Model Information:
- type: GradientBoosting
- version: 0.4.0
- params: {'init': None, 'verbose': 0, 'loss': 'deviance', 'labels': [True, False], 'label_weights': OrderedDict([(True, 10)]), 'criterion': 'friedman_mse', 'learning_rate': 0.01, 'min_samples_split': 2, 'population_rates': None, 'random_state': None, 'subsample': 1.0, 'warm_start': False, 'min_samples_leaf': 1, 'min_impurity_decrease': 0.0, 'min_weight_fraction_leaf': 0.0, 'max_features': 'log2', 'center': True, 'max_leaf_nodes': None, 'scale': True, 'min_impurity_split': None, 'presort': 'auto', 'max_depth': 7, 'n_estimators': 700, 'multilabel': False}
Environment:
- revscoring_version: '2.2.2'
- platform: 'Linux-4.9.0-6-amd64-x86_64-with-debian-9.4'
- machine: 'x86_64'
- version: '#1 SMP Debian 4.9.82-1+deb9u3 (2018-03-02)'
- system: 'Linux'
- processor: ''
- python_build: ('default', 'Jan 19 2017 14:11:04')
- python_compiler: 'GCC 6.3.0 20170118'
- python_branch: ''
- python_implementation: 'CPython'
- python_revision: ''
- python_version: '3.5.3'
- release: '4.9.0-6-amd64'
Statistics:
counts (n=19455):
label n ~True ~False
------- ----- --- ------- --------
True 751 --> 422 329
False 18704 --> 731 17973
rates:
True False
---------- ------ -------
sample 0.039 0.961
population 0.034 0.966
match_rate (micro=0.913, macro=0.5):
False True
------- ------
0.943 0.057
filter_rate (micro=0.087, macro=0.5):
False True
------- ------
0.057 0.943
recall (micro=0.947, macro=0.761):
False True
------- ------
0.961 0.562
!recall (micro=0.576, macro=0.761):
False True
------- ------
0.562 0.961
precision (micro=0.962, macro=0.661):
False True
------- ------
0.984 0.337
!precision (micro=0.359, macro=0.661):
False True
------- ------
0.337 0.984
f1 (micro=0.954, macro=0.697):
False True
------- ------
0.972 0.421
!f1 (micro=0.44, macro=0.697):
False True
------- ------
0.421 0.972
accuracy (micro=0.947, macro=0.947):
False True
------- ------
0.947 0.947
fpr (micro=0.424, macro=0.239):
False True
------- ------
0.438 0.039
roc_auc (micro=0.924, macro=0.924):
False True
------- ------
0.924 0.924
pr_auc (micro=0.978, macro=0.722):
False True
------- ------
0.997 0.447
- score_schema: {'properties': {'prediction': {'type': 'bool', 'description': 'The most likely label predicted by the estimator'}, 'probability': {'properties': {'false': 'number', 'true': 'number'}, 'type': 'object', 'description': 'A mapping of probabilities onto each of the potential output labels'}}, 'type': 'object', 'title': 'Scikit learn-based classifier score with probability'}