0   0.4386  0.6713    1.0    False 
 22.0   68.0   1.439   0.184     1.0    False 
 22.0   69.0   1.439   0.184     1.0    False 
 22.0   70.0  -1.0081  0.3397    1.0    False 
 22.0   71.0   0.0737  0.9429    1.0    False 
 22.0   72.0  -0.7065  0.4977    1.0    False 
 22.0   73.0   0.0836  0.9352    1.0    False 
 22.0   74.0   0.1101  0.9148    1.0    False 
 22.0   75.0   0.0077  0.994     1.0    False 
 23.0   24.0   0.8045  0.4418    1.0    False 
 23.0   25.0   1.539   0.1582    1.0    False 
 23.0   26.0  -0.0809  0.9373    1.0    False 
 23.0   27.0  -0.0809  0.9373    1.0    False 
 23.0   28.0   1.0401  0.3254    1.0    False 
 23.0   29.0   0.3563  0.7298    1.0    False 
 23.0   30.0   -0.058  0.955     1.0    False 
 23.0   31.0   0.8177  0.4347    1.0    False 
 23.0   32.0  -0.4835  0.6403    1.0    False 
 23.0   33.0  -0.1812  0.8602    1.0    False 
 23.0   34.0   0.5377  0.6038    1.0    False 
 23.0   35.0   1.1577  0.2768    1.0    False 
 23.0   36.0   0.668   0.5209    1.0    False 
 23.0   37.0   0.668   0.5209    1.0    False 
 23.0   38.0   0.203   0.8436    1.0    False 
 23.0   39.0   1.1902  0.2644    1.0    False 
 23.0   40.0   0.5465  0.598     1.0    False 
 23.0   41.0  -3.0846  0.013     1.0    False 
 23.0   42.0   0.6272  0.5461    1.0    False 
 23.0   43.0  -2.8146  0.0202    1.0    False 
 23.0   44.0  -2.6708  0.0256    1.0    False 
 23.0   45.0  -2.6708  0.0256    1.0    False 
 23.0   46.0   2.1255  0.0625    1.0    False 
 23.0   47.0   1.2063  0.2585    1.0    False 
 23.0   48.0   -2.37   0.0419    1.0    False 
 23.0   49.0  -3.1503  0.0117    1.0    False 
 23.0   50.0  -2.8146  0.0202    1.0    False 
 23.0   51.0  -0.9177  0.3827    1.0    False 
 23.0   52.0  -2.8146  0.0202    1.0    False 
 23.0   53.0  -2.8146  0.0202    1.0    False 
 23.0   54.0  -2.2391  0.0519    1.0    False 
 23.0   55.0  -2.2738  0.0491    1.0    False 
 23.0   56.0   1.9434  0.0839    1.0    False 
 23.0   57.0   1.9434  0.0839    1.0    False 
 23.0   58.0  -3.0846  0.013     1.0    False 
 23.0   59.0  -0.9177  0.3827    1.0    False 
 23.0   60.0   1.7922  0.1067    1.0    False 
 23.0   61.0   1.7922  0.1067    1.0    False 
 23.0   62.0  -0.9911  0.3475    1.0    False 
 23.0   63.0  -1.6616  0.131     1.0    False 
 23.0   64.0  -0.8277  0.4292    1.0    False 
 23.0   65.0  -1.0373  0.3266    1.0    False 
 23.0   66.0  -0.8081  0.4399    1.0    False 
 23.0   67.0  -0.6027  0.5616    1.0    False 
 23.0   68.0   0.8841  0.3997    1.0    False 
 23.0   69.0   0.8841  0.3997    1.0    False 
 23.0   70.0  -2.2927  0.0476    1.0    False 
 23.0   71.0  -0.8277  0.4292    1.0    False 
 23.0   72.0  -1.6431  0.1348    1.0    False 
 23.0   73.0  -0.7259  0.4863    1.0    False 
 23.0   74.0  -0.8081  0.4399    1.0    False 
 23.0   75.0  -0.9275  0.3779    1.0    False 
 24.0   25.0   1.2985  0.2264    1.0    False 
 24.0   26.0  -0.6956  0.5042    1.0    False 
 24.0   27.0  -0.6956  0.5042    1.0    False 
 24.0   28.0   0.4046  0.6952    1.0    False 
 24.0   29.0  -0.6356  0.5409    1.0    False 
 24.0   30.0   -0.866  0.409     1.0    False 
 24.0   31.0  -0.1752  0.8648    1.0    False 
 24.0   32.0  -1.0862  0.3056    1.0    False 
 24.0   33.0  -0.9402  0.3717    1.0    False 
 24.0   34.0  -0.1053  0.9185    1.0    False 
 24.0   35.0  -0.1697  0.869     1.0    False 
 24.0   36.0  -0.0927  0.9282    1.0    False 
 24.0   37.0  -0.0927  0.9282    1.0    False 
 24.0   38.0  -0.6147  0.554     1.0    False 
 24.0   39.0   0.3578  0.7287    1.0    False 
 24.0   40.0  -0.0183  0.9858    1.0    False 
 24.0   41.0  -3.6758  0.0051    1.0    False 
 24.0   42.0   -0.017  0.9868    1.0    False 
 24.0   43.0  -3.3827  0.0081    1.0    False 
 24.0   44.0  -2.9266  0.0169    1.0    False 
 24.0   45.0  -2.9266  0.0169    1.0    False 
 24.0   46.0   1.2006  0.2606    1.0    False 
 24.0   47.0   0.5374  0.604     1.0    False 
 24.0   48.0  -2.9417  0.0164    1.0    False 
 24.0   49.0  -3.6541  0.0053    1.0    False 
 24.0   50.0  -3.3827  0.0081    1.0    False 
 24.0   51.0  -1.4817  0.1726    1.0    False 
 24.0   52.0  -3.3827  0.0081    1.0    False 
 24.0   53.0  -3.3827  0.0081    1.0    False 
 24.0   54.0  -2.7095  0.024     1.0    False 
 24.0   55.0  -2.4816  0.0349    1.0    False 
 24.0   56.0   1.3228  0.2185    1.0    False 
 24.0   57.0   1.3228  0.2185    1.0    False 
 24.0   58.0  -3.6758  0.0051    1.0    False 
 24.0   59.0  -1.4817  0.1726    1.0    False 
 24.0   60.0   1.301   0.2256    1.0    False 
 24.0   61.0   1.301   0.2256    1.0    False 
 24.0   62.0  -1.6259  0.1384    1.0    False 
 24.0   63.0  -2.2848  0.0482    1.0    False 
 24.0   64.0  -1.3664  0.205     1.0    False 
 24.0   65.0  -1.7504  0.114     1.0    False 
 24.0   66.0  -1.3771  0.2018    1.0    False 
 24.0   67.0  -1.2375  0.2472    1.0    False 
 24.0   68.0   0.387   0.7078    1.0    False 
 24.0   69.0   0.387   0.7078    1.0    False 
 24.0   70.0  -2.6594  0.0261    1.0    False 
 24.0   71.0  -1.3664  0.205     1.0    False 
 24.0   72.0  -2.5228  0.0326    1.0    False 
 24.0   73.0  -1.2526  0.2419    1.0    False 
 24.0   74.0  -1.3771  0.2018    1.0    False 
 24.0   75.0  -1.3605  0.2068    1.0    False 
 25.0   26.0  -1.0755  0.3101    1.0    False 
 25.0   27.0  -1.0755  0.3101    1.0    False 
 25.0   28.0  -0.1038  0.9196    1.0    False 
 25.0   29.0   -1.147  0.281     1.0    False 
 25.0   30.0   -1.778  0.1091    1.0    False 
 25.0   31.0  -0.8981  0.3925    1.0    False 
 25.0   32.0  -1.4942  0.1693    1.0    False 
 25.0   33.0  -1.6114  0.1415    1.0    False 
 25.0   34.0  -0.8172  0.4349    1.0    False 
 25.0   35.0  -0.8357  0.425     1.0    False 
 25.0   36.0  -0.5846  0.5732    1.0    False 
 25.0   37.0  -0.5846  0.5732    1.0    False 
 25.0   38.0  -1.2333  0.2487    1.0    False 
 25.0   39.0  -0.3901  0.7055    1.0    False 
 25.0   40.0  -0.5605  0.5888    1.0    False 
 25.0   41.0   -4.083  0.0027    1.0    False 
 25.0   42.0  -0.4808  0.6421    1.0    False 
 25.0   43.0   -3.805  0.0042    1.0    False 
 25.0   44.0   -3.248   0.01     1.0    False 
 25.0   45.0   -3.248   0.01     1.0    False 
 25.0   46.0   0.6721  0.5184    1.0    False 
 25.0   47.0   0.0765  0.9407    1.0    False 
 25.0   48.0  -3.2342  0.0103    1.0    False 
 25.0   49.0  -3.9178  0.0035    1.0    False 
 25.0   50.0   -3.805  0.0042    1.0    False 
 25.0   51.0  -1.8336  0.0999    1.0    False 
 25.0   52.0   -3.805  0.0042    1.0    False 
 25.0   53.0   -3.805  0.0042    1.0    False 
 25.0   54.0  -3.2229  0.0104    1.0    False 
 25.0   55.0  -2.7897  0.0211    1.0    False 
 25.0   56.0   0.8964  0.3934    1.0    False 
 25.0   57.0   0.8964  0.3934    1.0    False 
 25.0   58.0   -4.083  0.0027    1.0    False 
 25.0   59.0  -1.8336  0.0999    1.0    False 
 25.0   60.0   0.7496  0.4726    1.0    False 
 25.0   61.0   0.7496  0.4726    1.0    False 
 25.0   62.0  -2.1457  0.0605    1.0    False 
 25.0   63.0  -2.4871  0.0346    1.0    False 
 25.0   64.0  -1.7966  0.106     1.0    False 
 25.0   65.0  -1.9471  0.0833    1.0    False 
 25.0   66.0  -1.7703  0.1105    1.0    False 
 25.0   67.0  -1.7378  0.1163    1.0    False 
 25.0   68.0   -0.143  0.8895    1.0    False 
 25.0   69.0   -0.143  0.8895    1.0    False 
 25.0   70.0   -2.843  0.0193    1.0    False 
 25.0   71.0  -1.7966  0.106     1.0    False 
 25.0   72.0  -2.6089  0.0283    1.0    False 
 25.0   73.0  -1.5706  0.1507    1.0    False 
 25.0   74.0  -1.7703  0.1105    1.0    False 
 25.0   75.0  -1.7772  0.1093    1.0    False 
 26.0   27.0    nan     nan      nan    False 
 26.0   28.0   0.7356  0.4807    1.0    False 
 26.0   29.0   0.3445  0.7384    1.0    False 
 26.0   30.0   0.0309  0.976     1.0    False 
 26.0   31.0   0.5187  0.6165    1.0    False 
 26.0   32.0  -0.1902  0.8534    1.0    False 
 26.0   33.0   0.0103  0.992     1.0    False 
 26.0   34.0   0.5793  0.5766    1.0    False 
 26.0   35.0   0.6424  0.5366    1.0    False 
 26.0   36.0   1.2443  0.2448    1.0    False 
 26.0   37.0   1.2443  0.2448    1.0    False 
 26.0   38.0   0.2643  0.7975    1.0    False 
 26.0   39.0   1.0321  0.3289    1.0    False 
 26.0   40.0   0.5763  0.5785    1.0    False 
 26.0   41.0    -2.4   0.0399    1.0    False 
 26.0   42.0   0.6244  0.5479    1.0    False 
 26.0   43.0  -2.5797  0.0297    1.0    False 
 26.0   44.0  -2.2155  0.054     1.0    False 
 26.0   45.0  -2.2155  0.054     1.0    False 
 26.0   46.0   2.4908  0.0344    1.0    False 
 26.0   47.0   0.9572  0.3635    1.0    False 
 26.0   48.0  -1.8734  0.0938    1.0    False 
 26.0   49.0  -2.4447  0.0371    1.0    False 
 26.0   50.0  -2.5797  0.0297    1.0    False 
 26.0   51.0  -0.6436  0.5359    1.0    False 
 26.0   52.0  -2.5797  0.0297    1.0    False 
 26.0   53.0  -2.5797  0.0297    1.0    False 
 26.0   54.0  -1.7532  0.1135    1.0    False 
 26.0   55.0  -1.9148  0.0878    1.0    False 
 26.0   56.0   1.2899  0.2292    1.0    False 
 26.0   57.0   1.2899  0.2292    1.0    False 
 26.0   58.0    -2.4   0.0399    1.0    False 
 26.0   59.0  -0.6436  0.5359    1.0    False 
 26.0   60.0   1.5391  0.1582    1.0    False 
 26.0   61.0   1.5391  0.1582    1.0    False 
 26.0   62.0  -0.8975  0.3928    1.0    False 
 26.0   63.0  -1.5981  0.1445    1.0    False 
 26.0   64.0  -0.8242  0.4312    1.0    False 
 26.0   65.0  -1.0725  0.3114    1.0    False 
 26.0   66.0  -0.6073  0.5586    1.0    False 
 26.0   67.0  -0.5024  0.6274    1.0    False 
 26.0   68.0   1.0176  0.3354    1.0    False 
 26.0   69.0   1.0176  0.3354    1.0    False 
 26.0   70.0  -1.4254  0.1878    1.0    False 
 26.0   71.0  -0.8242  0.4312    1.0    False 
 26.0   72.0  -1.6283  0.1379    1.0    False 
 26.0   73.0  -0.6483  0.533     1.0    False 
 26.0   74.0  -0.6073  0.5586    1.0    False 
 26.0   75.0  -0.7931  0.4481    1.0    False 
 27.0   28.0   0.7356  0.4807    1.0    False 
 27.0   29.0   0.3445  0.7384    1.0    False 
 27.0   30.0   0.0309  0.976     1.0    False 
 27.0   31.0   0.5187  0.6165    1.0    False 
 27.0   32.0  -0.1902  0.8534    1.0    False 
 27.0   33.0   0.0103  0.992     1.0    False 
 27.0   34.0   0.5793  0.5766    1.0    False 
 27.0   35.0   0.6424  0.5366    1.0    False 
 27.0   36.0   1.2443  0.2448    1.0    False 
 27.0   37.0   1.2443  0.2448    1.0    False 
 27.0   38.0   0.2643  0.7975    1.0    False 
 27.0   39.0   1.0321  0.3289    1.0    False 
 27.0   40.0   0.5763  0.5785    1.0    False 
 27.0   41.0    -2.4   0.0399    1.0    False 
 27.0   42.0   0.6244  0.5479    1.0    False 
 27.0   43.0  -2.5797  0.0297    1.0    False 
 27.0   44.0  -2.2155  0.054     1.0    False 
 27.0   45.0  -2.2155  0.054     1.0    False 
 27.0   46.0   2.4908  0.0344    1.0    False 
 27.0   47.0   0.9572  0.3635    1.0    False 
 27.0   48.0  -1.8734  0.0938    1.0    False 
 27.0   49.0  -2.4447  0.0371    1.0    False 
 27.0   50.0  -2.5797  0.0297    1.0    False 
 27.0   51.0  -0.6436  0.5359    1.0    False 
 27.0   52.0  -2.5797  0.0297    1.0    False 
 27.0   53.0  -2.5797  0.0297    1.0    False 
 27.0   54.0  -1.7532  0.1135    1.0    False 
 27.0   55.0  -1.9148  0.0878    1.0    False 
 27.0   56.0   1.2899  0.2292    1.0    False 
 27.0   57.0   1.2899  0.2292    1.0    False 
 27.0   58.0    -2.4   0.0399    1.0    False 
 27.0   59.0  -0.6436  0.5359    1.0    False 
 27.0   60.0   1.5391  0.1582    1.0    False 
 27.0   61.0   1.5391  0.1582    1.0    False 
 27.0   62.0  -0.8975  0.3928    1.0    False 
 27.0   63.0  -1.5981  0.1445    1.0    False 
 27.0   64.0  -0.8242  0.4312    1.0    False 
 27.0   65.0  -1.0725  0.3114    1.0    False 
 27.0   66.0  -0.6073  0.5586    1.0    False 
 27.0   67.0  -0.5024  0.6274    1.0    False 
 27.0   68.0   1.0176  0.3354    1.0    False 
 27.0   69.0   1.0176  0.3354    1.0    False 
 27.0   70.0  -1.4254  0.1878    1.0    False 
 27.0   71.0  -0.8242  0.4312    1.0    False 
 27.0   72.0  -1.6283  0.1379    1.0    False 
 27.0   73.0  -0.6483  0.533     1.0    False 
 27.0   74.0  -0.6073  0.5586    1.0    False 
 27.0   75.0  -0.7931  0.4481    1.0    False 
 28.0   29.0  -0.6778  0.515     1.0    False 
 28.0   30.0  -1.5723  0.1503    1.0    False 
 28.0   31.0  -0.7435  0.4761    1.0    False 
 28.0   32.0  -1.1538  0.2783    1.0    False 
 28.0   33.0  -1.1658  0.2737    1.0    False 
 28.0   34.0  -0.4555  0.6595    1.0    False 
 28.0   35.0  -0.6992  0.5021    1.0    False 
 28.0   36.0  -0.3862  0.7083    1.0    False 
 28.0   37.0  -0.3862  0.7083    1.0    False 
 28.0   38.0  -0.7407  0.4778    1.0    False 
 28.0   39.0  -0.2054  0.8418    1.0    False 
 28.0   40.0  -0.4584  0.6576    1.0    False 
 28.0   41.0  -5.9078  0.0002   0.6466  False 
 28.0   42.0  -0.4507  0.6629    1.0    False 
 28.0   43.0  -4.9487  0.0008    1.0    False 
 28.0   44.0  -3.9292  0.0035    1.0    False 
 28.0   45.0  -3.9292  0.0035    1.0    False 
 28.0   46.0   0.6477  0.5334    1.0    False 
 28.0   47.0   0.2455  0.8116    1.0    False 
 28.0   48.0  -4.4888  0.0015    1.0    False 
 28.0   49.0   -4.359  0.0018    1.0    False 
 28.0   50.0  -4.9487  0.0008    1.0    False 
 28.0   51.0  -1.9154  0.0877    1.0    False 
 28.0   52.0  -4.9487  0.0008    1.0    False 
 28.0   53.0  -4.9487  0.0008    1.0    False 
 28.0   54.0  -3.4915  0.0068    1.0    False 
 28.0   55.0  -3.4142  0.0077    1.0    False 
 28.0   56.0   0.9725  0.3562    1.0    False 
 28.0   57.0   0.9725  0.3562    1.0    False 
 28.0   58.0  -5.9078  0.0002   0.6466  False 
 28.0   59.0  -1.9154  0.0877    1.0    False 
 28.0   60.0   1.2982  0.2265    1.0    False 
 28.0   61.0   1.2982  0.2265    1.0    False 
 28.0   62.0  -1.4944  0.1693    1.0    False 
 28.0   63.0  -2.0381  0.072     1.0    False 
 28.0   64.0  -1.4788  0.1733    1.0    False 
 28.0   65.0  -1.6706  0.1291    1.0    False 
 28.0   66.0  -1.3129  0.2217    1.0    False 
 28.0   67.0   -1.239  0.2467    1.0    False 
 28.0   68.0   -0.032  0.9752    1.0    False 
 28.0   69.0   -0.032  0.9752    1.0    False 
 28.0   70.0  -2.5203  0.0328    1.0    False 
 28.0   71.0  -1.4788  0.1733    1.0    False 
 28.0   72.0  -2.1224  0.0628    1.0    False 
 28.0   73.0  -1.5919  0.1459    1.0    False 
 28.0   74.0  -1.3129  0.2217    1.0    False 
 28.0   75.0  -1.3903  0.1978    1.0    False 
 29.0   30.0  -0.2382  0.8171    1.0    False 
 29.0   31.0   0.3502  0.7342    1.0    False 
 29.0   32.0  -1.1737  0.2706    1.0    False 
 29.0   33.0  -0.5711  0.5819    1.0    False 
 29.0   34.0   0.3562  0.7299    1.0    False 
 29.0   35.0   0.5417  0.6012    1.0    False 
 29.0   36.0   0.428   0.6787    1.0    False 
 29.0   37.0   0.428   0.6787    1.0    False 
 29.0   38.0   -0.055  0.9574    1.0    False 
 29.0   39.0   0.8092  0.4393    1.0    False 
 29.0   40.0   0.3453  0.7378    1.0    False 
 29.0   41.0  -2.7661  0.0219    1.0    False 
 29.0   42.0   0.4227  0.6825    1.0    False 
 29.0   43.0  -2.6346  0.0272    1.0    False 
 29.0   44.0  -2.4507  0.0367    1.0    False 
 29.0   45.0  -2.4507  0.0367    1.0    False 
 29.0   46.0   1.7172  0.1201    1.0    False 
 29.0   47.0   0.8046  0.4418    1.0    False 
 29.0   48.0  -2.1201  0.063     1.0    False 
 29.0   49.0  -2.7816  0.0213    1.0    False 
 29.0   50.0  -2.6346  0.0272    1.0    False 
 29.0   51.0  -1.0783  0.3089    1.0    False 
 29.0   52.0  -2.6346  0.0272    1.0    False 
 29.0   53.0  -2.6346  0.0272    1.0    False 
 29.0   54.0  -2.0204  0.0741    1.0    False 
 29.0   55.0  -2.1373  0.0613    1.0    False 
 29.0   56.0   1.2685  0.2364    1.0    False 
 29.0   57.0   1.2685  0.2364    1.0    False 
 29.0   58.0  -2.7661  0.0219    1.0    False 
 29.0   59.0  -1.0783  0.3089    1.0    False 
 29.0   60.0   1.503   0.1671    1.0    False 
 29.0   61.0   1.503   0.1671    1.0    False 
 29.0   62.0  -1.1222  0.2908    1.0    False 
 29.0   63.0  -1.7953  0.1062    1.0    False 
 29.0   64.0   -0.91   0.3866    1.0    False 
 29.0   65.0  -1.2712  0.2355    1.0    False 
 29.0   66.0  -0.9022  0.3904    1.0    False 
 29.0   67.0   -0.785  0.4526    1.0    False 
 29.0   68.0   0.6691  0.5202    1.0    False 
 29.0   69.0   0.6691  0.5202    1.0    False 
 29.0   70.0  -2.2384  0.052     1.0    False 
 29.0   71.0   -0.91   0.3866    1.0    False 
 29.0   72.0  -1.9834  0.0786    1.0    False 
 29.0   73.0  -0.8193  0.4338    1.0    False 
 29.0   74.0  -0.9022  0.3904    1.0    False 
 29.0   75.0  -1.0001  0.3434    1.0    False 
 30.0   31.0   2.0886  0.0663    1.0    False 
 30.0   32.0  -0.2345  0.8199    1.0    False 
 30.0   33.0  -0.0335  0.974     1.0    False 
 30.0   34.0   0.7667  0.4629    1.0    False 
 30.0   35.0   0.857   0.4137    1.0    False 
 30.0   36.0   0.6834  0.5116    1.0    False 
 30.0   37.0   0.6834  0.5116    1.0    False 
 30.0   38.0   0.1828  0.859     1.0    False 
 30.0   39.0   2.0081  0.0756    1.0    False 
 30.0   40.0   0.9556  0.3642    1.0    False 
 30.0   41.0  -6.4517  0.0001   0.336   False 
 30.0   42.0   0.8222  0.4322    1.0    False 
 30.0   43.0  -5.3537  0.0005    1.0    False 
 30.0   44.0  -4.0105  0.0031    1.0    False 
 30.0   45.0  -4.0105  0.0031    1.0    False 
 30.0   46.0   2.3154  0.0458    1.0    False 
 30.0   47.0   2.8885  0.0179    1.0    False 
 30.0   48.0  -3.5465  0.0062    1.0    False 
 30.0   49.0  -5.2994  0.0005    1.0    False 
 30.0   50.0  -5.3537  0.0005    1.0    False 
 30.0   51.0  -1.0544  0.3192    1.0    False 
 30.0   52.0  -5.3537  0.0005    1.0    False 
 30.0   53.0  -5.3537  0.0005    1.0    False 
 30.0   54.0  -4.0838  0.0027    1.0    False 
 30.0   55.0  -2.9255  0.0169    1.0    False 
 30.0   56.0   3.6735  0.0051    1.0    False 
 30.0   57.0   3.6735  0.0051    1.0    False 
 30.0   58.0  -6.4517  0.0001   0.336   False 
 30.0   59.0  -1.0544  0.3192    1.0    False 
 30.0   60.0   2.3159  0.0458    1.0    False 
 30.0   61.0   2.3159  0.0458    1.0    False 
 30.0   62.0   -0.749  0.473     1.0    False 
 30.0   63.0   -1.495  0.1691    1.0    False 
 30.0   64.0  -0.7095  0.496     1.0    False 
 30.0   65.0  -0.9322  0.3756    1.0    False 
 30.0   66.0  -0.5755  0.579     1.0    False 
 30.0   67.0  -0.4055  0.6946    1.0    False 
 30.0   68.0   0.9413  0.3711    1.0    False 
 30.0   69.0   0.9413  0.3711    1.0    False 
 30.0   70.0  -1.9356  0.0849    1.0    False 
 30.0   71.0  -0.7095  0.496     1.0    False 
 30.0   72.0   -1.44   0.1837    1.0    False 
 30.0   73.0  -0.6604  0.5256    1.0    False 
 30.0   74.0  -0.5755  0.579     1.0    False 
 30.0   75.0  -0.6805  0.5133    1.0    False 
 31.0   32.0  -1.0572  0.3179    1.0    False 
 31.0   33.0  -0.9244  0.3794    1.0    False 
 31.0   34.0   0.0838  0.935     1.0    False 
 31.0   35.0   0.0543  0.9579    1.0    False 
 31.0   36.0   0.0661  0.9487    1.0    False 
 31.0   37.0   0.0661  0.9487    1.0    False 
 31.0   38.0  -0.3233  0.7539    1.0    False 
 31.0   39.0   0.9392  0.3722    1.0    False 
 31.0   40.0   0.1501  0.884     1.0    False 
 31.0   41.0  -7.3569   0.0     0.1224  False 
 31.0   42.0   0.1655  0.8722    1.0    False 
 31.0   43.0  -5.3977  0.0004    1.0    False 
 31.0   44.0  -5.3996  0.0004    1.0    False 
 31.0   45.0  -5.3996  0.0004    1.0    False 
 31.0   46.0   1.7095  0.1215    1.0    False 
 31.0   47.0   1.4641  0.1772    1.0    False 
 31.0   48.0  -4.3486  0.0019    1.0    False 
 31.0   49.0  -7.1876  0.0001   0.1468  False 
 31.0   50.0  -5.3977  0.0004    1.0    False 
 31.0   51.0  -2.1444  0.0606    1.0    False 
 31.0   52.0  -5.3977  0.0004    1.0    False 
 31.0   53.0  -5.3977  0.0004    1.0    False 
 31.0   54.0  -5.3193  0.0005    1.0    False 
 31.0   55.0  -4.0712  0.0028    1.0    False 
 31.0   56.0   2.0698  0.0684    1.0    False 
 31.0   57.0   2.0698  0.0684    1.0    False 
 31.0   58.0  -7.3569   0.0     0.1224  False 
 31.0   59.0  -2.1444  0.0606    1.0    False 
 31.0   60.0   1.7654  0.1113    1.0    False 
 31.0   61.0   1.7654  0.1113    1.0    False 
 31.0   62.0  -1.3267  0.2173    1.0    False 
 31.0   63.0  -2.4466  0.037     1.0    False 
 31.0   64.0  -1.2805  0.2324    1.0    False 
 31.0   65.0  -1.4464  0.182     1.0    False 
 31.0   66.0  -1.1566  0.2772    1.0    False 
 31.0   67.0  -1.0614  0.3162    1.0    False 
 31.0   68.0   0.4356  0.6734    1.0    False 
 31.0   69.0   0.4356  0.6734    1.0    False 
 31.0   70.0  -3.5265  0.0064    1.0    False 
 31.0   71.0  -1.2805  0.2324    1.0    False 
 31.0   72.0  -2.0725  0.0681    1.0    False 
 31.0   73.0  -1.2148  0.2553    1.0    False 
 31.0   74.0  -1.1566  0.2772    1.0    False 
 31.0   75.0  -1.2286  0.2504    1.0    False 
 32.0   33.0   0.5326  0.6072    1.0    False 
 32.0   34.0   0.7926  0.4484    1.0    False 
 32.0   35.0   1.4215  0.1889    1.0    False 
 32.0   36.0   0.9636  0.3604    1.0    False 
 32.0   37.0   0.9636  0.3604    1.0    False 
 32.0   38.0   0.4344  0.6742    1.0    False 
 32.0   39.0   1.5437  0.157     1.0    False 
 32.0   40.0   0.7153  0.4926    1.0    False 
 32.0   41.0  -2.8021  0.0206    1.0    False 
 32.0   42.0   0.9912  0.3475    1.0    False 
 32.0   43.0  -2.5665  0.0304    1.0    False 
 32.0   44.0  -2.4039  0.0396    1.0    False 
 32.0   45.0  -2.4039  0.0396    1.0    False 
 32.0   46.0   2.0988  0.0652    1.0    False 
 32.0   47.0   1.2803  0.2325    1.0    False 
 32.0   48.0  -1.8975  0.0902    1.0    False 
 32.0   49.0  -2.8591  0.0188    1.0    False 
 32.0   50.0  -2.5665  0.0304    1.0    False 
 32.0   51.0  -0.7287  0.4847    1.0    False 
 32.0   52.0  -2.5665  0.0304    1.0    False 
 32.0   53.0  -2.5665  0.0304    1.0    False 
 32.0   54.0  -1.8389  0.0991    1.0    False 
 32.0   55.0   -2.034  0.0725    1.0    False 
 32.0   56.0   1.7531  0.1135    1.0    False 
 32.0   57.0   1.7531  0.1135    1.0    False 
 32.0   58.0  -2.8021  0.0206    1.0    False 
 32.0   59.0  -0.7287  0.4847    1.0    False 
 32.0   60.0   1.9809  0.0789    1.0    False 
 32.0   61.0   1.9809  0.0789    1.0    False 
 32.0   62.0  -0.5003  0.6289    1.0    False 
 32.0   63.0  -1.2687  0.2364    1.0    False 
 32.0   64.0  -0.4291  0.6779    1.0    False 
 32.0   65.0  -0.7351  0.481     1.0    False 
 32.0   66.0  -0.4084  0.6925    1.0    False 
 32.0   67.0  -0.1619  0.875     1.0    False 
 32.0   68.0   0.928   0.3776    1.0    False 
 32.0   69.0   0.928   0.3776    1.0    False 
 32.0   70.0  -1.9327  0.0853    1.0    False 
 32.0   71.0  -0.4291  0.6779    1.0    False 
 32.0   72.0  -1.2784  0.2331    1.0    False 
 32.0   73.0  -0.3956  0.7016    1.0    False 
 32.0   74.0  -0.4084  0.6925    1.0    False 
 32.0   75.0  -0.4813  0.6418    1.0    False 
 33.0   34.0   0.6725  0.5181    1.0    False 
 33.0   35.0   1.3057  0.224     1.0    False 
 33.0   36.0   0.663   0.524     1.0    False 
 33.0   37.0   0.663   0.524     1.0    False 
 33.0   38.0   0.2867  0.7809    1.0    False 
 33.0   39.0   1.2865  0.2304    1.0    False 
 33.0   40.0   0.5735  0.5803    1.0    False 
 33.0   41.0  -3.1823  0.0111    1.0    False 
 33.0   42.0   0.7182  0.4908    1.0    False 
 33.0   43.0   -2.854  0.019     1.0    False 
 33.0   44.0  -2.5965  0.0289    1.0    False 
 33.0   45.0  -2.5965  0.0289    1.0    False 
 33.0   46.0   1.8693  0.0944    1.0    False 
 33.0   47.0   1.2625  0.2385    1.0    False 
 33.0   48.0  -2.1595  0.0591    1.0    False 
 33.0   49.0  -2.9529  0.0161    1.0    False 
 33.0   50.0   -2.854  0.019     1.0    False 
 33.0   51.0  -0.8985  0.3923    1.0    False 
 33.0   52.0   -2.854  0.019     1.0    False 
 33.0   53.0   -2.854  0.019     1.0    False 
 33.0   54.0  -2.0986  0.0653    1.0    False 
 33.0   55.0  -2.2076  0.0547    1.0    False 
 33.0   56.0   1.9113  0.0883    1.0    False 
 33.0   57.0   1.9113  0.0883    1.0    False 
 33.0   58.0  -3.1823  0.0111    1.0    False 
 33.0   59.0  -0.8985  0.3923    1.0    False 
 33.0   60.0   1.8488  0.0975    1.0    False 
 33.0   61.0   1.8488  0.0975    1.0    False 
 33.0   62.0  -0.7413  0.4774    1.0    False 
 33.0   63.0  -1.3738  0.2027    1.0    False 
 33.0   64.0  -0.6246  0.5477    1.0    False 
 33.0   65.0  -0.8787  0.4024    1.0    False 
 33.0   66.0  -0.5844  0.5733    1.0    False 
 33.0   67.0  -0.3895  0.706     1.0    False 
 33.0   68.0   0.8487  0.418     1.0    False 
 33.0   69.0   0.8487  0.418     1.0    False 
 33.0   70.0  -1.9655  0.0809    1.0    False 
 33.0   71.0  -0.6246  0.5477    1.0    False 
 33.0   72.0  -1.4412  0.1834    1.0    False 
 33.0   73.0   -0.561  0.5885    1.0    False 
 33.0   74.0  -0.5844  0.5733    1.0    False 
 33.0   75.0  -0.6671  0.5214    1.0    False 
 34.0   35.0  -0.0447  0.9654    1.0    False 
 34.0   36.0  -0.0121  0.9906    1.0    False 
 34.0   37.0  -0.0121  0.9906    1.0    False 
 34.0   38.0  -0.4014  0.6975    1.0    False 
 34.0   39.0   0.5186  0.6165    1.0    False 
 34.0   40.0   0.0537  0.9583    1.0    False 
 34.0   41.0  -4.2652  0.0021    1.0    False 
 34.0   42.0   0.0583  0.9548    1.0    False 
 34.0   43.0  -3.9117  0.0036    1.0    False 
 34.0   44.0  -3.1714  0.0113    1.0    False 
 34.0   45.0  -3.1714  0.0113    1.0    False 
 34.0   46.0   1.2025  0.2599    1.0    False 
 34.0   47.0   0.7176  0.4912    1.0    False 
 34.0   48.0   -2.859  0.0188    1.0    False 
 34.0   49.0  -3.6227  0.0055    1.0    False 
 34.0   50.0  -3.9117  0.0036    1.0    False 
 34.0   51.0  -1.3642  0.2056    1.0    False 
 34.0   52.0  -3.9117  0.0036    1.0    False 
 34.0   53.0  -3.9117  0.0036    1.0    False 
 34.0   54.0  -3.0134  0.0146    1.0    False 
 34.0   55.0  -2.7803  0.0214    1.0    False 
 34.0   56.0   1.4776  0.1736    1.0    False 
 34.0   57.0   1.4776  0.1736    1.0    False 
 34.0   58.0  -4.2652  0.0021    1.0    False 
 34.0   59.0  -1.3642  0.2056    1.0    False 
 34.0   60.0   1.3349  0.2147    1.0    False 
 34.0   61.0   1.3349  0.2147    1.0    False 
 34.0   62.0  -1.2919  0.2286    1.0    False 
 34.0   63.0  -2.0467  0.071     1.0    False 
 34.0   64.0  -1.2341  0.2484    1.0    False 
 34.0   65.0  -1.4275  0.1872    1.0    False 
 34.0   66.0  -1.1422  0.2828    1.0    False 
 34.0   67.0  -0.9301  0.3766    1.0    False 
 34.0   68.0   0.4317  0.6761    1.0    False 
 34.0   69.0   0.4317  0.6761    1.0    False 
 34.0   70.0  -2.2963  0.0473    1.0    False 
 34.0   71.0  -1.2341  0.2484    1.0    False 
 34.0   72.0   -2.079  0.0674    1.0    False 
 34.0   73.0  -1.0537  0.3195    1.0    False 
 34.0   74.0  -1.1422  0.2828    1.0    False 
 34.0   75.0  -1.1332  0.2864    1.0    False 
 35.0   36.0   0.0322  0.975     1.0    False 
 35.0   37.0   0.0322  0.975     1.0    False 
 35.0   38.0  -0.5104  0.622     1.0    False 
 35.0   39.0   0.6191  0.5512    1.0    False 
 35.0   40.0   0.0993  0.9231    1.0    False 
 35.0   41.0  -5.0088  0.0007    1.0    False 
 35.0   42.0   0.1326  0.8974    1.0    False 
 35.0   43.0  -4.1163  0.0026    1.0    False 
 35.0   44.0  -4.3337  0.0019    1.0    False 
 35.0   45.0  -4.3337  0.0019    1.0    False 
 35.0   46.0   1.5484  0.1559    1.0    False 
 35.0   47.0   0.763   0.465     1.0    False 
 35.0   48.0   -4.117  0.0026    1.0    False 
 35.0   49.0  -4.6755  0.0012    1.0    False 
 35.0   50.0  -4.1163  0.0026    1.0    False 
 35.0   51.0  -1.9713  0.0802    1.0    False 
 35.0   52.0  -4.1163  0.0026    1.0    False 
 35.0   53.0  -4.1163  0.0026    1.0    False 
 35.0   54.0  -3.5281  0.0064    1.0    False 
 35.0   55.0  -3.7124  0.0048    1.0    False 
 35.0   56.0   1.5175  0.1635    1.0    False 
 35.0   57.0   1.5175  0.1635    1.0    False 
 35.0   58.0  -5.0088  0.0007    1.0    False 
 35.0   59.0  -1.9713  0.0802    1.0    False 
 35.0   60.0   1.8293  0.1006    1.0    False 
 35.0   61.0   1.8293  0.1006    1.0    False 
 35.0   62.0  -1.7858  0.1078    1.0    False 
 35.0   63.0   -2.977  0.0155    1.0    False 
 35.0   64.0  -1.6836  0.1265    1.0    False 
 35.0   65.0  -1.8864  0.0919    1.0    False 
 35.0   66.0  -1.4822  0.1724    1.0    False 
 35.0   67.0  -1.4682  0.1761    1.0    False 
 35.0   68.0   0.4874  0.6376    1.0    False 
 35.0   69.0   0.4874  0.6376    1.0    False 
 35.0   70.0  -3.9129  0.0035    1.0    False 
 35.0   71.0  -1.6836  0.1265    1.0    False 
 35.0   72.0   -2.915  0.0172    1.0    False 
 35.0   73.0  -1.6277  0.138     1.0    False 
 35.0   74.0  -1.4822  0.1724    1.0    False 
 35.0   75.0  -1.6081  0.1423    1.0    False 
 36.0   37.0    nan     nan      nan    False 
 36.0   38.0  -0.4122  0.6898    1.0    False 
 36.0   39.0   0.505   0.6257    1.0    False 
 36.0   40.0   0.0784  0.9392    1.0    False 
 36.0   41.0   -3.837  0.004     1.0    False 
 36.0   42.0   0.0811  0.9371    1.0    False 
 36.0   43.0  -3.8994  0.0036    1.0    False 
 36.0   44.0  -3.8835  0.0037    1.0    False 
 36.0   45.0  -3.8835  0.0037    1.0    False 
 36.0   46.0   2.2193  0.0536    1.0    False 
 36.0   47.0   0.6028  0.5615    1.0    False 
 36.0   48.0  -3.4182  0.0076    1.0    False 
 36.0   49.0   -4.772  0.001     1.0    False 
 36.0   50.0  -3.8994  0.0036    1.0    False 
 36.0   51.0  -1.5735  0.1501    1.0    False 
 36.0   52.0  -3.8994  0.0036    1.0    False 
 36.0   53.0  -3.8994  0.0036    1.0    False 
 36.0   54.0  -3.2107  0.0106    1.0    False 
 36.0   55.0  -3.2109  0.0106    1.0    False 
 36.0   56.0   1.0467  0.3225    1.0    False 
 36.0   57.0   1.0467  0.3225    1.0    False 
 36.0   58.0   -3.837  0.004     1.0    False 
 36.0   59.0  -1.5735  0.1501    1.0    False 
 36.0   60.0   1.3239  0.2182    1.0    False 
 36.0   61.0   1.3239  0.2182    1.0    False 
 36.0   62.0  -1.7836  0.1082    1.0    False 
 36.0   63.0   -4.045  0.0029    1.0    False 
 36.0   64.0   -1.964  0.0811    1.0    False 
 36.0   65.0  -1.9379  0.0846    1.0    False 
 36.0   66.0  -1.5026  0.1672    1.0    False 
 36.0   67.0  -1.7723  0.1101    1.0    False 
 36.0   68.0   0.4614  0.6555    1.0    False 
 36.0   69.0   0.4614  0.6555    1.0    False 
 36.0   70.0  -2.8942  0.0178    1.0    False 
 36.0   71.0   -1.964  0.0811    1.0    False 
 36.0   72.0  -2.6397  0.0269    1.0    False 
 36.0   73.0  -1.7234  0.1189    1.0    False 
 36.0   74.0  -1.5026  0.1672    1.0    False 
 36.0   75.0  -1.6892  0.1254    1.0    False 
 37.0   38.0  -0.4122  0.6898    1.0    False 
 37.0   39.0   0.505   0.6257    1.0    False 
 37.0   40.0   0.0784  0.9392    1.0    False 
 37.0   41.0   -3.837  0.004     1.0    False 
 37.0   42.0   0.0811  0.9371    1.0    False 
 37.0   43.0  -3.8994  0.0036    1.0    False 
 37.0   44.0  -3.8835  0.0037    1.0    False 
 37.0   45.0  -3.8835  0.0037    1.0    False 
 37.0   46.0   2.2193  0.0536    1.0    False 
 37.0   47.0   0.6028  0.5615    1.0    False 
 37.0   48.0  -3.4182  0.0076    1.0    False 
 37.0   49.0   -4.772  0.001     1.0    False 
 37.0   50.0  -3.8994  0.0036    1.0    False 
 37.0   51.0  -1.5735  0.1501    1.0    False 
 37.0   52.0  -3.8994  0.0036    1.0    False 
 37.0   53.0  -3.8994  0.0036    1.0    False 
 37.0   54.0  -3.2107  0.0106    1.0    False 
 37.0   55.0  -3.2109  0.0106    1.0    False 
 37.0   56.0   1.0467  0.3225    1.0    False 
 37.0   57.0   1.0467  0.3225    1.0    False 
 37.0   58.0   -3.837  0.004     1.0    False 
 37.0   59.0  -1.5735  0.1501    1.0    False 
 37.0   60.0   1.3239  0.2182    1.0    False 
 37.0   61.0   1.3239  0.2182    1.0    False 
 37.0   62.0  -1.7836  0.1082    1.0    False 
 37.0   63.0   -4.045  0.0029    1.0    False 
 37.0   64.0   -1.964  0.0811    1.0    False 
 37.0   65.0  -1.9379  0.0846    1.0    False 
 37.0   66.0  -1.5026  0.1672    1.0    False 
 37.0   67.0  -1.7723  0.1101    1.0    False 
 37.0   68.0   0.4614  0.6555    1.0    False 
 37.0   69.0   0.4614  0.6555    1.0    False 
 37.0   70.0  -2.8942  0.0178    1.0    False 
 37.0   71.0   -1.964  0.0811    1.0    False 
 37.0   72.0  -2.6397  0.0269    1.0    False 
 37.0   73.0  -1.7234  0.1189    1.0    False 
 37.0   74.0  -1.5026  0.1672    1.0    False 
 37.0   75.0  -1.6892  0.1254    1.0    False 
 38.0   39.0   0.709   0.4963    1.0    False 
 38.0   40.0   0.3601  0.7271    1.0    False 
 38.0   41.0   -2.468  0.0357    1.0    False 
 38.0   42.0   0.3512  0.7335    1.0    False 
 38.0   43.0  -2.4047  0.0396    1.0    False 
 38.0   44.0   -2.029  0.073     1.0    False 
 38.0   45.0   -2.029  0.073     1.0    False 
 38.0   46.0   1.5266  0.1612    1.0    False 
 38.0   47.0   0.8161  0.4355    1.0    False 
 38.0   48.0  -2.0835  0.0669    1.0    False 
 38.0   49.0  -2.3711  0.0418    1.0    False 
 38.0   50.0  -2.4047  0.0396    1.0    False 
 38.0   51.0  -0.7117  0.4947    1.0    False 
 38.0   52.0  -2.4047  0.0396    1.0    False 
 38.0   53.0  -2.4047  0.0396    1.0    False 
 38.0   54.0  -1.6921  0.1249    1.0    False 
 38.0   55.0  -1.7632  0.1117    1.0    False 
 38.0   56.0   1.3795  0.2011    1.0    False 
 38.0   57.0   1.3795  0.2011    1.0    False 
 38.0   58.0   -2.468  0.0357    1.0    False 
 38.0   59.0  -0.7117  0.4947    1.0    False 
 38.0   60.0   1.3595  0.2071    1.0    False 
 38.0   61.0   1.3595  0.2071    1.0    False 
 38.0   62.0  -1.4322  0.1859    1.0    False 
 38.0   63.0  -1.4629  0.1775    1.0    False 
 38.0   64.0  -0.9873  0.3493    1.0    False 
 38.0   65.0  -1.1705  0.2719    1.0    False 
 38.0   66.0  -0.9712  0.3568    1.0    False 
 38.0   67.0  -0.8055  0.4413    1.0    False 
 38.0   68.0   1.0047  0.3413    1.0    False 
 38.0   69.0   1.0047  0.3413    1.0    False 
 38.0   70.0  -1.5634  0.1524    1.0    False 
 38.0   71.0  -0.9873  0.3493    1.0    False 
 38.0   72.0   -1.666  0.1301    1.0    False 
 38.0   73.0  -0.8059  0.4411    1.0    False 
 38.0   74.0  -0.9712  0.3568    1.0    False 
 38.0   75.0  -1.0364  0.3271    1.0    False 
 39.0   40.0  -0.3587  0.7281    1.0    False 
 39.0   41.0  -8.3984   0.0     0.0427   True 
 39.0   42.0  -0.4259  0.6802    1.0    False 
 39.0   43.0  -6.1994  0.0002   0.4531  False 
 39.0   44.0  -6.9542  0.0001   0.1896  False 
 39.0   45.0  -6.9542  0.0001   0.1896  False 
 39.0   46.0   1.4659  0.1767    1.0    False 
 39.0   47.0   0.5474  0.5974    1.0    False 
 39.0   48.0  -5.7322  0.0003   0.8053  False 
 39.0   49.0  -10.4252  0.0     0.0072   True 
 39.0   50.0  -6.1994  0.0002   0.4531  False 
 39.0   51.0  -2.8683  0.0185    1.0    False 
 39.0   52.0  -6.1994  0.0002   0.4531  False 
 39.0   53.0  -6.1994  0.0002   0.4531  False 
 39.0   54.0  -6.8578  0.0001   0.2111  False 
 39.0   55.0  -5.1701  0.0006    1.0    False 
 39.0   56.0   1.2517  0.2422    1.0    False 
 39.0   57.0   1.2517  0.2422    1.0    False 
 39.0   58.0  -8.3984   0.0     0.0427   True 
 39.0   59.0  -2.8683  0.0185    1.0    False 
 39.0   60.0   1.442   0.1832    1.0    False 
 39.0   61.0   1.442   0.1832    1.0    False 
 39.0   62.0  -1.9779  0.0793    1.0    False 
 39.0   63.0   -4.62   0.0013    1.0    False 
 39.0   64.0  -2.0303  0.0729    1.0    False 
 39.0   65.0  -2.1719  0.0579    1.0    False 
 39.0   66.0  -1.8156  0.1028    1.0    False 
 39.0   67.0  -1.7497  0.1141    1.0    False 
 39.0   68.0   0.1417  0.8905    1.0    False 
 39.0   69.0   0.1417  0.8905    1.0    False 
 39.0   70.0  -5.5534  0.0004    1.0    False 
 39.0   71.0  -2.0303  0.0729    1.0    False 
 39.0   72.0  -3.1376  0.012     1.0    False 
 39.0   73.0  -1.8675  0.0947    1.0    False 
 39.0   74.0  -1.8156  0.1028    1.0    False 
 39.0   75.0  -1.8021  0.105     1.0    False 
 40.0   41.0  -4.8643  0.0009    1.0    False 
 40.0   42.0    0.0     1.0      1.0    False 
 40.0   43.0  -5.3242  0.0005    1.0    False 
 40.0   44.0  -3.8163  0.0041    1.0    False 
 40.0   45.0  -3.8163  0.0041    1.0    False 
 40.0   46.0   1.4713  0.1753    1.0    False 
 40.0   47.0   0.7031  0.4998    1.0    False 
 40.0   48.0  -4.2516  0.0021    1.0    False 
 40.0   49.0  -4.8674  0.0009    1.0    False 
 40.0   50.0  -5.3242  0.0005    1.0    False 
 40.0   51.0  -1.6195  0.1398    1.0    False 
 40.0   52.0  -5.3242  0.0005    1.0    False 
 40.0   53.0  -5.3242  0.0005    1.0    False 
 40.0   54.0  -3.7103  0.0048    1.0    False 
 40.0   55.0  -3.0437  0.0139    1.0    False 
 40.0   56.0   1.2953  0.2275    1.0    False 
 40.0   57.0   1.2953  0.2275    1.0    False 
 40.0   58.0  -4.8643  0.0009    1.0    False 
 40.0   59.0  -1.6195  0.1398    1.0    False 
 40.0   60.0   1.8049  0.1046    1.0    False 
 40.0   61.0   1.8049  0.1046    1.0    False 
 40.0   62.0  -1.3162  0.2206    1.0    False 
 40.0   63.0  -2.1485  0.0602    1.0    False 
 40.0   64.0  -1.3861  0.1991    1.0    False 
 40.0   65.0  -1.7704  0.1104    1.0    False 
 40.0   66.0  -1.0848  0.3062    1.0    False 
 40.0   67.0  -1.0674  0.3136    1.0    False 
 40.0   68.0   0.3706  0.7195    1.0    False 
 40.0   69.0   0.3706  0.7195    1.0    False 
 40.0   70.0  -2.2357  0.0522    1.0    False 
 40.0   71.0  -1.3861  0.1991    1.0    False 
 40.0   72.0  -2.2355  0.0522    1.0    False 
 40.0   73.0  -1.5481  0.156     1.0    False 
 40.0   74.0  -1.0848  0.3062    1.0    False 
 40.0   75.0  -1.2485  0.2434    1.0    False 
 41.0   42.0   6.114   0.0002   0.5023  False 
 41.0   43.0  -0.8964  0.3934    1.0    False 
 41.0   44.0   1.9567  0.0821    1.0    False 
 41.0   45.0   1.9567  0.0821    1.0    False 
 41.0   46.0   5.6985  0.0003   0.8403  False 
 41.0   47.0   8.9637   0.0     0.0252   True 
 41.0   48.0   1.7896  0.1071    1.0    False 
 41.0   49.0   0.5331  0.6069    1.0    False 
 41.0   50.0  -0.8964  0.3934    1.0    False 
 41.0   51.0   3.8666  0.0038    1.0    False 
 41.0   52.0  -0.8964  0.3934    1.0    False 
 41.0   53.0  -0.8964  0.3934    1.0    False 
 41.0   54.0   2.9862  0.0153    1.0    False 
 41.0   55.0   1.8321  0.1002    1.0    False 
 41.0   56.0   6.3222  0.0001   0.3914  False 
 41.0   57.0   6.3222  0.0001   0.3914  False 
 41.0   58.0    nan     nan      nan    False 
 41.0   59.0   3.8666  0.0038    1.0    False 
 41.0   60.0   7.4761   0.0     0.1079  False 
 41.0   61.0   7.4761   0.0     0.1079  False 
 41.0   62.0   2.0902  0.0662    1.0    False 
 41.0   63.0   2.2971  0.0472    1.0    False 
 41.0   64.0   2.3716  0.0418    1.0    False 
 41.0   65.0   1.7261  0.1184    1.0    False 
 41.0   66.0   1.9099  0.0885    1.0    False 
 41.0   67.0   2.6889  0.0248    1.0    False 
 41.0   68.0   3.3333  0.0088    1.0    False 
 41.0   69.0   3.3333  0.0088    1.0    False 
 41.0   70.0   2.076   0.0677    1.0    False 
 41.0   71.0   2.3716  0.0418    1.0    False 
 41.0   72.0   1.5347  0.1592    1.0    False 
 41.0   73.0   2.4935  0.0342    1.0    False 
 41.0   74.0   1.9099  0.0885    1.0    False 
 41.0   75.0   1.8974  0.0903    1.0    False 
 42.0   43.0  -5.8609  0.0002   0.6853  False 
 42.0   44.0  -6.1713  0.0002   0.4687  False 
 42.0   45.0  -6.1713  0.0002   0.4687  False 
 42.0   46.0   1.4761  0.174     1.0    False 
 42.0   47.0   0.6517  0.5309    1.0    False 
 42.0   48.0   -3.897  0.0036    1.0    False 
 42.0   49.0  -5.0408  0.0007    1.0    False 
 42.0   50.0  -5.8609  0.0002   0.6853  False 
 42.0   51.0  -4.3645  0.0018    1.0    False 
 42.0   52.0  -5.8609  0.0002   0.6853  False 
 42.0   53.0  -5.8609  0.0002   0.6853  False 
 42.0   54.0  -5.0783  0.0007    1.0    False 
 42.0   55.0  -5.6889  0.0003   0.8506  False 
 42.0   56.0   1.0962  0.3014    1.0    False 
 42.0   57.0   1.0962  0.3014    1.0    False 
 42.0   58.0   -6.114  0.0002   0.5023  False 
 42.0   59.0  -4.3645  0.0018    1.0    False 
 42.0   60.0   2.5182  0.0329    1.0    False 
 42.0   61.0   2.5182  0.0329    1.0    False 
 42.0   62.0  -1.2475  0.2437    1.0    False 
 42.0   63.0   -2.585  0.0295    1.0    False 
 42.0   64.0  -1.4051  0.1936    1.0    False 
 42.0   65.0  -1.8593  0.0959    1.0    False 
 42.0   66.0  -1.0897  0.3042    1.0    False 
 42.0   67.0  -1.0415  0.3248    1.0    False 
 42.0   68.0   0.3046  0.7676    1.0    False 
 42.0   69.0   0.3046  0.7676    1.0    False 
 42.0   70.0  -3.1274  0.0122    1.0    False 
 42.0   71.0  -1.4051  0.1936    1.0    False 
 42.0   72.0  -2.7549  0.0223    1.0    False 
 42.0   73.0  -1.5619  0.1527    1.0    False 
 42.0   74.0  -1.0897  0.3042    1.0    False 
 42.0   75.0  -1.2807  0.2323    1.0    False 
 43.0   44.0   2.1937  0.0559    1.0    False 
 43.0   45.0   2.1937  0.0559    1.0    False 
 43.0   46.0   5.9063  0.0002   0.6478  False 
 43.0   47.0   7.6991   0.0     0.0856  False 
 43.0   48.0   1.7523  0.1136    1.0    False 
 43.0   49.0   0.8229  0.4318    1.0    False 
 43.0   50.0    nan     nan      nan    False 
 43.0   51.0   3.8384  0.004     1.0    False 
 43.0   52.0    nan     nan      nan    False 
 43.0   53.0    nan     nan      nan    False 
 43.0   54.0   3.2208  0.0105    1.0    False 
 43.0   55.0   2.1989  0.0554    1.0    False 
 43.0   56.0   5.5493  0.0004    1.0    False 
 43.0   57.0   5.5493  0.0004    1.0    False 
 43.0   58.0   0.8964  0.3934    1.0    False 
 43.0   59.0   3.8384  0.004     1.0    False 
 43.0   60.0   7.0972  0.0001   0.162   False 
 43.0   61.0   7.0972  0.0001   0.162   False 
 43.0   62.0   2.1477  0.0603    1.0    False 
 43.0   63.0   2.2214  0.0534    1.0    False 
 43.0   64.0   2.5242  0.0325    1.0    False 
 43.0   65.0   1.8791  0.0929    1.0    False 
 43.0   66.0   1.8476  0.0977    1.0    False 
 43.0   67.0   2.7093  0.024     1.0    False 
 43.0   68.0    3.3    0.0092    1.0    False 
 43.0   69.0    3.3    0.0092    1.0    False 
 43.0   70.0   1.8508  0.0972    1.0    False 
 43.0   71.0   2.5242  0.0325    1.0    False 
 43.0   72.0   1.6843  0.1264    1.0    False 
 43.0   73.0   2.6568  0.0262    1.0    False 
 43.0   74.0   1.8476  0.0977    1.0    False 
 43.0   75.0   1.9786  0.0792    1.0    False 
 44.0   45.0    nan     nan      nan    False 
 44.0   46.0   6.4711  0.0001   0.3285  False 
 44.0   47.0   5.7752  0.0003   0.7628  False 
 44.0   48.0   0.4428  0.6684    1.0    False 
 44.0   49.0  -0.7905  0.4496    1.0    False 
 44.0   50.0  -2.1937  0.0559    1.0    False 
 44.0   51.0   3.6489  0.0053    1.0    False 
 44.0   52.0  -2.1937  0.0559    1.0    False 
 44.0   53.0  -2.1937  0.0559    1.0    False 
 44.0   54.0    1.5    0.1679    1.0    False 
 44.0   55.0    1.0    0.3434    1.0    False 
 44.0   56.0   4.5568  0.0014    1.0    False 
 44.0   57.0   4.5568  0.0014    1.0    False 
 44.0   58.0  -1.9567  0.0821    1.0    False 
 44.0   59.0   3.6489  0.0053    1.0    False 
 44.0   60.0   6.6669  0.0001   0.262   False 
 44.0   61.0   6.6669  0.0001   0.262   False 
 44.0   62.0   1.6965  0.124     1.0    False 
 44.0   63.0   1.9171  0.0875    1.0    False 
 44.0   64.0   2.0824  0.067     1.0    False 
 44.0   65.0   1.3654  0.2053    1.0    False 
 44.0   66.0   1.5407  0.1578    1.0    False 
 44.0   67.0   2.4147  0.0389    1.0    False 
 44.0   68.0   2.8909  0.0179    1.0    False 
 44.0   69.0   2.8909  0.0179    1.0    False 
 44.0   70.0   1.4714  0.1753    1.0    False 
 44.0   71.0   2.0824  0.067     1.0    False 
 44.0   72.0   1.0861  0.3057    1.0    False 
 44.0   73.0   2.2287  0.0528    1.0    False 
 44.0   74.0   1.5407  0.1578    1.0    False 
 44.0   75.0   1.6076  0.1424    1.0    False 
 45.0   46.0   6.4711  0.0001   0.3285  False 
 45.0   47.0   5.7752  0.0003   0.7628  False 
 45.0   48.0   0.4428  0.6684    1.0    False 
 45.0   49.0  -0.7905  0.4496    1.0    False 
 45.0   50.0  -2.1937  0.0559    1.0    False 
 45.0   51.0   3.6489  0.0053    1.0    False 
 45.0   52.0  -2.1937  0.0559    1.0    False 
 45.0   53.0  -2.1937  0.0559    1.0    False 
 45.0   54.0    1.5    0.1679    1.0    False 
 45.0   55.0    1.0    0.3434    1.0    False 
 45.0   56.0   4.5568  0.0014    1.0    False 
 45.0   57.0   4.5568  0.0014    1.0    False 
 45.0   58.0  -1.9567  0.0821    1.0    False 
 45.0   59.0   3.6489  0.0053    1.0    False 
 45.0   60.0   6.6669  0.0001   0.262   False 
 45.0   61.0   6.6669  0.0001   0.262   False 
 45.0   62.0   1.6965  0.124     1.0    False 
 45.0   63.0   1.9171  0.0875    1.0    False 
 45.0   64.0   2.0824  0.067     1.0    False 
 45.0   65.0   1.3654  0.2053    1.0    False 
 45.0   66.0   1.5407  0.1578    1.0    False 
 45.0   67.0   2.4147  0.0389    1.0    False 
 45.0   68.0   2.8909  0.0179    1.0    False 
 45.0   69.0   2.8909  0.0179    1.0    False 
 45.0   70.0   1.4714  0.1753    1.0    False 
 45.0   71.0   2.0824  0.067     1.0    False 
 45.0   72.0   1.0861  0.3057    1.0    False 
 45.0   73.0   2.2287  0.0528    1.0    False 
 45.0   74.0   1.5407  0.1578    1.0    False 
 45.0   75.0   1.6076  0.1424    1.0    False 
 46.0   47.0  -0.6983  0.5026    1.0    False 
 46.0   48.0  -5.7279  0.0003   0.8097  False 
 46.0   49.0  -6.1192  0.0002   0.4991  False 
 46.0   50.0  -5.9063  0.0002   0.6478  False 
 46.0   51.0  -3.2393  0.0102    1.0    False 
 46.0   52.0  -5.9063  0.0002   0.6478  False 
 46.0   53.0  -5.9063  0.0002   0.6478  False 
 46.0   54.0  -6.0429  0.0002   0.5476  False 
 46.0   55.0  -5.7898  0.0003   0.7491  False 
 46.0   56.0  -0.1311  0.8986    1.0    False 
 46.0   57.0  -0.1311  0.8986    1.0    False 
 46.0   58.0  -5.6985  0.0003   0.8403  False 
 46.0   59.0  -3.2393  0.0102    1.0    False 
 46.0   60.0   0.2331  0.8209    1.0    False 
 46.0   61.0   0.2331  0.8209    1.0    False 
 46.0   62.0  -4.2939  0.002     1.0    False 
 46.0   63.0  -6.6028  0.0001   0.282   False 
 46.0   64.0  -5.2655  0.0005    1.0    False 
 46.0   65.0  -4.9565  0.0008    1.0    False 
 46.0   66.0  -3.1955  0.0109    1.0    False 
 46.0   67.0  -4.4342  0.0016    1.0    False 
 46.0   68.0  -0.9664  0.3591    1.0    False 
 46.0   69.0  -0.9664  0.3591    1.0    False 
 46.0   70.0  -5.0138  0.0007    1.0    False 
 46.0   71.0  -5.2655  0.0005    1.0    False 
 46.0   72.0  -5.8331  0.0002   0.7095  False 
 46.0   73.0  -4.5215  0.0014    1.0    False 
 46.0   74.0  -3.1955  0.0109    1.0    False 
 46.0   75.0  -4.7368  0.0011    1.0    False 
 47.0   48.0  -5.5062  0.0004    1.0    False 
 47.0   49.0  -6.1255  0.0002   0.4953  False 
 47.0   50.0  -7.6991   0.0     0.0856  False 
 47.0   51.0  -2.3392  0.0441    1.0    False 
 47.0   52.0  -7.6991   0.0     0.0856  False 
 47.0   53.0  -7.6991   0.0     0.0856  False 
 47.0   54.0  -6.1297  0.0002   0.4928  False 
 47.0   55.0  -4.8133  0.001     1.0    False 
 47.0   56.0   0.7436  0.4761    1.0    False 
 47.0   57.0   0.7436  0.4761    1.0    False 
 47.0   58.0  -8.9637   0.0     0.0252   True 
 47.0   59.0  -2.3392  0.0441    1.0    False 
 47.0   60.0   0.9901  0.348     1.0    False 
 47.0   61.0   0.9901  0.348     1.0    False 
 47.0   62.0  -1.8064  0.1043    1.0    False 
 47.0   63.0  -2.6197  0.0278    1.0    False 
 47.0   64.0  -1.8586  0.096     1.0    False 
 47.0   65.0  -1.9299  0.0857    1.0    False 
 47.0   66.0  -1.5762  0.1494    1.0    False 
 47.0   67.0  -1.5362  0.1589    1.0    False 
 47.0   68.0  -0.1861  0.8565    1.0    False 
 47.0   69.0  -0.1861  0.8565    1.0    False 
 47.0   70.0  -3.1017  0.0127    1.0    False 
 47.0   71.0  -1.8586  0.096     1.0    False 
 47.0   72.0  -2.4255  0.0383    1.0    False 
 47.0   73.0  -1.8117  0.1034    1.0    False 
 47.0   74.0  -1.5762  0.1494    1.0    False 
 47.0   75.0  -1.7003  0.1233    1.0    False 
 48.0   49.0  -1.3043  0.2245    1.0    False 
 48.0   50.0  -1.7523  0.1136    1.0    False 
 48.0   51.0   1.7807  0.1086    1.0    False 
 48.0   52.0  -1.7523  0.1136    1.0    False 
 48.0   53.0  -1.7523  0.1136    1.0    False 
 48.0   54.0   0.2877  0.7801    1.0    False 
 48.0   55.0  -0.0125  0.9903    1.0    False 
 48.0   56.0   4.6507  0.0012    1.0    False 
 48.0   57.0   4.6507  0.0012    1.0    False 
 48.0   58.0  -1.7896  0.1071    1.0    False 
 48.0   59.0   1.7807  0.1086    1.0    False 
 48.0   60.0   6.6268  0.0001   0.2744  False 
 48.0   61.0   6.6268  0.0001   0.2744  False 
 48.0   62.0   1.7362  0.1166    1.0    False 
 48.0   63.0   1.6357  0.1363    1.0    False 
 48.0   64.0   2.0199  0.0741    1.0    False 
 48.0   65.0   1.3001  0.2259    1.0    False 
 48.0   66.0   1.6316  0.1372    1.0    False 
 48.0   67.0   2.4309  0.0379    1.0    False 
 48.0   68.0   3.5227  0.0065    1.0    False 
 48.0   69.0   3.5227  0.0065    1.0    False 
 48.0   70.0   1.1195  0.2919    1.0    False 
 48.0   71.0   2.0199  0.0741    1.0    False 
 48.0   72.0   0.8518  0.4164    1.0    False 
 48.0   73.0   2.4429  0.0372    1.0    False 
 48.0   74.0   1.6316  0.1372    1.0    False 
 48.0   75.0   1.5632  0.1524    1.0    False 
 49.0   50.0  -0.8229  0.4318    1.0    False 
 49.0   51.0   2.9394  0.0165    1.0    False 
 49.0   52.0  -0.8229  0.4318    1.0    False 
 49.0   53.0  -0.8229  0.4318    1.0    False 
 49.0   54.0   1.4938  0.1694    1.0    False 
 49.0   55.0   0.8937  0.3948    1.0    False 
 49.0   56.0   5.5226  0.0004    1.0    False 
 49.0   57.0   5.5226  0.0004    1.0    False 
 49.0   58.0  -0.5331  0.6069    1.0    False 
 49.0   59.0   2.9394  0.0165    1.0    False 
 49.0   60.0    5.59   0.0003   0.965   False 
 49.0   61.0    5.59   0.0003   0.965   False 
 49.0   62.0   1.9897  0.0778    1.0    False 
 49.0   63.0   2.6324  0.0273    1.0    False 
 49.0   64.0   2.2027  0.0551    1.0    False 
 49.0   65.0   1.5472  0.1562    1.0    False 
 49.0   66.0   2.056   0.0699    1.0    False 
 49.0   67.0   2.7645  0.0219    1.0    False 
 49.0   68.0   3.2671  0.0097    1.0    False 
 49.0   69.0   3.2671  0.0097    1.0    False 
 49.0   70.0   2.3327  0.0445    1.0    False 
 49.0   71.0   2.2027  0.0551    1.0    False 
 49.0   72.0   1.2829  0.2316    1.0    False 
 49.0   73.0   2.3315  0.0446    1.0    False 
 49.0   74.0   2.056   0.0699    1.0    False 
 49.0   75.0   1.8231  0.1016    1.0    False 
 50.0   51.0   3.8384  0.004     1.0    False 
 50.0   52.0    nan     nan      nan    False 
 50.0   53.0    nan     nan      nan    False 
 50.0   54.0   3.2208  0.0105    1.0    False 
 50.0   55.0   2.1989  0.0554    1.0    False 
 50.0   56.0   5.5493  0.0004    1.0    False 
 50.0   57.0   5.5493  0.0004    1.0    False 
 50.0   58.0   0.8964  0.3934    1.0    False 
 50.0   59.0   3.8384  0.004     1.0    False 
 50.0   60.0   7.0972  0.0001   0.162   False 
 50.0   61.0   7.0972  0.0001   0.162   False 
 50.0   62.0   2.1477  0.0603    1.0    False 
 50.0   63.0   2.2214  0.0534    1.0    False 
 50.0   64.0   2.5242  0.0325    1.0    False 
 50.0   65.0   1.8791  0.0929    1.0    False 
 50.0   66.0   1.8476  0.0977    1.0    False 
 50.0   67.0   2.7093  0.024     1.0    False 
 50.0   68.0    3.3    0.0092    1.0    False 
 50.0   69.0    3.3    0.0092    1.0    False 
 50.0   70.0   1.8508  0.0972    1.0    False 
 50.0   71.0   2.5242  0.0325    1.0    False 
 50.0   72.0   1.6843  0.1264    1.0    False 
 50.0   73.0   2.6568  0.0262    1.0    False 
 50.0   74.0   1.8476  0.0977    1.0    False 
 50.0   75.0   1.9786  0.0792    1.0    False 
 51.0   52.0  -3.8384  0.004     1.0    False 
 51.0   53.0  -3.8384  0.004     1.0    False 
 51.0   54.0  -2.6386  0.027     1.0    False 
 51.0   55.0  -3.0296  0.0143    1.0    False 
 51.0   56.0   2.5617  0.0306    1.0    False 
 51.0   57.0   2.5617  0.0306    1.0    False 
 51.0   58.0  -3.8666  0.0038    1.0    False 
 51.0   59.0    nan     nan      nan    False 
 51.0   60.0   3.9947  0.0031    1.0    False 
 51.0   61.0   3.9947  0.0031    1.0    False 
 51.0   62.0   0.0289  0.9776    1.0    False 
 51.0   63.0  -0.5848  0.5731    1.0    False 
 51.0   64.0   0.0721  0.9441    1.0    False 
 51.0   65.0  -0.3001  0.7709    1.0    False 
 51.0   66.0   0.0852  0.9339    1.0    False 
 51.0   67.0    0.41   0.6914    1.0    False 
 51.0   68.0   1.3019  0.2253    1.0    False 
 51.0   69.0   1.3019  0.2253    1.0    False 
 51.0   70.0  -1.0472  0.3223    1.0    False 
 51.0   71.0   0.0721  0.9441    1.0    False 
 51.0   72.0  -0.8293  0.4284    1.0    False 
 51.0   73.0   0.097   0.9249    1.0    False 
 51.0   74.0   0.0852  0.9339    1.0    False 
 51.0   75.0   0.0014  0.999     1.0    False 
 52.0   53.0    nan     nan      nan    False 
 52.0   54.0   3.2208  0.0105    1.0    False 
 52.0   55.0   2.1989  0.0554    1.0    False 
 52.0   56.0   5.5493  0.0004    1.0    False 
 52.0   57.0   5.5493  0.0004    1.0    False 
 52.0   58.0   0.8964  0.3934    1.0    False 
 52.0   59.0   3.8384  0.004     1.0    False 
 52.0   60.0   7.0972  0.0001   0.162   False 
 52.0   61.0   7.0972  0.0001   0.162   False 
 52.0   62.0   2.1477  0.0603    1.0    False 
 52.0   63.0   2.2214  0.0534    1.0    False 
 52.0   64.0   2.5242  0.0325    1.0    False 
 52.0   65.0   1.8791  0.0929    1.0    False 
 52.0   66.0   1.8476  0.0977    1.0    False 
 52.0   67.0   2.7093  0.024     1.0    False 
 52.0   68.0    3.3    0.0092    1.0    False 
 52.0   69.0    3.3    0.0092    1.0    False 
 52.0   70.0   1.8508  0.0972    1.0    False 
 52.0   71.0   2.5242  0.0325    1.0    False 
 52.0   72.0   1.6843  0.1264    1.0    False 
 52.0   73.0   2.6568  0.0262    1.0    False 
 52.0   74.0   1.8476  0.0977    1.0    False 
 52.0   75.0   1.9786  0.0792    1.0    False 
 53.0   54.0   3.2208  0.0105    1.0    False 
 53.0   55.0   2.1989  0.0554    1.0    False 
 53.0   56.0   5.5493  0.0004    1.0    False 
 53.0   57.0   5.5493  0.0004    1.0    False 
 53.0   58.0   0.8964  0.3934    1.0    False 
 53.0   59.0   3.8384  0.004     1.0    False 
 53.0   60.0   7.0972  0.0001   0.162   False 
 53.0   61.0   7.0972  0.0001   0.162   False 
 53.0   62.0   2.1477  0.0603    1.0    False 
 53.0   63.0   2.2214  0.0534    1.0    False 
 53.0   64.0   2.5242  0.0325    1.0    False 
 53.0   65.0   1.8791  0.0929    1.0    False 
 53.0   66.0   1.8476  0.0977    1.0    False 
 53.0   67.0   2.7093  0.024     1.0    False 
 53.0   68.0    3.3    0.0092    1.0    False 
 53.0   69.0    3.3    0.0092    1.0    False 
 53.0   70.0   1.8508  0.0972    1.0    False 
 53.0   71.0   2.5242  0.0325    1.0    False 
 53.0   72.0   1.6843  0.1264    1.0    False 
 53.0   73.0   2.6568  0.0262    1.0    False 
 53.0   74.0   1.8476  0.0977    1.0    False 
 53.0   75.0   1.9786  0.0792    1.0    False 
 54.0   55.0  -0.4827  0.6408    1.0    False 
 54.0   56.0   4.9096  0.0008    1.0    False 
 54.0   57.0   4.9096  0.0008    1.0    False 
 54.0   58.0  -2.9862  0.0153    1.0    False 
 54.0   59.0   2.6386  0.027     1.0    False 
 54.0   60.0   5.8612  0.0002   0.6851  False 
 54.0   61.0   5.8612  0.0002   0.6851  False 
 54.0   62.0   1.2978  0.2266    1.0    False 
 54.0   63.0   1.2036  0.2594    1.0    False 
 54.0   64.0   1.5843  0.1476    1.0    False 
 54.0   65.0   0.9437   0.37     1.0    False 
 54.0   66.0   1.1973  0.2618    1.0    False 
 54.0   67.0   1.8902  0.0913    1.0    False 
 54.0   68.0   2.6138  0.0281    1.0    False 
 54.0   69.0   2.6138  0.0281    1.0    False 
 54.0   70.0   0.8277  0.4293    1.0    False 
 54.0   71.0   1.5843  0.1476    1.0    False 
 54.0   72.0   0.6223  0.5492    1.0    False 
 54.0   73.0   1.6052  0.1429    1.0    False 
 54.0   74.0   1.1973  0.2618    1.0    False 
 54.0   75.0   1.2264  0.2512    1.0    False 
 55.0   56.0   3.9164  0.0035    1.0    False 
 55.0   57.0   3.9164  0.0035    1.0    False 
 55.0   58.0  -1.8321  0.1002    1.0    False 
 55.0   59.0   3.0296  0.0143    1.0    False 
 55.0   60.0   6.6025  0.0001   0.2821  False 
 55.0   61.0   6.6025  0.0001   0.2821  False 
 55.0   62.0   1.4138  0.1911    1.0    False 
 55.0   63.0   1.427   0.1874    1.0    False 
 55.0   64.0   1.7941  0.1064    1.0    False 
 55.0   65.0   1.1471  0.2809    1.0    False 
 55.0   66.0   1.3072  0.2235    1.0    False 
 55.0   67.0   2.0073  0.0757    1.0    False 
 55.0   68.0   2.6028  0.0286    1.0    False 
 55.0   69.0   2.6028  0.0286    1.0    False 
 55.0   70.0   1.0473  0.3223    1.0    False 
 55.0   71.0   1.7941  0.1064    1.0    False 
 55.0   72.0   0.8452  0.4199    1.0    False 
 55.0   73.0   1.9161  0.0876    1.0    False 
 55.0   74.0   1.3072  0.2235    1.0    False 
 55.0   75.0   1.3961  0.1961    1.0    False 
 56.0   57.0    nan     nan      nan    False 
 56.0   58.0  -6.3222  0.0001   0.3914  False 
 56.0   59.0  -2.5617  0.0306    1.0    False 
 56.0   60.0   0.3393  0.7422    1.0    False 
 56.0   61.0   0.3393  0.7422    1.0    False 
 56.0   62.0   -2.279  0.0486    1.0    False 
 56.0   63.0  -2.9106  0.0173    1.0    False 
 56.0   64.0   -2.254  0.0507    1.0    False 
 56.0   65.0  -2.1726  0.0579    1.0    False 
 56.0   66.0  -2.0753  0.0678    1.0    False 
 56.0   67.0  -2.0051  0.0759    1.0    False 
 56.0   68.0  -0.6249  0.5476    1.0    False 
 56.0   69.0  -0.6249  0.5476    1.0    False 
 56.0   70.0  -3.3913  0.008     1.0    False 
 56.0   71.0   -2.254  0.0507    1.0    False 
 56.0   72.0  -2.7505  0.0225    1.0    False 
 56.0   73.0  -2.0971  0.0654    1.0    False 
 56.0   74.0  -2.0753  0.0678    1.0    False 
 56.0   75.0  -2.0846  0.0668    1.0    False 
 57.0   58.0  -6.3222  0.0001   0.3914  False 
 57.0   59.0  -2.5617  0.0306    1.0    False 
 57.0   60.0   0.3393  0.7422    1.0    False 
 57.0   61.0   0.3393  0.7422    1.0    False 
 57.0   62.0   -2.279  0.0486    1.0    False 
 57.0   63.0  -2.9106  0.0173    1.0    False 
 57.0   64.0   -2.254  0.0507    1.0    False 
 57.0   65.0  -2.1726  0.0579    1.0    False 
 57.0   66.0  -2.0753  0.0678    1.0    False 
 57.0   67.0  -2.0051  0.0759    1.0    False 
 57.0   68.0  -0.6249  0.5476    1.0    False 
 57.0   69.0  -0.6249  0.5476    1.0    False 
 57.0   70.0  -3.3913  0.008     1.0    False 
 57.0   71.0   -2.254  0.0507    1.0    False 
 57.0   72.0  -2.7505  0.0225    1.0    False 
 57.0   73.0  -2.0971  0.0654    1.0    False 
 57.0   74.0  -2.0753  0.0678    1.0    False 
 57.0   75.0  -2.0846  0.0668    1.0    False 
 58.0   59.0   3.8666  0.0038    1.0    False 
 58.0   60.0   7.4761   0.0     0.1079  False 
 58.0   61.0   7.4761   0.0     0.1079  False 
 58.0   62.0   2.0902  0.0662    1.0    False 
 58.0   63.0   2.2971  0.0472    1.0    False 
 58.0   64.0   2.3716  0.0418    1.0    False 
 58.0   65.0   1.7261  0.1184    1.0    False 
 58.0   66.0   1.9099  0.0885    1.0    False 
 58.0   67.0   2.6889  0.0248    1.0    False 
 58.0   68.0   3.3333  0.0088    1.0    False 
 58.0   69.0   3.3333  0.0088    1.0    False 
 58.0   70.0   2.076   0.0677    1.0    False 
 58.0   71.0   2.3716  0.0418    1.0    False 
 58.0   72.0   1.5347  0.1592    1.0    False 
 58.0   73.0   2.4935  0.0342    1.0    False 
 58.0   74.0   1.9099  0.0885    1.0    False 
 58.0   75.0   1.8974  0.0903    1.0    False 
 59.0   60.0   3.9947  0.0031    1.0    False 
 59.0   61.0   3.9947  0.0031    1.0    False 
 59.0   62.0   0.0289  0.9776    1.0    False 
 59.0   63.0  -0.5848  0.5731    1.0    False 
 59.0   64.0   0.0721  0.9441    1.0    False 
 59.0   65.0  -0.3001  0.7709    1.0    False 
 59.0   66.0   0.0852  0.9339    1.0    False 
 59.0   67.0    0.41   0.6914    1.0    False 
 59.0   68.0   1.3019  0.2253    1.0    False 
 59.0   69.0   1.3019  0.2253    1.0    False 
 59.0   70.0  -1.0472  0.3223    1.0    False 
 59.0   71.0   0.0721  0.9441    1.0    False 
 59.0   72.0  -0.8293  0.4284    1.0    False 
 59.0   73.0   0.097   0.9249    1.0    False 
 59.0   74.0   0.0852  0.9339    1.0    False 
 59.0   75.0   0.0014  0.999     1.0    False 
 60.0   61.0    nan     nan      nan    False 
 60.0   62.0  -2.5577  0.0308    1.0    False 
 60.0   63.0  -3.6671  0.0052    1.0    False 
 60.0   64.0  -2.8444  0.0193    1.0    False 
 60.0   65.0  -3.7909  0.0043    1.0    False 
 60.0   66.0  -2.2442  0.0515    1.0    False 
 60.0   67.0  -2.3254  0.0451    1.0    False 
 60.0   68.0  -0.9117  0.3857    1.0    False 
 60.0   69.0  -0.9117  0.3857    1.0    False 
 60.0   70.0  -4.2402  0.0022    1.0    False 
 60.0   71.0  -2.8444  0.0193    1.0    False 
 60.0   72.0  -4.5222  0.0014    1.0    False 
 60.0   73.0  -3.5785  0.0059    1.0    False 
 60.0   74.0  -2.2442  0.0515    1.0    False 
 60.0   75.0  -2.6427  0.0268    1.0    False 
 61.0   62.0  -2.5577  0.0308    1.0    False 
 61.0   63.0  -3.6671  0.0052    1.0    False 
 61.0   64.0  -2.8444  0.0193    1.0    False 
 61.0   65.0  -3.7909  0.0043    1.0    False 
 61.0   66.0  -2.2442  0.0515    1.0    False 
 61.0   67.0  -2.3254  0.0451    1.0    False 
 61.0   68.0  -0.9117  0.3857    1.0    False 
 61.0   69.0  -0.9117  0.3857    1.0    False 
 61.0   70.0  -4.2402  0.0022    1.0    False 
 61.0   71.0  -2.8444  0.0193    1.0    False 
 61.0   72.0  -4.5222  0.0014    1.0    False 
 61.0   73.0  -3.5785  0.0059    1.0    False 
 61.0   74.0  -2.2442  0.0515    1.0    False 
 61.0   75.0  -2.6427  0.0268    1.0    False 
 62.0   63.0  -0.8232  0.4316    1.0    False 
 62.0   64.0   0.116   0.9102    1.0    False 
 62.0   65.0  -0.6116  0.5559    1.0    False 
 62.0   66.0   0.1381  0.8932    1.0    False 
 62.0   67.0   1.4989  0.1681    1.0    False 
 62.0   68.0   3.4214  0.0076    1.0    False 
 62.0   69.0   3.4214  0.0076    1.0    False 
 62.0   70.0  -0.9259  0.3787    1.0    False 
 62.0   71.0   0.116   0.9102    1.0    False 
 62.0   72.0  -1.3539  0.2088    1.0    False 
 62.0   73.0   0.1029  0.9203    1.0    False 
 62.0   74.0   0.1381  0.8932    1.0    False 
 62.0   75.0  -0.0916  0.929     1.0    False 
 63.0   64.0   1.0157  0.3363    1.0    False 
 63.0   65.0   0.2118  0.837     1.0    False 
 63.0   66.0   0.9475  0.3681    1.0    False 
 63.0   67.0   1.8667  0.0948    1.0    False 
 63.0   68.0   2.7174  0.0237    1.0    False 
 63.0   69.0   2.7174  0.0237    1.0    False 
 63.0   70.0  -0.6976  0.5031    1.0    False 
 63.0   71.0   1.0157  0.3363    1.0    False 
 63.0   72.0  -0.5156  0.6186    1.0    False 
 63.0   73.0   0.9365  0.3735    1.0    False 
 63.0   74.0   0.9475  0.3681    1.0    False 
 63.0   75.0   0.7429  0.4765    1.0    False 
 64.0   65.0   -0.752  0.4713    1.0    False 
 64.0   66.0   0.0533  0.9587    1.0    False 
 64.0   67.0   0.9652  0.3597    1.0    False 
 64.0   68.0   2.8506  0.0191    1.0    False 
 64.0   69.0   2.8506  0.0191    1.0    False 
 64.0   70.0  -0.9924  0.3469    1.0    False 
 64.0   71.0    nan     nan      nan    False 
 64.0   72.0  -1.5922  0.1458    1.0    False 
 64.0   73.0   0.0516   0.96     1.0    False 
 64.0   74.0   0.0533  0.9587    1.0    False 
 64.0   75.0   -0.225  0.827     1.0    False 
 65.0   66.0   0.5363  0.6048    1.0    False 
 65.0   67.0   1.2059  0.2586    1.0    False 
 65.0   68.0   3.0251  0.0144    1.0    False 
 65.0   69.0   3.0251  0.0144    1.0    False 
 65.0   70.0   -0.475  0.6461    1.0    False 
 65.0   71.0   0.752   0.4713    1.0    False 
 65.0   72.0    -1.5   0.1679    1.0    False 
 65.0   73.0   0.9226  0.3803    1.0    False 
 65.0   74.0   0.5363  0.6048    1.0    False 
 65.0   75.0   0.6301  0.5443    1.0    False 
 66.0   67.0   0.4988  0.6299    1.0    False 
 66.0   68.0   2.5634  0.0305    1.0    False 
 66.0   69.0   2.5634  0.0305    1.0    False 
 66.0   70.0  -1.1723  0.2712    1.0    False 
 66.0   71.0  -0.0533  0.9587    1.0    False 
 66.0   72.0  -1.0646  0.3148    1.0    False 
 66.0   73.0   -0.019  0.9852    1.0    False 
 66.0   74.0    nan     nan      nan    False 
 66.0   75.0  -0.2032  0.8435    1.0    False 
 67.0   68.0   2.0632  0.0691    1.0    False 
 67.0   69.0   2.0632  0.0691    1.0    False 
 67.0   70.0  -1.6045  0.1431    1.0    False 
 67.0   71.0  -0.9652  0.3597    1.0    False 
 67.0   72.0  -2.0276  0.0732    1.0    False 
 67.0   73.0  -0.5988  0.5641    1.0    False 
 67.0   74.0  -0.4988  0.6299    1.0    False 
 67.0   75.0  -1.0146  0.3368    1.0    False 
 68.0   69.0    nan     nan      nan    False 
 68.0   70.0  -2.4253  0.0383    1.0    False 
 68.0   71.0  -2.8506  0.0191    1.0    False 
 68.0   72.0   -3.261  0.0098    1.0    False 
 68.0   73.0  -2.2975  0.0472    1.0    False 
 68.0   74.0  -2.5634  0.0305    1.0    False 
 68.0   75.0  -2.7788  0.0214    1.0    False 
 69.0   70.0  -2.4253  0.0383    1.0    False 
 69.0   71.0  -2.8506  0.0191    1.0    False 
 69.0   72.0   -3.261  0.0098    1.0    False 
 69.0   73.0  -2.2975  0.0472    1.0    False 
 69.0   74.0  -2.5634  0.0305    1.0    False 
 69.0   75.0  -2.7788  0.0214    1.0    False 
 70.0   71.0   0.9924  0.3469    1.0    False 
 70.0   72.0  -0.0264  0.9795    1.0    False 
 70.0   73.0   1.0123  0.3378    1.0    False 
 70.0   74.0   1.1723  0.2712    1.0    False 
 70.0   75.0   0.8812  0.4011    1.0    False 
 71.0   72.0  -1.5922  0.1458    1.0    False 
 71.0   73.0   0.0516   0.96     1.0    False 
 71.0   74.0   0.0533  0.9587    1.0    False 
 71.0   75.0   -0.225  0.827     1.0    False 
 72.0   73.0   1.5827  0.1479    1.0    False 
 72.0   74.0   1.0646  0.3148    1.0    False 
 72.0   75.0   1.3714  0.2035    1.0    False 
 73.0   74.0   0.019   0.9852    1.0    False 
 73.0   75.0  -0.1818  0.8598    1.0    False 
 74.0   75.0  -0.2032  0.8435    1.0    False 
----------------------------------------------

b) Plot performances (top-10 classifiers)


In [335]:
thr = 10

In [336]:
dfDesc = df.sort_values("cv_f1_mean", ascending=False)
   
dfDesc[["fs","sm","metric","cls","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          'test_prec', 'test_rec',"test_f1"]].iloc[:thr,:]


Out[336]:
fs sm metric cls params tr_f1 cv_f1 cv_prec cv_rec test_prec test_rec test_f1
50 none none f1_weighted svmRBF [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.77 0.85 0.76
48 none none f1_weighted nn [(30, 30), 0.01] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.77 0.85 0.76
43 none none precision_weighted svmRBF [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.77 0.85 0.76
44 none none f1_weighted logReg [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.77 0.85 0.76
45 none none precision_weighted logReg [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.77 0.85 0.76
53 none after precision_weighted svmRBF [0.001, None, 3, 50] 1.00 0.7+/-0.16 0.75+/-0.19 0.71+/-0.15 0.77 0.85 0.76
52 none after f1_weighted svmRBF [0.001, None, 3, 50] 1.00 0.7+/-0.16 0.75+/-0.19 0.71+/-0.15 0.77 0.85 0.76
58 none after f1_weighted nn [(50, 50), 4, 0.01] 1.00 0.7+/-0.14 0.77+/-0.15 0.71+/-0.13 0.77 0.85 0.76
49 none none precision_weighted nn [(150,), 0.01] 1.00 0.69+/-0.18 0.76+/-0.2 0.71+/-0.17 0.77 0.85 0.76
12 combine_fs after f1_weighted svmRBF [0.001, None, 3, 40, 15] 0.93 0.68+/-0.19 0.7+/-0.2 0.69+/-0.18 0.62 0.79 0.57

In [337]:
plt.figure(figsize=(10,6))
plt.errorbar(x = range(thr), y= df["cv_f1_mean"].iloc[:thr], yerr=df["cv_f1_std"].iloc[:thr], linestyle='None', marker='o')
plt.xticks(range(thr),df["cls"].iloc[:thr].str.cat(df["params"].iloc[:thr].astype(str), sep="").
           str.cat(df["fs"].iloc[:thr],sep="_").
           str.cat(df["sm"].iloc[:thr],sep="_").
           str.cat(df["metric"].iloc[:thr],sep="_"),
           rotation=90)
plt.ylabel("avg (CV f1_score)")
plt.ylim(0.4,1.05)
plt.xlim(-1,11)
plt.axhline(0.5,c="r",linestyle="--", label="random")
plt.show()


c) Group performances by (algorithms, fs, sampling, metric)


In [371]:
thr=df.shape[0] #10

In [372]:
dfOrd = df.sort_values("cv_f1_mean", ascending=False)

#Classifier algorithms
dfCls = dfOrd.iloc[:thr,:].groupby(["cls"]).count().reset_index()
dfCls["cont"] = dfCls.iloc[:,-1]
dfCls = dfCls[["cls","cont"]]

dfClsPerf = dfOrd.iloc[:thr,:][["cls","cv_f1_mean"]].groupby(["cls"]).agg(["mean","max","min","std"]).reset_index()
dfClsPerf["cv_mean"] = dfClsPerf.iloc[:,1]
dfClsPerf["cv_max"] = dfClsPerf.iloc[:,2]
dfClsPerf["cv_min"] = dfClsPerf.iloc[:,3]
dfClsPerf["cv_std"] = dfClsPerf.iloc[:,4]
dfClsPerf = dfClsPerf[["cls","cv_mean","cv_max","cv_min","cv_std"]]

dfClsMerged = pd.merge(dfCls,dfClsPerf,on="cls")
dfClsMerged["cv_mean"] = dfClsMerged.iloc[:,2]
dfClsMerged["cv_max"] = dfClsMerged.iloc[:,3]
dfClsMerged["cv_min"] = dfClsMerged.iloc[:,4]
dfClsMerged["cv_std"] = dfClsMerged.iloc[:,5]
dfClsMerged = dfClsMerged[["cls","cont","cv_mean","cv_max","cv_min","cv_std"]].sort_values(["cont","cv_mean"], ascending=False)
display(dfClsMerged)

#Feature selection
dfFs = dfOrd.iloc[:thr,:].groupby(["fs"]).count().reset_index()
dfFs["cont"] = dfFs.iloc[:,-1]
dfFs = dfFs[["fs","cont"]]

dfFsPerf = dfOrd.iloc[:thr,:][["fs","cv_f1_mean"]].groupby(["fs"]).agg(["mean","max","min","std"]).reset_index()
dfFsPerf["cv_mean"] = dfFsPerf.iloc[:,1]
dfFsPerf["cv_max"] = dfFsPerf.iloc[:,2]
dfFsPerf["cv_min"] = dfFsPerf.iloc[:,3]
dfFsPerf["cv_std"] = dfFsPerf.iloc[:,4]
dfFsPerf = dfFsPerf[["fs","cv_mean","cv_max","cv_min","cv_std"]]

dfFsMerged = pd.merge(dfFs,dfFsPerf,on="fs")
dfFsMerged["cv_mean"] = dfFsMerged.iloc[:,2]
dfFsMerged["cv_max"] = dfFsMerged.iloc[:,3]
dfFsMerged["cv_min"] = dfFsMerged.iloc[:,4]
dfFsMerged["cv_std"] = dfFsMerged.iloc[:,5]

dfFsMerged = dfFsMerged[["fs","cont","cv_mean","cv_max","cv_min","cv_std"]].sort_values(["cont","cv_mean"], ascending=False)
display(dfFsMerged)

#Sampling
dfSm = dfOrd.iloc[:thr,:].groupby(["sm"]).count().reset_index()
dfSm["cont"] = dfSm.iloc[:,-1]
dfSm = dfSm[["sm","cont"]]

dfSmPerf = dfOrd.iloc[:thr,:][["sm","cv_f1_mean"]].groupby(["sm"]).agg(["mean","max","min","std"]).reset_index()
dfSmPerf["cv_mean"] = dfSmPerf.iloc[:,1]
dfSmPerf["cv_max"] = dfSmPerf.iloc[:,2]
dfSmPerf["cv_min"] = dfSmPerf.iloc[:,3]
dfSmPerf["cv_std"] = dfSmPerf.iloc[:,4]
dfSmPerf = dfSmPerf[["sm","cv_mean","cv_max","cv_min","cv_std"]]

dfSmMerged = pd.merge(dfSm,dfSmPerf,on="sm")
dfSmMerged["cv_mean"] = dfSmMerged.iloc[:,2]
dfSmMerged["cv_max"] = dfSmMerged.iloc[:,3]
dfSmMerged["cv_min"] = dfSmMerged.iloc[:,4]
dfSmMerged["cv_std"] = dfSmMerged.iloc[:,5]
dfSmMerged = dfSmMerged[["sm","cont","cv_mean","cv_max","cv_min","cv_std"]].sort_values(["cont","cv_mean"], ascending=False)
display(dfSmMerged)

#Metric
dfMetric = dfOrd.iloc[:thr,:].groupby(["metric"]).count().reset_index()
dfMetric["cont"] = dfMetric.iloc[:,-1]
dfMetric = dfMetric[["metric","cont"]]

dfMetricPerf = dfOrd.iloc[:thr,:][["metric","cv_f1_mean"]].groupby(["metric"]).agg(["mean","max","min","std"]).reset_index()
dfMetricPerf["cv_mean"] = dfMetricPerf.iloc[:,1]
dfMetricPerf["cv_max"] = dfMetricPerf.iloc[:,2]
dfMetricPerf["cv_min"] = dfMetricPerf.iloc[:,3]
dfMetricPerf["cv_std"] = dfMetricPerf.iloc[:,4]
dfMetricPerf = dfMetricPerf[["metric","cv_mean","cv_max","cv_min","cv_std"]]

dfMetricMerged = pd.merge(dfMetric,dfMetricPerf,on="metric")
dfMetricMerged["cv_mean"] = dfMetricMerged.iloc[:,2]
dfMetricMerged["cv_max"] = dfMetricMerged.iloc[:,3]
dfMetricMerged["cv_min"] = dfMetricMerged.iloc[:,4]
dfMetricMerged["cv_std"] = dfMetricMerged.iloc[:,5]
dfMetricMerged = dfMetricMerged[["metric","cont","cv_mean","cv_max","cv_min","cv_std"]].sort_values(["cont","cv_mean"], ascending=False)
display(dfMetricMerged)


cls cont cv_mean cv_max cv_min cv_std
2 nn 16 0.60 0.71 0.49 0.06
4 svmRBF 16 0.59 0.71 0.45 0.10
1 logReg 16 0.59 0.70 0.49 0.07
0 knn 16 0.58 0.66 0.49 0.04
3 rf 12 0.57 0.61 0.53 0.03
fs cont cv_mean cv_max cv_min cv_std
2 none 20 0.65 0.71 0.57 0.06
0 combine_fs 20 0.56 0.68 0.47 0.06
1 lasso_fs 20 0.53 0.60 0.45 0.04
3 rfe_rf_fs 16 0.61 0.66 0.49 0.04
sm cont cv_mean cv_max cv_min cv_std
1 none 38 0.59 0.71 0.47 0.07
0 after 38 0.58 0.70 0.45 0.07
metric cont cv_mean cv_max cv_min cv_std
0 f1_weighted 38 0.59 0.71 0.45 0.07
1 precision_weighted 38 0.59 0.71 0.45 0.07

2.2. Pipelines of descriptive classifiers (RF,LNN, LogReg)

a) Table top-10 classifiers


In [373]:
dfDesc = df[np.logical_not(df["cls"].isin(["svmRBF","nn"]))]\
        .sort_values("cv_f1_mean", ascending=False)
   
dfDesc[["fs","sm","metric","cls","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']].iloc[:thr,:]
#"ds","exp",


Out[373]:
fs sm metric cls params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
44 none none f1_weighted logReg [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.76 0.77 0.85
45 none none precision_weighted logReg [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.76 0.77 0.85
69 rfe_rf_fs none f1_weighted knn [21, uniform, 5, 0.1] 0.86 0.66+/-0.2 0.7+/-0.21 0.68+/-0.19 0.60 0.62 0.66
55 none after precision_weighted logReg [None, 5, 4, l2] 1.00 0.66+/-0.2 0.68+/-0.23 0.68+/-0.17 0.76 0.77 0.85
54 none after f1_weighted logReg [None, 5, 4, l2] 1.00 0.66+/-0.2 0.68+/-0.23 0.68+/-0.17 0.76 0.77 0.85
68 rfe_rf_fs none precision_weighted knn [32, uniform, 5, 0.1] 0.90 0.64+/-0.21 0.66+/-0.24 0.68+/-0.18 0.69 0.69 0.72
70 rfe_rf_fs none f1_weighted logReg [43, balanced, 5, 0.1, l2] 1.00 0.62+/-0.19 0.64+/-0.23 0.64+/-0.16 0.44 0.54 0.77
67 rfe_rf_fs none precision_weighted logReg [43, balanced, 5, 0.1, l2] 1.00 0.62+/-0.19 0.64+/-0.23 0.64+/-0.16 0.44 0.54 0.77
7 combine_fs none precision_weighted knn [uniform, 3, 20] 0.93 0.62+/-0.14 0.62+/-0.16 0.63+/-0.12 0.60 0.62 0.66
6 combine_fs none f1_weighted knn [uniform, 3, 20] 0.93 0.62+/-0.14 0.62+/-0.16 0.63+/-0.12 0.60 0.62 0.66
59 none after f1_weighted rf [gini, None, None, 150, 5] 1.00 0.61+/-0.18 0.66+/-0.2 0.63+/-0.18 0.84 0.85 0.88
51 none after precision_weighted rf [gini, None, None, 150, 5] 1.00 0.61+/-0.18 0.66+/-0.2 0.63+/-0.18 0.84 0.85 0.88
63 rfe_rf_fs after f1_weighted logReg [0.1, 4, l2, None, 5, 43] 1.00 0.61+/-0.18 0.62+/-0.21 0.63+/-0.16 0.44 0.54 0.77
62 rfe_rf_fs after precision_weighted logReg [0.1, 4, l2, None, 5, 43] 1.00 0.61+/-0.18 0.62+/-0.21 0.63+/-0.16 0.44 0.54 0.77
40 none none f1_weighted rf [entropy, 4, None, 100] 1.00 0.6+/-0.13 0.68+/-0.16 0.63+/-0.13 0.68 0.69 0.71
42 none none precision_weighted rf [entropy, 4, None, 100] 1.00 0.6+/-0.13 0.68+/-0.16 0.63+/-0.13 0.68 0.69 0.71
34 lasso_fs none precision_weighted knn [1, uniform, 5] 0.97 0.6+/-0.16 0.65+/-0.18 0.62+/-0.14 0.84 0.85 0.88
35 lasso_fs none f1_weighted knn [1, uniform, 5] 0.97 0.6+/-0.16 0.65+/-0.18 0.62+/-0.14 0.84 0.85 0.88
14 combine_fs after f1_weighted logReg [None, 5, l2, 50, 3] 1.00 0.59+/-0.22 0.6+/-0.24 0.61+/-0.2 0.57 0.62 0.79
26 lasso_fs after precision_weighted logReg [None, 1, 1e-05, 5, l2] 0.97 0.59+/-0.22 0.6+/-0.24 0.61+/-0.19 0.57 0.62 0.79
61 rfe_rf_fs after f1_weighted knn [43, 11, uniform, 0.1, 5] 0.76 0.58+/-0.16 0.65+/-0.18 0.6+/-0.15 0.44 0.54 0.77
36 lasso_fs none precision_weighted logReg [balanced, 1, 1e-05, l2] 0.97 0.58+/-0.22 0.6+/-0.25 0.6+/-0.21 0.57 0.62 0.79
16 combine_fs after f1_weighted knn [uniform, 3, 20, 3] 0.90 0.57+/-0.16 0.59+/-0.18 0.59+/-0.14 0.67 0.69 0.82
56 none after f1_weighted knn [uniform, 11, 5] 0.68 0.57+/-0.17 0.62+/-0.21 0.6+/-0.14 0.67 0.69 0.82
57 none after precision_weighted knn [uniform, 11, 5] 0.68 0.57+/-0.17 0.62+/-0.21 0.6+/-0.14 0.67 0.69 0.82
47 none none precision_weighted knn [uniform, 3] 0.79 0.57+/-0.15 0.59+/-0.19 0.59+/-0.14 0.46 0.46 0.47
46 none none f1_weighted knn [uniform, 3] 0.79 0.57+/-0.15 0.59+/-0.19 0.59+/-0.14 0.46 0.46 0.47
25 lasso_fs after f1_weighted knn [1, uniform, 7, 4] 0.86 0.56+/-0.22 0.62+/-0.26 0.59+/-0.2 0.57 0.62 0.79
11 combine_fs after precision_weighted rf [4, 100, gini, 3, None, 20] 0.97 0.56+/-0.16 0.56+/-0.18 0.59+/-0.13 0.53 0.54 0.55
10 combine_fs after f1_weighted rf [4, 100, gini, 3, None, 20] 0.97 0.56+/-0.16 0.56+/-0.18 0.59+/-0.13 0.53 0.54 0.55
8 combine_fs none f1_weighted rf [150, entropy, 4, balanced, 20] 1.00 0.55+/-0.14 0.58+/-0.2 0.59+/-0.12 0.69 0.69 0.72
1 combine_fs none precision_weighted rf [150, entropy, 4, balanced, 20] 1.00 0.55+/-0.14 0.58+/-0.2 0.59+/-0.12 0.69 0.69 0.72
39 lasso_fs none precision_weighted rf [entropy, 1, 4, balanced, 200] 1.00 0.55+/-0.19 0.59+/-0.23 0.58+/-0.18 0.61 0.62 0.61
21 lasso_fs none f1_weighted rf [entropy, 1, 4, balanced, 200] 1.00 0.55+/-0.19 0.59+/-0.23 0.58+/-0.18 0.61 0.62 0.61
24 lasso_fs after precision_weighted knn [1, distance, 11, 4] 1.00 0.55+/-0.22 0.63+/-0.24 0.57+/-0.22 0.57 0.62 0.79
31 lasso_fs after f1_weighted rf [1, 100, entropy, 5, 4, None] 1.00 0.54+/-0.18 0.56+/-0.19 0.56+/-0.18 0.54 0.54 0.54
30 lasso_fs after precision_weighted rf [1, 100, gini, 3, None, None] 1.00 0.53+/-0.21 0.55+/-0.22 0.54+/-0.21 0.69 0.69 0.72
15 combine_fs after precision_weighted logReg [None, 15, l1, 30, 3] 1.00 0.52+/-0.2 0.55+/-0.21 0.53+/-0.2 0.57 0.62 0.79
0 combine_fs after precision_weighted knn [uniform, 7, 10, 4] 0.90 0.52+/-0.19 0.54+/-0.22 0.54+/-0.18 0.44 0.46 0.47
5 combine_fs none precision_weighted logReg [None, 30, l1, 30] 1.00 0.5+/-0.19 0.52+/-0.19 0.51+/-0.19 0.57 0.62 0.79
4 combine_fs none f1_weighted logReg [None, 30, l1, 30] 1.00 0.5+/-0.19 0.52+/-0.19 0.51+/-0.19 0.57 0.62 0.79
37 lasso_fs none f1_weighted logReg [None, 1, 0.5, l1] 0.93 0.5+/-0.2 0.5+/-0.21 0.51+/-0.18 0.76 0.77 0.85
60 rfe_rf_fs after precision_weighted knn [43, 7, uniform, 0.1, 5] 0.68 0.49+/-0.19 0.56+/-0.23 0.52+/-0.17 0.44 0.54 0.77
27 lasso_fs after f1_weighted logReg [None, 1, 0.5, 5, l1] 0.93 0.49+/-0.14 0.49+/-0.16 0.5+/-0.12 0.76 0.77 0.85

b) Plot all pipeline performances grouped by classifier algorithm


In [374]:
dfDesc.boxplot(by="cls",column=["cv_f1_mean"])
plt.ylim(0.4,1.0)
plt.suptitle("")
plt.xlabel("")
plt.title("")


Out[374]:
<matplotlib.text.Text at 0x7f874d69c750>

c) Top descriptive classifiers by algorithm type


In [375]:
#Pick one randomly (from the group with same f1)
idx = dfDesc.groupby(['cls'])['cv_f1_mean'].transform(max) == dfDesc['cv_f1_mean']

dfDescIdx = dfDesc[idx]
dfDescIdx = dfDescIdx.groupby("cls").first()
print dfDescIdx.exp.values
dfDescIdx[["fs","sm","metric","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']]


[69 44 59]
Out[375]:
fs sm metric params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
cls
knn rfe_rf_fs none f1_weighted [21, uniform, 5, 0.1] 0.86 0.66+/-0.2 0.7+/-0.21 0.68+/-0.19 0.60 0.62 0.66
logReg none none f1_weighted [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.76 0.77 0.85
rf none after f1_weighted [gini, None, None, 150, 5] 1.00 0.61+/-0.18 0.66+/-0.2 0.63+/-0.18 0.84 0.85 0.88

In [376]:
st, p = stats.f_oneway(*[cvs[cvs[:,0] == i,1] for i in dfDescIdx.exp.values])
print "stat:",st, "p-value:", p
print "Means:",[np.mean(cvs[cvs[:,0] == i,1]) for i in dfDescIdx.exp.values]
print "std:",[np.std(cvs[cvs[:,0] == i,1]) for i in dfDescIdx.exp.values]

if p < 0.05:
    #Find pair wise significance tests

    mc = MultiComparison(cvs[:,1], cvs[:,0])
    result = mc.tukeyhsd()

    print(result)
    print(mc.groupsunique)


stat: nan p-value: nan
Means: [nan, nan, nan]
std: [nan, nan, nan]

Plot performances best classifier algorithms


In [377]:
dfDescIdx[["cv_f1_mean","test_f1"]].plot(kind="bar", yerr=[[0.07,0.13,0.15],[0.0,0.0,0.0]], rot=0,alpha=0.5)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel("")
plt.title("")


Out[377]:
<matplotlib.text.Text at 0x7f874c87fcd0>

d) Show all methods with top performances


In [378]:
idx = dfDesc.groupby(['cls'])['cv_f1_mean'].transform(max) == dfDesc['cv_f1_mean']
idx2 = dfDesc[idx].groupby(['cv_f1_mean'])['num_nones'].transform(max) == dfDesc[idx]['num_nones']

dfDesc[idx][idx2][["num_nones","fs","sm","metric","cls","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']]


Out[378]:
num_nones fs sm metric cls params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
44 2 none none f1_weighted logReg [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.76 0.77 0.85
45 2 none none precision_weighted logReg [None, 30, l2] 1.00 0.7+/-0.16 0.75+/-0.17 0.71+/-0.16 0.76 0.77 0.85
69 1 rfe_rf_fs none f1_weighted knn [21, uniform, 5, 0.1] 0.86 0.66+/-0.2 0.7+/-0.21 0.68+/-0.19 0.60 0.62 0.66
59 1 none after f1_weighted rf [gini, None, None, 150, 5] 1.00 0.61+/-0.18 0.66+/-0.2 0.63+/-0.18 0.84 0.85 0.88
51 1 none after precision_weighted rf [gini, None, None, 150, 5] 1.00 0.61+/-0.18 0.66+/-0.2 0.63+/-0.18 0.84 0.85 0.88

2.3. Pipelines of Non-descriptive Classifier(SVM, ANN)

a) Table top-10 classifiers


In [379]:
dfDesc = df[df["cls"].isin(["svmRBF","nn"])]\
        .sort_values("cv_f1_mean", ascending=False)
   
dfDesc[["fs","sm","metric","cls","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']].iloc[:thr,:]


Out[379]:
fs sm metric cls params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
50 none none f1_weighted svmRBF [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85
43 none none precision_weighted svmRBF [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85
48 none none f1_weighted nn [(30, 30), 0.01] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85
53 none after precision_weighted svmRBF [0.001, None, 3, 50] 1.00 0.7+/-0.16 0.75+/-0.19 0.71+/-0.15 0.76 0.77 0.85
52 none after f1_weighted svmRBF [0.001, None, 3, 50] 1.00 0.7+/-0.16 0.75+/-0.19 0.71+/-0.15 0.76 0.77 0.85
58 none after f1_weighted nn [(50, 50), 4, 0.01] 1.00 0.7+/-0.14 0.77+/-0.15 0.71+/-0.13 0.76 0.77 0.85
49 none none precision_weighted nn [(150,), 0.01] 1.00 0.69+/-0.18 0.76+/-0.2 0.71+/-0.17 0.76 0.77 0.85
12 combine_fs after f1_weighted svmRBF [0.001, None, 3, 40, 15] 0.93 0.68+/-0.19 0.7+/-0.2 0.69+/-0.18 0.57 0.62 0.79
41 none after precision_weighted nn [(70, 70, 70), 4, 0.01] 1.00 0.67+/-0.18 0.71+/-0.22 0.7+/-0.15 0.76 0.77 0.85
13 combine_fs after precision_weighted svmRBF [0.01, None, 3, 20, 1] 0.97 0.66+/-0.15 0.71+/-0.18 0.69+/-0.13 0.76 0.77 0.85
65 rfe_rf_fs after f1_weighted svmRBF [0.1, None, 4, 30, 43, 0.001] 1.00 0.62+/-0.23 0.63+/-0.26 0.64+/-0.2 0.44 0.54 0.77
64 rfe_rf_fs after precision_weighted svmRBF [0.1, None, 4, 30, 43, 0.001] 1.00 0.62+/-0.23 0.63+/-0.26 0.64+/-0.2 0.44 0.54 0.77
73 rfe_rf_fs after f1_weighted nn [43, (70, 70, 70), 0.1, 5, 0.001] 1.00 0.61+/-0.18 0.63+/-0.22 0.63+/-0.16 0.44 0.54 0.77
71 rfe_rf_fs none precision_weighted svmRBF [43, 0.001, balanced, 0.1, 50] 1.00 0.61+/-0.22 0.62+/-0.25 0.63+/-0.19 0.44 0.54 0.77
72 rfe_rf_fs none f1_weighted svmRBF [43, 0.001, balanced, 0.1, 50] 1.00 0.61+/-0.22 0.62+/-0.25 0.63+/-0.19 0.44 0.54 0.77
75 rfe_rf_fs after precision_weighted nn [43, (70, 70), 0.1, 3, 0.01] 1.00 0.61+/-0.21 0.63+/-0.25 0.63+/-0.19 0.44 0.54 0.77
74 rfe_rf_fs none f1_weighted nn [43, (70, 70, 70), 0.1, 0.01] 1.00 0.6+/-0.21 0.61+/-0.24 0.62+/-0.18 0.44 0.54 0.77
66 rfe_rf_fs none precision_weighted nn [43, (70, 70, 70), 0.1, 0.01] 1.00 0.6+/-0.21 0.61+/-0.24 0.62+/-0.18 0.44 0.54 0.77
17 combine_fs none precision_weighted nn [(150,), 50, 0.001] 1.00 0.59+/-0.21 0.6+/-0.24 0.62+/-0.18 0.67 0.69 0.82
18 combine_fs after f1_weighted nn [(50,), 3, 10, 0.0001] 1.00 0.57+/-0.25 0.58+/-0.26 0.59+/-0.23 0.44 0.46 0.47
19 combine_fs after precision_weighted nn [(70, 70, 70), 3, 50, 0.001] 1.00 0.56+/-0.2 0.57+/-0.22 0.58+/-0.19 0.57 0.62 0.79
33 lasso_fs none f1_weighted nn [(70, 70, 70), 1, 1e-05] 1.00 0.55+/-0.22 0.56+/-0.24 0.57+/-0.21 0.57 0.62 0.79
32 lasso_fs none precision_weighted nn [(70, 70, 70), 1, 1e-05] 1.00 0.55+/-0.22 0.56+/-0.24 0.57+/-0.21 0.57 0.62 0.79
22 lasso_fs after precision_weighted nn [(30, 30), 1, 4, 1e-05] 1.00 0.54+/-0.25 0.54+/-0.27 0.56+/-0.23 0.57 0.62 0.79
9 combine_fs none f1_weighted nn [(70,), 10, 0.0001] 1.00 0.54+/-0.24 0.57+/-0.25 0.57+/-0.22 0.44 0.46 0.47
20 lasso_fs none precision_weighted svmRBF [0.001, 1, 10, None] 0.86 0.51+/-0.13 0.55+/-0.25 0.61+/-0.09 0.69 0.69 0.69
38 lasso_fs none f1_weighted svmRBF [0.001, 1, 10, None] 0.86 0.51+/-0.13 0.55+/-0.25 0.61+/-0.09 0.69 0.69 0.69
23 lasso_fs after f1_weighted nn [(100, 100), 1, 3, 0.001] 1.00 0.49+/-0.2 0.51+/-0.21 0.5+/-0.21 0.57 0.62 0.79
3 combine_fs none precision_weighted svmRBF [0.1, balanced, 0.5, 20] 0.93 0.47+/-0.17 0.48+/-0.2 0.5+/-0.16 0.67 0.69 0.82
2 combine_fs none f1_weighted svmRBF [0.1, balanced, 0.5, 20] 0.93 0.47+/-0.17 0.48+/-0.2 0.5+/-0.16 0.67 0.69 0.82
29 lasso_fs after f1_weighted svmRBF [0.1, 1, 3, 0.5, None] 1.00 0.45+/-0.15 0.46+/-0.2 0.51+/-0.15 0.68 0.69 0.71
28 lasso_fs after precision_weighted svmRBF [0.1, 1, 3, 0.5, None] 1.00 0.45+/-0.15 0.46+/-0.2 0.51+/-0.15 0.68 0.69 0.71

b) Plot all pipeline performances grouped by classifier algorithm


In [380]:
dfDesc.boxplot(by="cls",column=["cv_f1_mean"])
#sns.swarmplot(x="cls", data=dfDesc.groupby("cls")["cv_f1_mean"].groups, color=".25")
plt.ylim(0.4,1.0)
plt.suptitle("")
plt.xlabel("")
plt.title("")


Out[380]:
<matplotlib.text.Text at 0x7f8794ea4850>

c) Top descriptive classifiers by algorithm type


In [381]:
#Pick one randomly (from the group with same f1)
idx = dfDesc.groupby(['cls'])['cv_f1_mean'].transform(max) == dfDesc['cv_f1_mean']
dfDescIdx = dfDesc[idx]
dfDescIdx = dfDescIdx.groupby("cls").first()
dfDescIdx[["fs","sm","metric","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']]


Out[381]:
fs sm metric params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
cls
nn none none f1_weighted [(30, 30), 0.01] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85
svmRBF none none f1_weighted [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85

In [382]:
#Plot performances best classifier algorithms
dfDescIdx[["cv_f1_mean","test_f1"]].plot(kind="bar", yerr=[[0.08,0.09],[0.0,0.0]], rot=0,alpha=0.5)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel("")


Out[382]:
<matplotlib.text.Text at 0x7f8788d053d0>

d) Show all methods with top performances


In [383]:
idx = dfDesc.groupby(['cls'])['cv_f1_mean'].transform(max) == dfDesc['cv_f1_mean']

dfDesc[idx][["fs","sm","metric","cls","params",
          "tr_f1","cv_f1", "cv_prec", "cv_rec",
          "test_f1",'test_prec', 'test_rec']]


Out[383]:
fs sm metric cls params tr_f1 cv_f1 cv_prec cv_rec test_f1 test_prec test_rec
50 none none f1_weighted svmRBF [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85
43 none none precision_weighted svmRBF [0.001, None, 50] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85
48 none none f1_weighted nn [(30, 30), 0.01] 1.00 0.71+/-0.18 0.76+/-0.2 0.72+/-0.17 0.76 0.77 0.85

2.4. To CSV


In [384]:
df.to_csv(os.path.join('resources','results',folder,'ds-{}.csv'.format(ds)))

In [385]:
print "Dataset ", ds
print "Total time:", df.time.sum()/3600, "hours"


Dataset  2
Total time: 5.77475739313 hours

In [173]:
print df.fs.unique()
print df.cls.unique()
print df.sm.unique()
print df.metric.unique()


['none' 'rfe_rf_fs' 'combine_fs' 'lasso_fs']
['svmRBF' 'nn' 'logReg' 'rf' 'knn']
['after' 'none']
['f1_weighted' 'precision_weighted']

In [ ]: