In [0]:
import numpy as np
N = 14.0067 # amu
O = 15.999 # amu
mu = N*O/(N+O) # amu
r = 1.15077 # bond length (angstrom)
h = 6.62607E-34 # J*s
hbar = 1.05457E-34 # J*s
NA = 6.02214E23 #molecules/mol
c = 299792458 # m/s
I = mu*r**2 #amu * anstrom^2
print('The moment of inertia is',round(I,2),'amu*angstrom^2.')
B = hbar**2/2/I*6.022e26*(1e10)**2*NA/1000 #kJ/mol
print('The rotational energy constant is', round(B,5),' kJ/mol.')
Btilde = B/h/c*1000/NA/100 #1/cm
print('The rotational spectral constant is', round(Btilde,3),' cm^-1.')
Since we are looking at a molecule adsorbed flat on a surface, we will use the 2-D rigid rotor model.
$E_{ml} = \frac{\hbar^2}{2I}m_l^2$
The four lowest-energy rotational quantum states are: $m_l = \pm 0,\pm 1, \pm2, \pm3$
Wave Function for 2-D rotor model: $\Psi_{m_l}(\phi) = \frac{1}{\sqrt{2\pi}}e^{-im_l\phi}, m_l = 0,\pm1,\pm2,etc$
Transition dipole moment integral: $<\psi_{m_l}|x|\psi_{m_l'}> = \int_{0}^{2\pi}\frac{1}{\sqrt{2\pi}}e^{-im_l\phi}xe^{-im_l'\phi} = \frac{r}{2\pi}\int_{0}^{2\pi}e^{i\Delta m_l\phi}d\phi$
$cos\phi = \frac{1}{2} (e^{-i\phi}+e^\phi)$
$<\psi_{m_l}|x|\psi_{m_l'}> = \int_{0}^{2\pi}\frac{r}{4\pi}e^{i(\Delta m_l-1)\phi}e^{i(\Delta m_l+1)\phi}d\phi $
For an integer $n$, we can have $\int_{0}^{2\pi}e^{ni\phi}d\phi \neq 0$ when n = 0
We can have $<\psi_{m_l}|x|\psi_{m_l'}> \neq 0$ only when $\Delta m_l = \pm1$
$\Delta E_{m_{l0}\rightarrow m_{l1}} = B$
$\Delta E_{m_{l1}\rightarrow m_{l2}} = 3B$
$\Delta E_{m_{l2}\rightarrow m_{l3}} = 5B$
$\Delta E_{m_{l3}\rightarrow m_{l4}} = 7B$
Wavenumber
$\tilde{v}_{m_{l0}\rightarrow m_{l1}} = \frac{B}{hc}$
$\tilde{v}_{m_{l1}\rightarrow m_{l2}} = \frac{3B}{hc}$
$\tilde{v}_{m_{l2}\rightarrow m_{l3}} = \frac{5B}{hc}$
$\tilde{v}_{m_{l3}\rightarrow m_{l4}} = \frac{7B}{hc}$
In [0]:
print('From problem 1, we know that B =',round(B,5), 'kJ/mol.')
h = 6.62607E-34 # J*s
c = 299792458 # m/s
NA = 6.02214E23 #molecules/mol
v = []
for l in [1,3,5,7]:
v.append(B*l/h/c*1000/100/NA)
print('0 to 1:',round(v[0],3),'cm^-1')
print('1 to 2:',round(v[1],3),'cm^-1')
print('2 to 3:',round(v[2],3),'cm^-1')
print('3 to 4:',round(v[3],3),'cm^-1')
Absolute change in angular momentum $|\Delta l_z| = \hbar$, identical to angular momentum of a photon.
In [0]:
import numpy as np
kB = 1.3806e-23 #J/K
T = 298 #K
P = []
for i in [0,1,2,3]:
p = (2*i+1)*np.exp(-B*i*(i+1)/kB/T*1000/6.022e23)
P.append(p)
total = np.sum(P)
print('When l = 0, relative population =',round(P[0]/total,4))
print('When l = 1, relative population =',round(P[1]/total,4))
print('When l = 2, relative population =',round(P[2]/total,4))
print('When l = 3, relative population =',round(P[3]/total,4))
print('At 298 K, all of these states potentially contribute to the rotational spectrum of NO.')
Principle Quantum Number: $n = 2$
Angular Quantum Number: $m_\ell = 0$
Azimuthal Quantum Number: $\ell = 0$
Spin Quantum Number: $m_s = \pm1/2$
$P_{20}(r) = r^2\lvert R_{2,0}(r)\rvert^2 = \rho^2a_0^2[\frac{1}{\sqrt{2a_0^3}}(1-\rho/2)e^{-\rho/2}]^2 = \frac{\rho^2}{2}(1-\rho/2)^2e^{-\rho}\frac{1}{a_0}$. Plot $\frac{\rho^2}{2}(1-\rho/2)^2e^{-\rho}$ vs $\rho$, the unit of P is $\frac{1}{a_0}$.
In [0]:
import numpy as np
import matplotlib.pyplot as plt
rho = np.linspace(0,16,100)
a = 1
R20 = 1/(np.sqrt(2*a**3))*(1-rho/2)*np.exp(-rho/2)
P20 = a**2*rho**2*R20**2
plt.plot(rho,P20)
plt.xlabel('Length Ratio ($r/a_0$)')
plt.ylabel('Probability ($1/a_0$)')
plt.axvline(x = 6, color = 'r', linestyle = '--', label = 'Expected')
plt.axvline(x = 3 + np.sqrt(5), color = 'g', linestyle = '--', label = 'Most Probable')
plt.axvline(x = 8, color = 'k', linestyle = '--', label = 'Classical Limit')
plt.legend()
plt.show()
$\langle r\rangle = \int_{0}^{\infty}rP_{20}dr = \int_{0}^{\infty}\frac{\rho^3}{2}(1-\rho/2)^2e^{-\rho}dr = a_0\int_{0}^{\infty}\frac{\rho^3}{2}(1-\rho/2)^2e^{-\rho}d\rho$
In [0]:
from sympy import *
rho = symbols('rho')
I = integrate(rho**3/2*(1-rho/2)**2*exp(-rho),(rho,0,oo))
print('The expectation value of the distance of the electron from the nucleus is',I,"* a0.")
In [0]:
print("Possible solutions are ", solve(diff(rho**2/2*(1-rho/2)**2*exp(-rho),rho),rho))
print('Comparing these solutions, the universal maximum occurs at sqrt(5) + 3')
Classical theory states that orbitals energy must equals to Coulombic energy: $$-\frac{\hbar^2}{2m_ea_o^2}\frac{1}{N^2} = -\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}, where\quad N=2\quad and \quad a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2}$$ $$r_{max,classic} = 8a_0$$
In [0]:
rho_ = symbols('rho_')
I = integrate(rho_**2/2*(1-rho_/2)**2*exp(-rho_),(rho_,8,oo)) #intrgrate from 8 to infinity
print("Prob = %f"%I)
NO! Quantum number ($n,l,m_l$) of 2s = 2,0,0 while 1s = 1,0,0. Since $\Delta l\neq \pm 1$, the transition is not allowed.