Resources:
In [1]:
from IPython.display import Image
import base64
with open('mnist-img.txt', 'r') as myfile:
data=myfile.read().replace('\n', '')
#print type(data)
#print data
Image(data=base64.decodestring(data))
Out[1]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
x = tf.placeholder(tf.float32, [None, 784])
#print type(x)
#mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #data sets seem to block jupyter kernel
#3_mnist_from_scratch.ipynb - should check other source
#print type(mnist)
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
In [ ]: