No, elementary step are not supposed to have half molecule. Also the rate law is not consistent with stoichiometry.
$ r = k P_{ethane}^\frac{1}{2} P_{oxygen}$
Choose basis of 1 mole O2 and 1.2 mole C2H6
$C_2H_6$ | $O_2$ | $C_2H_4O$ | $H_2O$ | ||
---|---|---|---|---|---|
I | 1.2 | 1 | 0 | 0 | |
C | $-\xi$ | $-\xi$ | $+\xi$ | $+\xi$ | |
E | 1.2$-\xi$ | 1$-\xi$ | $\xi$ | $\xi$ | $\xi_{max} = 1 \rightarrow$ complete conversion of $O_2$ |
Maximum value of $\xi$ is 1.
In [3]:
import numpy as np
import matplotlib.pyplot as plt
P = 2 # bar
xi = np.linspace(0,1,1000)
ximax = 1.0
X = xi/ximax
n_e0 = 1.2
n_o0 = 1
n_eo0 = 0
n_w0 = 0
n_e = n_e0 - X
n_o = n_o0 - X
n_eo = n_eo0 + X
n_w = n_w0 + X
Ntot = n_e + n_o + n_eo + n_w
y_e = n_e /Ntot
y_o = n_o /Ntot
y_eo = n_eo /Ntot
y_w = n_w / Ntot
P_e = P*y_e
P_o = P*y_o
P_eo = P*y_eo
P_w = P*y_w
plt.plot(X,P_e,label='P_e')
plt.plot(X,P_o,label='P_o')
plt.plot(X,P_eo,label='P_eo')
plt.plot(X,P_w,label='P_w')
plt.xlabel('X')
plt.ylabel('P(bar)')
plt.title('Partial pressures vs conversion')
plt.legend()
plt.show()
In [19]:
k = 0.8
r = k*P_e**(1/2)*P_o
plt.plot(X,r)
plt.xlabel('X')
plt.ylabel('r (bar/s)')
plt.show()
In [29]:
import numpy as np
R = 8.314e-3 #kj/mol*K
Ea = 60 #kj/mol
T = 500 #K
k1 = 0.8 #bar^-0.5 * s^-1
A = k1/(np.exp(-Ea/R/T)) #bar^-0.5 * s^-1
print('Prefactor A is %.2f bar^(-0.5)*s^(-1)'%A)
In [30]:
k_550 = A*np.exp(-Ea/R/550)
print('rate constant at 550K is %.2f bar^(-0.5)*s^(-1)'%k_550)
No we can't predict the rate law. This is not an elementary step process so that we can't know the reaction order from the equation stoichiometry.
CF$_3$OH | [CF$_3$OH]$^\ddagger$ | C(O)F$_2$ | HF | ||
---|---|---|---|---|---|
$E^\text{elec}$ | -412.90047 | -412.82771 | -312.57028 | -100.31885 | (Hartree) |
ZPE | 0.02889 | 0.02313 | 0.01422 | 0.00925 | (Hartree) |
$U^\text{trans}$ | 3.7 | 3.7 | 3.7 | 3.7 | (kJ mol$^{-1}$) |
$U^\text{rot }$ | 3.7 | 3.7 | 3.7 | 2.5 | (kJ mol$^{-1}$) |
$U^\text{vib}$ | 4.3 | 4.1 | 1.2 | 0 | (kJ mol$^{-1}$) |
$q^{\text{trans}}/V$ | $7.72\times 10^{32}$ | $7.72\times 10^{32}$ | $1.59\times 10^{32}$ | $8.65\times 10^{31}$ | (m$^{-3}$) |
$q^\text{rot}$ | 61830 | 68420 | 679 | 9.59 | |
$q^\text{vib}$ | 2.33 | 2.28 | 1.16 | 1 |
In [31]:
import numpy as np
kB=8.61734e-5 # eV/K
T1=298 # K
h=4.136e-15 # eV*s
q_TS= 7.72e32*68420*2.28 # 1/m^3, q(trans)*q(rot)*q(vib)
q_A=7.72e32*61830*2.33 # 1/m^3, q(trans)*q(rot)*q(vib)
delta_E= ((-412.82771+0.02313)-(-412.90047+0.02889))*27.212 # eV
k=kB*T1/h*q_TS/q_A*np.exp(-delta_E/kB/T1)
print("First-order rate constant for CF3OH decompostion at 298 K is %E s^-1."%k)
In [32]:
Kc = 2.926
kr = k/Kc
print('rate constant for reverse reaction is %E s^-1'%kr)
In [33]:
dH = 21.121 #kJ/mol
T = 298 # K
R = 8.31447 # J/(mol*K)
autokJ = 2625.50
#forward
Eelec = [-412.90047 ,-412.82771] # kJ/mol
ZPE = [0.02889 ,0.02313] # kJ/mol
dE0 = ((Eelec[1] + ZPE[1]) - (Eelec[0] + ZPE[0]))* autokJ # kJ/mol
u_trans = [3.7,3.7] #kJ/mol
u_rot = [3.7,3.7] #kJ/mol
u_vib = [4.3,4.1] #kJ/mol
dU = dE0 + (u_trans[1]+u_rot[1]+u_vib[1])-(u_trans[0]+u_rot[0]+u_vib[0])#kJ/mol
dH_f = dU
#reverse
Eelec_r = [-412.82771 ,-312.57028 ,-100.31885 ] # kJ/mol
ZPE_r = [0.02313 ,0.01422 ,0.00925 ] # kJ/mol
dE0_r = -((Eelec_r[1] + ZPE_r[1] + Eelec_r[2] + ZPE_r[2]) - (Eelec_r[0] + ZPE_r[0]))* autokJ # kJ/mol
u_trans_r = [3.7,3.7,3.7] #kJ/mol
u_rot_r = [3.7,3.7,2.5] #kJ/mol
u_vib_r = [4.1,1.2,0] #kJ/mol
dU_r = dE0_r - (u_trans_r[1]+u_rot_r[1]+u_vib_r[1])+(u_trans_r[2]+u_rot_r[2]+u_vib_r[2])-(u_trans_r[0]+u_rot_r[0]+u_vib_r[0])#kJ/mol
dH_r = dU_r - R/1000*T
print('The overall enthalpy is %.2f kJ/mol, forward half reaction enthalpy is %.2f kJ/mol and reverse half reaction enthalpy is %.2f kJ/mol.'%(dH,dH_f,dH_r))
In [3]:
t=np.log(2)/k2 # s
print('The half-life is %E s, which is about %E years.'%(t,t/3600/24/365))
Must decompose by some other route! Biomolecular processes, for instance. One proposed mechanism is the existence of H$_2$O lowers the activation energy of the decomposition of CF$_3$OH. The proposed reaction pathway is shown in J. Phys. Chem. 1996, 100, 6097- 6103.
In [ ]: