Solve a forced, dampened ODE governed by this equation:
$$\frac{d^2x}{dt^2} + \frac{1}{10}\frac{dx}{dt} + k x = 5e^{-c / t}$$using $c=0.25$ and $k=2.5$. For 2 points extra credit, instead create an interactive widget. Use an initial condition of position 0.0 and velocity 1.0.
Given that:
$$\mathbf{A} = \left[\begin{array}{lcr} 7 & 0 & 1\\ 1 & 3 & 4\\ 4 & 5 & 2\\ \end{array}\right]$$$$\mathbf{b} = \left[\begin{array}{lcr} 4\\ 13\\ -6\\ \end{array}\right]$$Answer the following problems:
What is $\mathbf{A}\mathbf{b}$?
What is the largest eigenvector of $\mathbf{A}$?
Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$
In [ ]: