In [25]:
//package main
import "fmt"
func main() {
fmt.Println("hello world")
}
In [26]:
main()
In [23]:
// Strings, which can be added together with `+`.
fmt.Println("go" + "lang")
// Integers and floats.
fmt.Println("1+1 =", 1+1)
fmt.Println("7.0/3.0 =", 7.0/3.0)
// Booleans, with boolean operators as you'd expect.
fmt.Println(true && false)
fmt.Println(true || false)
fmt.Println(!true)
In [22]:
// `var` declares 1 or more variables.
var a = "initial"
fmt.Println(a)
// You can declare multiple variables at once.
var b, c int = 1, 2
fmt.Println(b, c)
// Go will infer the type of initialized variables.
var d = true
fmt.Println(d)
// Variables declared without a corresponding
// initialization are _zero-valued_. For example, the
// zero value for an `int` is `0`.
var e int
fmt.Println(e)
// The `:=` syntax is shorthand for declaring and
// initializing a variable, e.g. for
// `var f string = "short"` in this case.
f := "short"
fmt.Println(f)
In [16]:
import "math"
In [17]:
// `const` declares a constant value.
const s string = "constant"
In [21]:
fmt.Println(s)
// A `const` statement can appear anywhere a `var`
// statement can.
const n = 500000000
// Constant expressions perform arithmetic with
// arbitrary precision.
const d = 3e20 / n
fmt.Println(d)
// A numeric constant has no type until it's given
// one, such as by an explicit cast.
fmt.Println(int64(d))
// A number can be given a type by using it in a
// context that requires one, such as a variable
// assignment or function call. For example, here
// `math.Sin` expects a `float64`.
fmt.Println(math.Sin(n))
In [27]:
// The most basic type, with a single condition.
i := 1
for i <= 3 {
fmt.Println(i)
i = i + 1
}
// A classic initial/condition/after `for` loop.
for j := 7; j <= 9; j++ {
fmt.Println(j)
}
// `for` without a condition will loop repeatedly
// until you `break` out of the loop or `return` from
// the enclosing function.
for {
fmt.Println("loop")
break
}
// You can also `continue` to the next iteration of
// the loop.
for n := 0; n <= 5; n++ {
if n%2 == 0 {
continue
}
fmt.Println(n)
}
In [30]:
// Here's a basic example.
if 7%2 == 0 {
fmt.Println("7 is even")
} else {
fmt.Println("7 is odd")
}
// You can have an `if` statement without an else.
if 8%4 == 0 {
fmt.Println("8 is divisible by 4")
}
// A statement can precede conditionals; any variables
// declared in this statement are available in all
// branches.
num := 12;
if num < 0 {
fmt.Println(num, "is negative")
} else if num < 10 {
fmt.Println(num, "has 1 digit")
} else {
fmt.Println(num, "has multiple digits")
}
how to check on variable type
In [33]:
import "reflect"
In [44]:
reflect.TypeOf(num).Kind()
In [45]:
reflect.TypeOf(reflect.TypeOf(num).Kind()).Kind()
In [43]:
reflect.TypeOf(num).Kind() == reflect.Int
In [46]:
import "time"
In [47]:
// Here's a basic `switch`.
i := 2
fmt.Print("Write ", i, " as ")
switch i {
case 1:
fmt.Println("one")
case 2:
fmt.Println("two")
case 3:
fmt.Println("three")
}
// You can use commas to separate multiple expressions
// in the same `case` statement. We use the optional
// `default` case in this example as well.
switch time.Now().Weekday() {
case time.Saturday, time.Sunday:
fmt.Println("It's the weekend")
default:
fmt.Println("It's a weekday")
}
// `switch` without an expression is an alternate way
// to express if/else logic. Here we also show how the
// `case` expressions can be non-constants.
t := time.Now()
switch {
case t.Hour() < 12:
fmt.Println("It's before noon")
default:
fmt.Println("It's after noon")
}
// A type `switch` compares types instead of values. You
// can use this to discover the type of an interface
// value. In this example, the variable `t` will have the
// type corresponding to its clause.
whatAmI := func(i interface{}) {
switch t := i.(type) {
case bool:
fmt.Println("I'm a bool")
case int:
fmt.Println("I'm an int")
default:
fmt.Printf("Don't know type %T\n", t)
}
}
whatAmI(true)
whatAmI(1)
whatAmI("hey")
In [48]:
// Here we create an array `a` that will hold exactly
// 5 `int`s. The type of elements and length are both
// part of the array's type. By default an array is
// zero-valued, which for `int`s means `0`s.
var a [5]int
fmt.Println("emp:", a)
// We can set a value at an index using the
// `array[index] = value` syntax, and get a value with
// `array[index]`.
a[4] = 100
fmt.Println("set:", a)
fmt.Println("get:", a[4])
// The builtin `len` returns the length of an array.
fmt.Println("len:", len(a))
// Use this syntax to declare and initialize an array
// in one line.
b := [5]int{1, 2, 3, 4, 5}
fmt.Println("dcl:", b)
// Array types are one-dimensional, but you can
// compose types to build multi-dimensional data
// structures.
var twoD [2][3]int
for i := 0; i < 2; i++ {
for j := 0; j < 3; j++ {
twoD[i][j] = i + j
}
}
fmt.Println("2d: ", twoD)
In [ ]:
// Unlike arrays, slices are typed only by the
// elements they contain (not the number of elements).
// To create an empty slice with non-zero length, use
// the builtin `make`. Here we make a slice of
// `string`s of length `3` (initially zero-valued).
s := make([]string, 3)
fmt.Println("emp:", s)
// We can set and get just like with arrays.
s[0] = "a"
s[1] = "b"
s[2] = "c"
fmt.Println("set:", s)
fmt.Println("get:", s[2])
// `len` returns the length of the slice as expected.
fmt.Println("len:", len(s))
// In addition to these basic operations, slices
// support several more that make them richer than
// arrays. One is the builtin `append`, which
// returns a slice containing one or more new values.
// Note that we need to accept a return value from
// `append` as we may get a new slice value.
s = append(s, "d")
s = append(s, "e", "f")
fmt.Println("apd:", s)
// Slices can also be `copy`'d. Here we create an
// empty slice `c` of the same length as `s` and copy
// into `c` from `s`.
c := make([]string, len(s))
copy(c, s)
fmt.Println("cpy:", c)
// Slices support a "slice" operator with the syntax
// `slice[low:high]`. For example, this gets a slice
// of the elements `s[2]`, `s[3]`, and `s[4]`.
l := s[2:5]
fmt.Println("sl1:", l)
// This slices up to (but excluding) `s[5]`.
l = s[:5]
fmt.Println("sl2:", l)
// And this slices up from (and including) `s[2]`.
l = s[2:]
fmt.Println("sl3:", l)
// We can declare and initialize a variable for slice
// in a single line as well.
t := []string{"g", "h", "i"}
fmt.Println("dcl:", t)
In [50]:
// Slices can be composed into multi-dimensional data
// structures. The length of the inner slices can
// vary, unlike with multi-dimensional arrays.
narray := 5
twoD := make([][]int, narray)
for i := 0; i < narray; i++ {
innerLen := i + 1
twoD[i] = make([]int, innerLen)
for j := 0; j < innerLen; j++ {
twoD[i][j] = i + j
}
}
fmt.Println("2d: ", twoD)
In [51]:
// To create an empty map, use the builtin `make`:
// `make(map[key-type]val-type)`.
m := make(map[string]int)
// Set key/value pairs using typical `name[key] = val`
// syntax.
m["k1"] = 7
m["k2"] = 13
// Printing a map with e.g. `fmt.Println` will show all of
// its key/value pairs.
fmt.Println("map:", m)
// Get a value for a key with `name[key]`.
v1 := m["k1"]
fmt.Println("v1: ", v1)
// The builtin `len` returns the number of key/value
// pairs when called on a map.
fmt.Println("len:", len(m))
// The builtin `delete` removes key/value pairs from
// a map.
delete(m, "k2")
fmt.Println("map:", m)
// The optional second return value when getting a
// value from a map indicates if the key was present
// in the map. This can be used to disambiguate
// between missing keys and keys with zero values
// like `0` or `""`. Here we didn't need the value
// itself, so we ignored it with the _blank identifier_
// `_`.
_, prs := m["k2"]
fmt.Println("prs:", prs)
// You can also declare and initialize a new map in
// the same line with this syntax.
n := map[string]int{"foo": 1, "bar": 2}
fmt.Println("map:", n)
In [ ]:
// Here we use `range` to sum the numbers in a slice.
// Arrays work like this too.
nums := []int{2, 3, 4}
sum := 0
for _, num := range nums {
sum += num
}
fmt.Println("sum:", sum)
// `range` on arrays and slices provides both the
// index and value for each entry. Above we didn't
// need the index, so we ignored it with the
// blank identifier `_`. Sometimes we actually want
// the indexes though.
for i, num := range nums {
if num == 3 {
fmt.Println("index:", i)
}
}
// `range` on map iterates over key/value pairs.
kvs := map[string]string{"a": "apple", "b": "banana"}
for k, v := range kvs {
fmt.Printf("%s -> %s\n", k, v)
}
// `range` can also iterate over just the keys of a map.
for k := range kvs {
fmt.Println("key:", k)
}
In [54]:
// `range` on strings iterates over Unicode code
// points. The first value is the starting byte index
// of the `rune` and the second the `rune` itself.
for i, c := range "go Abc" {
fmt.Println(i, c)
}
In [55]:
// Here's a function that takes two `int`s and returns
// their sum as an `int`.
func plus(a int, b int) int {
// Go requires explicit returns, i.e. it won't
// automatically return the value of the last
// expression.
return a + b
}
// When you have multiple consecutive parameters of
// the same type, you may omit the type name for the
// like-typed parameters up to the final parameter that
// declares the type.
func plusPlus(a, b, c int) int {
return a + b + c
}
In [56]:
// Call a function just as you'd expect, with
// `name(args)`.
res := plus(1, 2)
fmt.Println("1+2 =", res)
res = plusPlus(1, 2, 3)
fmt.Println("1+2+3 =", res)
make a range of numbers
In [64]:
func makeRange(min, max int) []int {
a := make([]int, max-min+1)
for i := range a {
a[i] = min + i
}
return a
}
In [65]:
r := makeRange(10, 20)
fmt.Println(r)
In [57]:
// The `(int, int)` in this function signature shows that
// the function returns 2 `int`s.
func vals() (int, int) {
return 3, 7
}
In [58]:
// Here we use the 2 different return values from the
// call with _multiple assignment_.
a, b := vals()
fmt.Println(a)
fmt.Println(b)
// If you only want a subset of the returned values,
// use the blank identifier `_`.
_, c := vals()
fmt.Println(c)
In [61]:
// Here's a function that will take an arbitrary number
// of `int`s as arguments.
func sum(nums ...int) {
fmt.Println(nums, " ")
total := 0
for _, num := range nums {
total += num
}
fmt.Println(total)
}
In [62]:
// Variadic functions can be called in the usual way
// with individual arguments.
sum(1, 2)
sum(1, 2, 3)
// If you already have multiple args in a slice,
// apply them to a variadic function using
// `func(slice...)` like this.
nums := []int{1, 2, 3, 4}
sum(nums...)
In [66]:
// This function `intSeq` returns another function, which
// we define anonymously in the body of `intSeq`. The
// returned function _closes over_ the variable `i` to
// form a closure.
func intSeq() func() int {
i := 0
return func() int {
i++
return i
}
}
In [69]:
// We call `intSeq`, assigning the result (a function)
// to `nextInt`. This function value captures its
// own `i` value, which will be updated each time
// we call `nextInt`.
nextInt := intSeq()
// See the effect of the closure by calling `nextInt`
// a few times.
fmt.Println(nextInt())
fmt.Println(nextInt())
fmt.Println(nextInt())
fmt.Println("---------")
// To confirm that the state is unique to that
// particular function, create and test a new one.
newInts := intSeq()
fmt.Println(newInts())
fmt.Println("---------")
In [70]:
// This `fact` function calls itself until it reaches the
// base case of `fact(0)`.
func fact(n int) int {
if n == 0 {
return 1
}
return n * fact(n-1)
}
fmt.Println(fact(7))
In [71]:
// We'll show how pointers work in contrast to values with
// 2 functions: `zeroval` and `zeroptr`. `zeroval` has an
// `int` parameter, so arguments will be passed to it by
// value. `zeroval` will get a copy of `ival` distinct
// from the one in the calling function.
func zeroval(ival int) {
ival = 0
}
// `zeroptr` in contrast has an `*int` parameter, meaning
// that it takes an `int` pointer. The `*iptr` code in the
// function body then _dereferences_ the pointer from its
// memory address to the current value at that address.
// Assigning a value to a dereferenced pointer changes the
// value at the referenced address.
func zeroptr(iptr *int) {
*iptr = 0
}
In [72]:
i := 1
fmt.Println("initial:", i)
zeroval(i)
fmt.Println("zeroval:", i)
// The `&i` syntax gives the memory address of `i`,
// i.e. a pointer to `i`.
zeroptr(&i)
fmt.Println("zeroptr:", i)
// Pointers can be printed too.
fmt.Println("pointer:", &i)
In [73]:
// Go's _structs_ are typed collections of fields.
// They're useful for grouping data together to form
// records.
// This `person` struct type has `name` and `age` fields.
type person struct {
name string
age int
}
In [74]:
// This syntax creates a new struct.
fmt.Println(person{"Bob", 20})
// You can name the fields when initializing a struct.
fmt.Println(person{name: "Alice", age: 30})
// Omitted fields will be zero-valued.
fmt.Println(person{name: "Fred"})
// An `&` prefix yields a pointer to the struct.
fmt.Println(&person{name: "Ann", age: 40})
// Access struct fields with a dot.
s := person{name: "Sean", age: 50}
fmt.Println(s.name)
// You can also use dots with struct pointers - the
// pointers are automatically dereferenced.
sp := &s
fmt.Println(sp.age)
// Structs are mutable.
sp.age = 51
fmt.Println(sp.age)
In [75]:
// Go supports _methods_ defined on struct types.
type rect struct {
width, height int
}
// This `area` method has a _receiver type_ of `*rect`.
func (r *rect) area() int {
return r.width * r.height
}
// Methods can be defined for either pointer or value
// receiver types. Here's an example of a value receiver.
func (r rect) perim() int {
return 2*r.width + 2*r.height
}
In [76]:
r := rect{width: 10, height: 5}
// Here we call the 2 methods defined for our struct.
fmt.Println("area: ", r.area())
fmt.Println("perim:", r.perim())
// Go automatically handles conversion between values
// and pointers for method calls. You may want to use
// a pointer receiver type to avoid copying on method
// calls or to allow the method to mutate the
// receiving struct.
rp := &r
fmt.Println("area: ", rp.area())
fmt.Println("perim:", rp.perim())
In [85]:
// _Interfaces_ are named collections of method
// signatures.
import "math"
// Here's a basic interface for geometric shapes.
type geometry interface {
area() float64
perim() float64
}
// For our example we'll implement this interface on
// `rect` and `circle` types.
type rect struct {
width, height float64
}
type circle struct {
radius float64
}
// To implement an interface in Go, we just need to
// implement all the methods in the interface. Here we
// implement `geometry` on `rect`s.
func (r rect) area() float64 {
return r.width * r.height
}
func (r rect) perim() float64 {
return 2*r.width + 2*r.height
}
// The implementation for `circle`s.
func (c circle) area() float64 {
return math.Pi * c.radius * c.radius
}
func (c circle) perim() float64 {
return 2 * math.Pi * c.radius
}
// If a variable has an interface type, then we can call
// methods that are in the named interface. Here's a
// generic `measure` function taking advantage of this
// to work on any `geometry`.
func measure(g geometry) {
fmt.Printf("geometry type: %T\n", g)
fmt.Println("geometry param: ", g)
fmt.Println("area: ", g.area())
fmt.Println("perimeter: ", g.perim())
}
In [87]:
r := rect{width: 3, height: 4}
// The `circle` and `rect` struct types both
// implement the `geometry` interface so we can use
// instances of
// these structs as arguments to `measure`.
measure(r)
fmt.Println("************")
c := circle{radius: 5}
measure(c)
In [88]:
// In Go it's idiomatic to communicate errors via an
// explicit, separate return value. This contrasts with
// the exceptions used in languages like Java and Ruby and
// the overloaded single result / error value sometimes
// used in C. Go's approach makes it easy to see which
// functions return errors and to handle them using the
// same language constructs employed for any other,
// non-error tasks.
import "errors"
// By convention, errors are the last return value and
// have type `error`, a built-in interface.
func f1(arg int) (int, error) {
if arg == 42 {
// `errors.New` constructs a basic `error` value
// with the given error message.
return -1, errors.New("can't work with 42")
}
// A `nil` value in the error position indicates that
// there was no error.
return arg + 3, nil
}
// It's possible to use custom types as `error`s by
// implementing the `Error()` method on them. Here's a
// variant on the example above that uses a custom type
// to explicitly represent an argument error.
type argError struct {
arg int
prob string
}
func (e *argError) Error() string {
return fmt.Sprintf("%d - %s", e.arg, e.prob)
}
func f2(arg int) (int, error) {
if arg == 42 {
// In this case we use `&argError` syntax to build
// a new struct, supplying values for the two
// fields `arg` and `prob`.
return -1, &argError{arg, "can't work with it"}
}
return arg + 3, nil
}
In [89]:
// The two loops below test out each of our
// error-returning functions. Note that the use of an
// inline error check on the `if` line is a common
// idiom in Go code.
for _, i := range []int{7, 42} {
if r, e := f1(i); e != nil {
fmt.Println("f1 failed:", e)
} else {
fmt.Println("f1 worked:", r)
}
}
for _, i := range []int{7, 42} {
if r, e := f2(i); e != nil {
fmt.Println("f2 failed:", e)
} else {
fmt.Println("f2 worked:", r)
}
}
// If you want to programmatically use the data in
// a custom error, you'll need to get the error as an
// instance of the custom error type via type
// assertion.
_, e := f2(42)
if ae, ok := e.(*argError); ok {
fmt.Println(ae.arg)
fmt.Println(ae.prob)
}
In [90]:
// A _goroutine_ is a lightweight thread of execution.
func f(from string) {
for i := 0; i < 3; i++ {
fmt.Println(from, ":", i)
}
}
In [92]:
// Suppose we have a function call `f(s)`. Here's how
// we'd call that in the usual way, running it
// synchronously.
f("direct")
// To invoke this function in a goroutine, use
// `go f(s)`. This new goroutine will execute
// concurrently with the calling one.
go f("goroutine")
// You can also start a goroutine for an anonymous
// function call.
go func(msg string) {
fmt.Println(msg)
}("going once")
// Our two function calls are running asynchronously in
// separate goroutines now, so execution falls through
// to here. This `Scanln` requires we press a key
// before the program exits.
fmt.Scanln()
fmt.Println("done")
In [93]:
// _Channels_ are the pipes that connect concurrent
// goroutines. You can send values into channels from one
// goroutine and receive those values into another
// goroutine.
In [100]:
// Create a new channel with `make(chan val-type)`.
// Channels are typed by the values they convey.
messages := make(chan string)
// _Send_ a value into a channel using the `channel <-`
// syntax. Here we send `"ping"` to the `messages`
// channel we made above, from a new goroutine.
go func() { messages <- "ping" }()
// The `<-channel` syntax _receives_ a value from the
// channel. Here we'll receive the `"ping"` message
// we sent above and print it out.
msg := <-messages
fmt.Println("receiving: ", msg)
In [101]:
// By default channels are _unbuffered_, meaning that they
// will only accept sends (`chan <-`) if there is a
// corresponding receive (`<- chan`) ready to receive the
// sent value. _Buffered channels_ accept a limited
// number of values without a corresponding receiver for
// those values.
// Here we `make` a channel of strings buffering up to
// 2 values.
messages := make(chan string, 2)
// Because this channel is buffered, we can send these
// values into the channel without a corresponding
// concurrent receive.
messages <- "buffered"
messages <- "channel"
// Later we can receive these two values as usual.
fmt.Println(<-messages)
fmt.Println(<-messages)
In [102]:
// We can use channels to synchronize execution
// across goroutines. Here's an example of using a
// blocking receive to wait for a goroutine to finish.
import "time"
In [107]:
// This is the function we'll run in a goroutine. The
// `done` channel will be used to notify another
// goroutine that this function's work is done.
func worker(done chan bool) {
fmt.Println(time.Now(), "\nworking...")
time.Sleep(time.Second)
fmt.Println(time.Now(), "\ndone")
// Send a value to notify that we're done.
done <- true
}
In [108]:
// Start a worker goroutine, giving it the channel to
// notify on.
done := make(chan bool, 1)
go worker(done)
// Block until we receive a notification from the
// worker on the channel.
<-done
In [ ]:
In [109]:
// When using channels as function parameters, you can
// specify if a channel is meant to only send or receive
// values. This specificity increases the type-safety of
// the program.
In [119]:
// This `ping` function only accepts a channel for sending
// values. It would be a compile-time error to try to
// receive on this channel.
func ping(pings chan<- string, msg string) {
fmt.Println("from ping:\n\t", msg)
pings <- msg
}
// The `pong` function accepts one channel for receives
// (`pings`) and a second for sends (`pongs`).
func pong(pings <-chan string, pongs chan<- string) {
msg := <-pings
pongs <- "pong received:\n\t" + msg
}
In [120]:
pings := make(chan string, 1)
pongs := make(chan string, 1)
ping(pings, "Hello world, going thru channel")
pong(pings, pongs)
fmt.Println(<-pongs)
In [121]:
// Go's _select_ lets you wait on multiple channel
// operations. Combining goroutines and channels with
// select is a powerful feature of Go.
In [122]:
// For our example we'll select across two channels.
c1 := make(chan string)
c2 := make(chan string)
// Each channel will receive a value after some amount
// of time, to simulate e.g. blocking RPC operations
// executing in concurrent goroutines.
go func() {
time.Sleep(1 * time.Second)
c1 <- "one"
}()
go func() {
time.Sleep(2 * time.Second)
c2 <- "two"
}()
// We'll use `select` to await both of these values
// simultaneously, printing each one as it arrives.
for i := 0; i < 2; i++ {
select {
case msg1 := <-c1:
fmt.Println("received", msg1)
case msg2 := <-c2:
fmt.Println("received", msg2)
}
}
In [ ]:
messages := make(chan string)
signals := make(chan bool)
// Here's a non-blocking receive. If a value is
// available on `messages` then `select` will take
// the `<-messages` `case` with that value. If not
// it will immediately take the `default` case.
select {
case msg := <-messages:
fmt.Println("received message", msg)
default:
fmt.Println("no message received")
}
// A non-blocking send works similarly. Here `msg`
// cannot be sent to the `messages` channel, because
// the channel has no buffer and there is no receiver.
// Therefore the `default` case is selected.
msg := "hi"
select {
case messages <- msg:
fmt.Println("sent message", msg)
default:
fmt.Println("no message sent")
}
messages <- "another msg sent"
// We can use multiple `case`s above the `default`
// clause to implement a multi-way non-blocking
// select. Here we attempt non-blocking receives
// on both `messages` and `signals`.
select {
case msg := <-messages:
fmt.Println("received message", msg)
case sig := <-signals:
fmt.Println("received signal", sig)
default:
fmt.Println("no activity")
}
In [ ]:
close(messages)
close(signals)
In [129]:
jobs := make(chan int, 5)
done := make(chan bool)
// Here's the worker goroutine. It repeatedly receives
// from `jobs` with `j, more := <-jobs`. In this
// special 2-value form of receive, the `more` value
// will be `false` if `jobs` has been `close`d and all
// values in the channel have already been received.
// We use this to notify on `done` when we've worked
// all our jobs.
go func() {
for {
j, more := <-jobs
if more {
fmt.Println("received job", j)
} else {
fmt.Println("received all jobs")
done <- true
return
}
}
}()
// This sends 3 jobs to the worker over the `jobs`
// channel, then closes it.
for j := 1; j <= 3; j++ {
jobs <- j
fmt.Println("sent job", j)
}
close(jobs)
fmt.Println("sent all jobs")
// We await the worker using the
// [synchronization](channel-synchronization) approach
// we saw earlier.
<-done
In [130]:
// We'll iterate over 2 values in the `queue` channel.
queue := make(chan string, 2)
queue <- "one"
queue <- "two"
close(queue)
// This `range` iterates over each element as it's
// received from `queue`. Because we `close`d the
// channel above, the iteration terminates after
// receiving the 2 elements.
for elem := range queue {
fmt.Println(elem)
}
In [ ]:
// _Timeouts_ are important for programs that connect to
// external resources or that otherwise need to bound
// execution time. Implementing timeouts in Go is easy and
// elegant thanks to channels and `select`.
In [126]:
// For our example, suppose we're executing an external
// call that returns its result on a channel `c1`
// after 2s.
c1 := make(chan string, 1)
go func() {
time.Sleep(2 * time.Second)
c1 <- "result 1"
}()
// Here's the `select` implementing a timeout.
// `res := <-c1` awaits the result and `<-Time.After`
// awaits a value to be sent after the timeout of
// 1s. Since `select` proceeds with the first
// receive that's ready, we'll take the timeout case
// if the operation takes more than the allowed 1s.
select {
case res := <-c1:
fmt.Println(res)
case <-time.After(1 * time.Second):
fmt.Println("timeout 1")
}
// If we allow a longer timeout of 3s, then the receive
// from `c2` will succeed and we'll print the result.
c2 := make(chan string, 1)
go func() {
time.Sleep(2 * time.Second)
c2 <- "result 2"
}()
select {
case res := <-c2:
fmt.Println(res)
case <-time.After(3 * time.Second):
fmt.Println("timeout 2")
}
In [131]:
// Timers represent a single event in the future. You
// tell the timer how long you want to wait, and it
// provides a channel that will be notified at that
// time. This timer will wait 2 seconds.
timer1 := time.NewTimer(2 * time.Second)
// The `<-timer1.C` blocks on the timer's channel `C`
// until it sends a value indicating that the timer
// expired.
<-timer1.C
fmt.Println("Timer 1 expired")
// If you just wanted to wait, you could have used
// `time.Sleep`. One reason a timer may be useful is
// that you can cancel the timer before it expires.
// Here's an example of that.
timer2 := time.NewTimer(time.Second)
go func() {
<-timer2.C
fmt.Println("Timer 2 expired")
}()
stop2 := timer2.Stop()
if stop2 {
fmt.Println("Timer 2 stopped")
}
In [132]:
// We often want to execute Go code at some point in the
// future, or repeatedly at some interval. Go's built-in
// _timer_ and _ticker_ features make both of these tasks
// easy. We'll look first at timers and then
// at [tickers](tickers).
In [133]:
// Timers represent a single event in the future. You
// tell the timer how long you want to wait, and it
// provides a channel that will be notified at that
// time. This timer will wait 2 seconds.
timer1 := time.NewTimer(2 * time.Second)
// The `<-timer1.C` blocks on the timer's channel `C`
// until it sends a value indicating that the timer
// expired.
<-timer1.C
fmt.Println("Timer 1 expired")
// If you just wanted to wait, you could have used
// `time.Sleep`. One reason a timer may be useful is
// that you can cancel the timer before it expires.
// Here's an example of that.
timer2 := time.NewTimer(time.Second)
go func() {
<-timer2.C
fmt.Println("Timer 2 expired")
}()
stop2 := timer2.Stop()
if stop2 {
fmt.Println("Timer 2 stopped")
}
In [3]:
import "fmt"
import "time"
// Here's the worker, of which we'll run several
// concurrent instances. These workers will receive
// work on the `jobs` channel and send the corresponding
// results on `results`. We'll sleep a second per job to
// simulate an expensive task.
func worker2(id int, jobs <-chan int, results chan<- int) {
for j := range jobs {
fmt.Println("worker", id, "started job", j)
time.Sleep(time.Second)
fmt.Println("worker", id, "finished job", j)
results <- j * 2
}
}
// In order to use our pool of workers we need to send
// them work and collect their results. We make 2
// channels for this.
jobs := make(chan int, 100)
results := make(chan int, 100)
// This starts up 3 workers, initially blocked
// because there are no jobs yet.
for w := 1; w <= 3; w++ {
go worker2(w, jobs, results)
}
// Here we send 5 `jobs` and then `close` that
// channel to indicate that's all the work we have.
for j := 1; j <= 5; j++ {
jobs <- j
}
close(jobs)
// Finally we collect all the results of the work.
for a := 1; a <= 5; a++ {
res := <-results
fmt.Println("a=", a, " res=", res,)
}
In [ ]:
In [10]:
// Go's `sort` package implements sorting for builtins
// and user-defined types. We'll look at sorting for
// builtins first.
In [11]:
import "sort"
In [12]:
// Sort methods are specific to the builtin type;
// here's an example for strings. Note that sorting is
// in-place, so it changes the given slice and doesn't
// return a new one.
strs := []string{"c", "a", "b"}
sort.Strings(strs)
fmt.Println("Strings:", strs)
// An example of sorting `int`s.
ints := []int{7, 2, 4}
sort.Ints(ints)
fmt.Println("Ints: ", ints)
// We can also use `sort` to check if a slice is
// already in sorted order.
s := sort.IntsAreSorted(ints)
fmt.Println("Sorted: ", s)
In [15]:
// Sometimes we'll want to sort a collection by something
// other than its natural order. For example, suppose we
// wanted to sort strings by their length instead of
// alphabetically. Here's an example of custom sorts
// in Go.
//package main
import "sort"
import "fmt"
// In order to sort by a custom function in Go, we need a
// corresponding type. Here we've created a `byLength`
// type that is just an alias for the builtin `[]string`
// type.
type byLength []string
// We implement `sort.Interface` - `Len`, `Less`, and
// `Swap` - on our type so we can use the `sort` package's
// generic `Sort` function. `Len` and `Swap`
// will usually be similar across types and `Less` will
// hold the actual custom sorting logic. In our case we
// want to sort in order of increasing string length, so
// we use `len(s[i])` and `len(s[j])` here.
func (s byLength) Len() int {
return len(s)
}
func (s byLength) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s byLength) Less(i, j int) bool {
return len(s[i]) < len(s[j])
}
// With all of this in place, we can now implement our
// custom sort by casting the original `fruits` slice to
// `byLength`, and then use `sort.Sort` on that typed
// slice.
func main() {
fruits := []string{"peach", "banana", "kiwi", "apple", "orange"}
sort.Sort(byLength(fruits))
fmt.Println(fruits)
}
main()
In [18]:
fruits := []string{"peach", "banana", "kiwi", "apple", "orange"}
sort.Strings(fruits)
fruits
In [21]:
n := make(map[int][]string)
In [23]:
n[5] = []string{"peach"}
In [32]:
fmt.Println(n)
In [31]:
n[5] = append(n[5],s)
In [33]:
func stringInSlice(a string, list []string) bool {
for _, b := range list {
if b == a {
return true
}
}
return false
}
In [34]:
stringInSlice("apple", n[5])
In [36]:
fruits
In [50]:
// create a map :
// key = word-lenght,
// value = list of words with same length
for _, e := range fruits {
fmt.Println(e)
ln := len(e)
if v, ok := n[ln]; ok {
if !stringInSlice(e,v) {
n[ln] = append(v,e)
}
} else {
n[ln] = []string{e}
}
}
In [58]:
n
In [68]:
len_list := []int{}
for k,_ := range n {
len_list = append(len_list, k)
sort.Strings(n[k])
//fmt.Println(k,v)
}
In [72]:
sort.Ints(len_list)
len_list
In [73]:
// sort by length, then if same length, sort by alphabetically
for _, e := range len_list {
fmt.Println(n[e])
}
In [66]:
//var num_list []int
num_list := []int{}
num_list = append(num_list, 0)
fmt.Println(num_list)
In [38]:
tf := true
In [45]:
!tf
In [41]:
visitedURL := map[string]bool {
"http://www.google.com": true,
"https://paypal.com": true,
}
thisSite := "http://www.cnn.com"
if visitedURL[thisSite] {
fmt.Println("Already been here.")
} else {
fmt.Println("New entry.")
}
In [42]:
func IsValidCategory(category string) bool {
switch category {
case
"auto",
"news",
"sport",
"music":
return true
}
return false
}
In [43]:
IsValidCategory("car")
In [44]:
IsValidCategory("auto")
In [74]:
// A `panic` typically means something went unexpectedly
// wrong. Mostly we use it to fail fast on errors that
// shouldn't occur during normal operation, or that we
// aren't prepared to handle gracefully.
import "os"
In [76]:
// We'll use panic throughout this site to check for
// unexpected errors. This is the only program on the
// site designed to panic.
panic("a problem")
In [77]:
// A common use of panic is to abort if a function
// returns an error value that we don't know how to
// (or want to) handle. Here's an example of
// `panic`king if we get an unexpected error when creating a new file.
_, err := os.Create("/tmp/file")
if err != nil {
panic(err)
}
In [79]:
// _Defer_ is used to ensure that a function call is
// performed later in a program's execution, usually for
// purposes of cleanup. `defer` is often used where e.g.
// `ensure` and `finally` would be used in other languages.
In [78]:
func createFile(p string) *os.File {
fmt.Println("creating")
f, err := os.Create(p)
if err != nil {
panic(err)
}
return f
}
func writeFile(f *os.File) {
fmt.Println("writing")
fmt.Fprintln(f, "data")
}
func closeFile(f *os.File) {
fmt.Println("closing")
f.Close()
}
In [80]:
// Immediately after getting a file object with
// `createFile`, we defer the closing of that file
// with `closeFile`. This will be executed at the end
// of the enclosing function (`main`), after
// `writeFile` has finished.
f := createFile("/tmp/defer.txt")
defer closeFile(f)
writeFile(f)
In [84]:
//package main
import "strings"
import "fmt"
// Index returns the first index of the target string `t`, or
// -1 if no match is found.
func Index(vs []string, t string) int {
for i, v := range vs {
if v == t {
return i
}
}
return -1
}
// Include returns `true` if the target string t is in the
// slice.
func Include(vs []string, t string) bool {
return Index(vs, t) >= 0
}
// Any returns `true` if one of the strings in the slice
// satisfies the predicate `f`.
func Any(vs []string, f func(string) bool) bool {
for _, v := range vs {
if f(v) {
return true
}
}
return false
}
// All returns `true` if all of the strings in the slice
// satisfy the predicate `f`.
func All(vs []string, f func(string) bool) bool {
for _, v := range vs {
if !f(v) {
return false
}
}
return true
}
// Filter returns a new slice containing all strings in the
// slice that satisfy the predicate `f`.
func Filter(vs []string, f func(string) bool) []string {
vsf := make([]string, 0)
for _, v := range vs {
if f(v) {
vsf = append(vsf, v)
}
}
return vsf
}
// Map returns a new slice containing the results of applying
// the function `f` to each string in the original slice.
func Map(vs []string, f func(string) string) []string {
vsm := make([]string, len(vs))
for i, v := range vs {
vsm[i] = f(v)
}
return vsm
}
func main() {
// Here we try out our various collection functions.
var strs = []string{"peach", "apple", "pear", "plum"}
fmt.Println(Index(strs, "pear"))
fmt.Println(Include(strs, "grape"))
fmt.Println(Any(strs, func(v string) bool {
return strings.HasPrefix(v, "p")
}))
fmt.Println(All(strs, func(v string) bool {
return strings.HasPrefix(v, "p")
}))
fmt.Println(Filter(strs, func(v string) bool {
return strings.Contains(v, "e")
}))
// The above examples all used anonymous functions,
// but you can also use named functions of the correct
// type.
fmt.Println(Map(strs, strings.ToUpper))
}
main()
In [85]:
// The standard library's `strings` package provides many
// useful string-related functions. Here are some examples
// to give you a sense of the package.
//package main
import s "strings"
import "fmt"
// We alias `fmt.Println` to a shorter name as we'll use
// it a lot below.
var p = fmt.Println
func main() {
// Here's a sample of the functions available in
// `strings`. Since these are functions from the
// package, not methods on the string object itself,
// we need pass the string in question as the first
// argument to the function. You can find more
// functions in the [`strings`](http://golang.org/pkg/strings/)
// package docs.
p("Contains: ", s.Contains("test", "es"))
p("Count: ", s.Count("test", "t"))
p("HasPrefix: ", s.HasPrefix("test", "te"))
p("HasSuffix: ", s.HasSuffix("test", "st"))
p("Index: ", s.Index("test", "e"))
p("Join: ", s.Join([]string{"a", "b"}, "-"))
p("Repeat: ", s.Repeat("a", 5))
p("Replace: ", s.Replace("foo", "o", "0", -1))
p("Replace: ", s.Replace("foo", "o", "0", 1))
p("Split: ", s.Split("a-b-c-d-e", "-"))
p("ToLower: ", s.ToLower("TEST"))
p("ToUpper: ", s.ToUpper("test"))
p()
// Not part of `strings`, but worth mentioning here, are
// the mechanisms for getting the length of a string in
// bytes and getting a byte by index.
p("Len: ", len("hello"))
p("Char:", "hello"[1])
}
// Note that `len` and indexing above work at the byte level.
// Go uses UTF-8 encoded strings, so this is often useful
// as-is. If you're working with potentially multi-byte
// characters you'll want to use encoding-aware operations.
// See [strings, bytes, runes and characters in Go](https://blog.golang.org/strings)
// for more information.
main()
In [86]:
type point struct {
x, y int
}
In [89]:
// Go offers several printing "verbs" designed to
// format general Go values. For example, this prints
// an instance of our `point` struct.
p := point{1, 2}
fmt.Printf("%v\n", p)
In [90]:
// If the value is a struct, the `%+v` variant will
// include the struct's field names.
fmt.Printf("%+v\n", p)
In [91]:
// The `%#v` variant prints a Go syntax representation
// of the value, i.e. the source code snippet that
// would produce that value.
fmt.Printf("%#v\n", p)
In [92]:
// To print the type of a value, use `%T`.
fmt.Printf("%T\n", p)
In [93]:
// Formatting booleans is straight-forward.
fmt.Printf("%t\n", true)
In [94]:
// There are many options for formatting integers.
// Use `%d` for standard, base-10 formatting.
fmt.Printf("%d\n", 123)
// This prints a binary representation.
fmt.Printf("%b\n", 14)
// This prints the character corresponding to the
// given integer.
fmt.Printf("%c\n", 33)
// `%x` provides hex encoding.
fmt.Printf("%x\n", 456)
In [95]:
// There are also several formatting options for
// floats. For basic decimal formatting use `%f`.
fmt.Printf("%f\n", 78.9)
// `%e` and `%E` format the float in (slightly
// different versions of) scientific notation.
fmt.Printf("%e\n", 123400000.0)
fmt.Printf("%E\n", 123400000.0)
In [96]:
// For basic string printing use `%s`.
fmt.Printf("%s\n", "\"string\"")
// To double-quote strings as in Go source, use `%q`.
fmt.Printf("%q\n", "\"string\"")
In [97]:
// As with integers seen earlier, `%x` renders
// the string in base-16, with two output characters
// per byte of input.
fmt.Printf("%x\n", "hex this")
// To print a representation of a pointer, use `%p`.
fmt.Printf("%p\n", &p)
// When formatting numbers you will often want to
// control the width and precision of the resulting
// figure. To specify the width of an integer, use a
// number after the `%` in the verb. By default the
// result will be right-justified and padded with
// spaces.
fmt.Printf("|%6d|%6d|\n", 12, 345)
// You can also specify the width of printed floats,
// though usually you'll also want to restrict the
// decimal precision at the same time with the
// width.precision syntax.
fmt.Printf("|%6.2f|%6.2f|\n", 1.2, 3.45)
// To left-justify, use the `-` flag.
fmt.Printf("|%-6.2f|%-6.2f|\n", 1.2, 3.45)
// You may also want to control width when formatting
// strings, especially to ensure that they align in
// table-like output. For basic right-justified width.
fmt.Printf("|%6s|%6s|\n", "foo", "b")
// To left-justify use the `-` flag as with numbers.
fmt.Printf("|%-6s|%-6s|\n", "foo", "b")
// So far we've seen `Printf`, which prints the
// formatted string to `os.Stdout`. `Sprintf` formats
// and returns a string without printing it anywhere.
s := fmt.Sprintf("a %s", "string")
fmt.Println(s)
// You can format+print to `io.Writers` other than
// `os.Stdout` using `Fprintf`.
fmt.Fprintf(os.Stderr, "an %s\n", "error")
In [98]:
// Go offers built-in support for [regular expressions](http://en.wikipedia.org/wiki/Regular_expression).
// Here are some examples of common regexp-related tasks
// in Go.
//package main
import "bytes"
import "fmt"
import "regexp"
func main() {
// This tests whether a pattern matches a string.
match, _ := regexp.MatchString("p([a-z]+)ch", "peach")
fmt.Println(match)
// Above we used a string pattern directly, but for
// other regexp tasks you'll need to `Compile` an
// optimized `Regexp` struct.
r, _ := regexp.Compile("p([a-z]+)ch")
// Many methods are available on these structs. Here's
// a match test like we saw earlier.
fmt.Println(r.MatchString("peach"))
// This finds the match for the regexp.
fmt.Println(r.FindString("peach punch"))
// This also finds the first match but returns the
// start and end indexes for the match instead of the
// matching text.
fmt.Println(r.FindStringIndex("peach punch"))
// The `Submatch` variants include information about
// both the whole-pattern matches and the submatches
// within those matches. For example this will return
// information for both `p([a-z]+)ch` and `([a-z]+)`.
fmt.Println(r.FindStringSubmatch("peach punch"))
// Similarly this will return information about the
// indexes of matches and submatches.
fmt.Println(r.FindStringSubmatchIndex("peach punch"))
// The `All` variants of these functions apply to all
// matches in the input, not just the first. For
// example to find all matches for a regexp.
fmt.Println(r.FindAllString("peach punch pinch", -1))
// These `All` variants are available for the other
// functions we saw above as well.
fmt.Println(r.FindAllStringSubmatchIndex(
"peach punch pinch", -1))
// Providing a non-negative integer as the second
// argument to these functions will limit the number
// of matches.
fmt.Println(r.FindAllString("peach punch pinch", 2))
// Our examples above had string arguments and used
// names like `MatchString`. We can also provide
// `[]byte` arguments and drop `String` from the
// function name.
fmt.Println(r.Match([]byte("peach")))
// When creating constants with regular expressions
// you can use the `MustCompile` variation of
// `Compile`. A plain `Compile` won't work for
// constants because it has 2 return values.
r = regexp.MustCompile("p([a-z]+)ch")
fmt.Println(r)
// The `regexp` package can also be used to replace
// subsets of strings with other values.
fmt.Println(r.ReplaceAllString("a peach", "<fruit>"))
// The `Func` variant allows you to transform matched
// text with a given function.
in := []byte("a peach")
out := r.ReplaceAllFunc(in, bytes.ToUpper)
fmt.Println(string(out))
}
main()
In [99]:
// Go offers built-in support for JSON encoding and
// decoding, including to and from built-in and custom
// data types.
//package main
import "encoding/json"
import "fmt"
import "os"
// We'll use these two structs to demonstrate encoding and
// decoding of custom types below.
type response1 struct {
Page int
Fruits []string
}
type response2 struct {
Page int `json:"page"`
Fruits []string `json:"fruits"`
}
func main() {
// First we'll look at encoding basic data types to
// JSON strings. Here are some examples for atomic
// values.
bolB, _ := json.Marshal(true)
fmt.Println(string(bolB))
intB, _ := json.Marshal(1)
fmt.Println(string(intB))
fltB, _ := json.Marshal(2.34)
fmt.Println(string(fltB))
strB, _ := json.Marshal("gopher")
fmt.Println(string(strB))
// And here are some for slices and maps, which encode
// to JSON arrays and objects as you'd expect.
slcD := []string{"apple", "peach", "pear"}
slcB, _ := json.Marshal(slcD)
fmt.Println(string(slcB))
mapD := map[string]int{"apple": 5, "lettuce": 7}
mapB, _ := json.Marshal(mapD)
fmt.Println(string(mapB))
// The JSON package can automatically encode your
// custom data types. It will only include exported
// fields in the encoded output and will by default
// use those names as the JSON keys.
res1D := &response1{
Page: 1,
Fruits: []string{"apple", "peach", "pear"}}
res1B, _ := json.Marshal(res1D)
fmt.Println(string(res1B))
// You can use tags on struct field declarations
// to customize the encoded JSON key names. Check the
// definition of `response2` above to see an example
// of such tags.
res2D := &response2{
Page: 1,
Fruits: []string{"apple", "peach", "pear"}}
res2B, _ := json.Marshal(res2D)
fmt.Println(string(res2B))
// Now let's look at decoding JSON data into Go
// values. Here's an example for a generic data
// structure.
byt := []byte(`{"num":6.13,"strs":["a","b"]}`)
// We need to provide a variable where the JSON
// package can put the decoded data. This
// `map[string]interface{}` will hold a map of strings
// to arbitrary data types.
var dat map[string]interface{}
// Here's the actual decoding, and a check for
// associated errors.
if err := json.Unmarshal(byt, &dat); err != nil {
panic(err)
}
fmt.Println(dat)
// In order to use the values in the decoded map,
// we'll need to cast them to their appropriate type.
// For example here we cast the value in `num` to
// the expected `float64` type.
num := dat["num"].(float64)
fmt.Println(num)
// Accessing nested data requires a series of
// casts.
strs := dat["strs"].([]interface{})
str1 := strs[0].(string)
fmt.Println(str1)
// We can also decode JSON into custom data types.
// This has the advantages of adding additional
// type-safety to our programs and eliminating the
// need for type assertions when accessing the decoded
// data.
str := `{"page": 1, "fruits": ["apple", "peach"]}`
res := response2{}
json.Unmarshal([]byte(str), &res)
fmt.Println(res)
fmt.Println(res.Fruits[0])
// In the examples above we always used bytes and
// strings as intermediates between the data and
// JSON representation on standard out. We can also
// stream JSON encodings directly to `os.Writer`s like
// `os.Stdout` or even HTTP response bodies.
enc := json.NewEncoder(os.Stdout)
d := map[string]int{"apple": 5, "lettuce": 7}
enc.Encode(d)
}
main()
In [100]:
// Go offers extensive support for times and durations;
// here are some examples.
//package main
import "fmt"
import "time"
func main() {
p := fmt.Println
// We'll start by getting the current time.
now := time.Now()
p(now)
// You can build a `time` struct by providing the
// year, month, day, etc. Times are always associated
// with a `Location`, i.e. time zone.
then := time.Date(
2009, 11, 17, 20, 34, 58, 651387237, time.UTC)
p(then)
// You can extract the various components of the time
// value as expected.
p(then.Year())
p(then.Month())
p(then.Day())
p(then.Hour())
p(then.Minute())
p(then.Second())
p(then.Nanosecond())
p(then.Location())
// The Monday-Sunday `Weekday` is also available.
p(then.Weekday())
// These methods compare two times, testing if the
// first occurs before, after, or at the same time
// as the second, respectively.
p(then.Before(now))
p(then.After(now))
p(then.Equal(now))
// The `Sub` methods returns a `Duration` representing
// the interval between two times.
diff := now.Sub(then)
p(diff)
// We can compute the length of the duration in
// various units.
p(diff.Hours())
p(diff.Minutes())
p(diff.Seconds())
p(diff.Nanoseconds())
// You can use `Add` to advance a time by a given
// duration, or with a `-` to move backwards by a
// duration.
p(then.Add(diff))
p(then.Add(-diff))
}
main()
In [101]:
// A common requirement in programs is getting the number
// of seconds, milliseconds, or nanoseconds since the
// [Unix epoch](http://en.wikipedia.org/wiki/Unix_time).
// Here's how to do it in Go.
//package main
import "fmt"
import "time"
func main() {
// Use `time.Now` with `Unix` or `UnixNano` to get
// elapsed time since the Unix epoch in seconds or
// nanoseconds, respectively.
now := time.Now()
secs := now.Unix()
nanos := now.UnixNano()
fmt.Println(now)
// Note that there is no `UnixMillis`, so to get the
// milliseconds since epoch you'll need to manually
// divide from nanoseconds.
millis := nanos / 1000000
fmt.Println(secs)
fmt.Println(millis)
fmt.Println(nanos)
// You can also convert integer seconds or nanoseconds
// since the epoch into the corresponding `time`.
fmt.Println(time.Unix(secs, 0))
fmt.Println(time.Unix(0, nanos))
}
main()
In [102]:
// Go supports time formatting and parsing via
// pattern-based layouts.
//package main
import "fmt"
import "time"
func main() {
p := fmt.Println
// Here's a basic example of formatting a time
// according to RFC3339, using the corresponding layout
// constant.
t := time.Now()
p(t.Format(time.RFC3339))
// Time parsing uses the same layout values as `Format`.
t1, e := time.Parse(
time.RFC3339,
"2012-11-01T22:08:41+00:00")
p(t1)
// `Format` and `Parse` use example-based layouts. Usually
// you'll use a constant from `time` for these layouts, but
// you can also supply custom layouts. Layouts must use the
// reference time `Mon Jan 2 15:04:05 MST 2006` to show the
// pattern with which to format/parse a given time/string.
// The example time must be exactly as shown: the year 2006,
// 15 for the hour, Monday for the day of the week, etc.
p(t.Format("3:04PM"))
p(t.Format("Mon Jan _2 15:04:05 2006"))
p(t.Format("2006-01-02T15:04:05.999999-07:00"))
form := "3 04 PM"
t2, e := time.Parse(form, "8 41 PM")
p(t2)
// For purely numeric representations you can also
// use standard string formatting with the extracted
// components of the time value.
fmt.Printf("%d-%02d-%02dT%02d:%02d:%02d-00:00\n",
t.Year(), t.Month(), t.Day(),
t.Hour(), t.Minute(), t.Second())
// `Parse` will return an error on malformed input
// explaining the parsing problem.
ansic := "Mon Jan _2 15:04:05 2006"
_, e = time.Parse(ansic, "8:41PM")
p(e)
}
main()
In [103]:
// Go's `math/rand` package provides
// [pseudorandom number](http://en.wikipedia.org/wiki/Pseudorandom_number_generator)
// generation.
//package main
import "time"
import "fmt"
import "math/rand"
func main() {
// For example, `rand.Intn` returns a random `int` n,
// `0 <= n < 100`.
fmt.Print(rand.Intn(100), ",")
fmt.Print(rand.Intn(100))
fmt.Println()
// `rand.Float64` returns a `float64` `f`,
// `0.0 <= f < 1.0`.
fmt.Println(rand.Float64())
// This can be used to generate random floats in
// other ranges, for example `5.0 <= f' < 10.0`.
fmt.Print((rand.Float64()*5)+5, ",")
fmt.Print((rand.Float64() * 5) + 5)
fmt.Println()
// The default number generator is deterministic, so it'll
// produce the same sequence of numbers each time by default.
// To produce varying sequences, give it a seed that changes.
// Note that this is not safe to use for random numbers you
// intend to be secret, use `crypto/rand` for those.
s1 := rand.NewSource(time.Now().UnixNano())
r1 := rand.New(s1)
// Call the resulting `rand.Rand` just like the
// functions on the `rand` package.
fmt.Print(r1.Intn(100), ",")
fmt.Print(r1.Intn(100))
fmt.Println()
// If you seed a source with the same number, it
// produces the same sequence of random numbers.
s2 := rand.NewSource(42)
r2 := rand.New(s2)
fmt.Print(r2.Intn(100), ",")
fmt.Print(r2.Intn(100))
fmt.Println()
s3 := rand.NewSource(42)
r3 := rand.New(s3)
fmt.Print(r3.Intn(100), ",")
fmt.Print(r3.Intn(100))
}
main()
In [104]:
// Parsing numbers from strings is a basic but common task
// in many programs; here's how to do it in Go.
//package main
// The built-in package `strconv` provides the number
// parsing.
import "strconv"
import "fmt"
func main() {
// With `ParseFloat`, this `64` tells how many bits of
// precision to parse.
f, _ := strconv.ParseFloat("1.234", 64)
fmt.Println(f)
// For `ParseInt`, the `0` means infer the base from
// the string. `64` requires that the result fit in 64
// bits.
i, _ := strconv.ParseInt("123", 0, 64)
fmt.Println(i)
// `ParseInt` will recognize hex-formatted numbers.
d, _ := strconv.ParseInt("0x1c8", 0, 64)
fmt.Println(d)
// A `ParseUint` is also available.
u, _ := strconv.ParseUint("789", 0, 64)
fmt.Println(u)
// `Atoi` is a convenience function for basic base-10
// `int` parsing.
k, _ := strconv.Atoi("135")
fmt.Println(k)
// Parse functions return an error on bad input.
_, e := strconv.Atoi("wat")
fmt.Println(e)
}
main()
In [105]:
// URLs provide a [uniform way to locate resources](https://adam.herokuapp.com/past/2010/3/30/urls_are_the_uniform_way_to_locate_resources/).
// Here's how to parse URLs in Go.
//package main
import "fmt"
import "net"
import "net/url"
func main() {
// We'll parse this example URL, which includes a
// scheme, authentication info, host, port, path,
// query params, and query fragment.
s := "postgres://user:pass@host.com:5432/path?k=v#f"
// Parse the URL and ensure there are no errors.
u, err := url.Parse(s)
if err != nil {
panic(err)
}
// Accessing the scheme is straightforward.
fmt.Println(u.Scheme)
// `User` contains all authentication info; call
// `Username` and `Password` on this for individual
// values.
fmt.Println(u.User)
fmt.Println(u.User.Username())
p, _ := u.User.Password()
fmt.Println(p)
// The `Host` contains both the hostname and the port,
// if present. Use `SplitHostPort` to extract them.
fmt.Println(u.Host)
host, port, _ := net.SplitHostPort(u.Host)
fmt.Println(host)
fmt.Println(port)
// Here we extract the `path` and the fragment after
// the `#`.
fmt.Println(u.Path)
fmt.Println(u.Fragment)
// To get query params in a string of `k=v` format,
// use `RawQuery`. You can also parse query params
// into a map. The parsed query param maps are from
// strings to slices of strings, so index into `[0]`
// if you only want the first value.
fmt.Println(u.RawQuery)
m, _ := url.ParseQuery(u.RawQuery)
fmt.Println(m)
fmt.Println(m["k"][0])
}
main()
In [107]:
// [_SHA1 hashes_](http://en.wikipedia.org/wiki/SHA-1) are
// frequently used to compute short identities for binary
// or text blobs. For example, the [git revision control
// system](http://git-scm.com/) uses SHA1s extensively to
// identify versioned files and directories. Here's how to
// compute SHA1 hashes in Go.
//package main
// Go implements several hash functions in various
// `crypto/*` packages.
import "crypto/sha1"
import "fmt"
func main() {
s := "sha1 this string"
// The pattern for generating a hash is `sha1.New()`,
// `sha1.Write(bytes)`, then `sha1.Sum([]byte{})`.
// Here we start with a new hash.
h := sha1.New()
// `Write` expects bytes. If you have a string `s`,
// use `[]byte(s)` to coerce it to bytes.
h.Write([]byte(s))
// This gets the finalized hash result as a byte
// slice. The argument to `Sum` can be used to append
// to an existing byte slice: it usually isn't needed.
bs := h.Sum(nil)
// SHA1 values are often printed in hex, for example
// in git commits. Use the `%x` format verb to convert
// a hash results to a hex string.
fmt.Println(s)
fmt.Printf("%x\n", bs)
}
main()
In [108]:
// Go provides built-in support for [base64
// encoding/decoding](http://en.wikipedia.org/wiki/Base64).
//package main
// This syntax imports the `encoding/base64` package with
// the `b64` name instead of the default `base64`. It'll
// save us some space below.
import b64 "encoding/base64"
import "fmt"
func main() {
// Here's the `string` we'll encode/decode.
data := "abc123!?$*&()'-=@~"
// Go supports both standard and URL-compatible
// base64. Here's how to encode using the standard
// encoder. The encoder requires a `[]byte` so we
// cast our `string` to that type.
sEnc := b64.StdEncoding.EncodeToString([]byte(data))
fmt.Println(sEnc)
// Decoding may return an error, which you can check
// if you don't already know the input to be
// well-formed.
sDec, _ := b64.StdEncoding.DecodeString(sEnc)
fmt.Println(string(sDec))
fmt.Println()
// This encodes/decodes using a URL-compatible base64
// format.
uEnc := b64.URLEncoding.EncodeToString([]byte(data))
fmt.Println(uEnc)
uDec, _ := b64.URLEncoding.DecodeString(uEnc)
fmt.Println(string(uDec))
}
main()
In [111]:
// Reading and writing files are basic tasks needed for
// many Go programs. First we'll look at some examples of
// reading files.
//package main
import (
"bufio"
"fmt"
"io"
"io/ioutil"
"os"
)
// Reading files requires checking most calls for errors.
// This helper will streamline our error checks below.
func check(e error) {
if e != nil {
panic(e)
}
}
func main() {
// Perhaps the most basic file reading task is
// slurping a file's entire contents into memory.
dat, err := ioutil.ReadFile("/tmp/dat")
check(err)
fmt.Print(string(dat))
// You'll often want more control over how and what
// parts of a file are read. For these tasks, start
// by `Open`ing a file to obtain an `os.File` value.
f, err := os.Open("/tmp/dat")
check(err)
// Read some bytes from the beginning of the file.
// Allow up to 5 to be read but also note how many
// actually were read.
b1 := make([]byte, 5)
n1, err := f.Read(b1)
check(err)
fmt.Printf("%d bytes: %s\n", n1, string(b1))
// You can also `Seek` to a known location in the file
// and `Read` from there.
o2, err := f.Seek(6, 0)
check(err)
b2 := make([]byte, 2)
n2, err := f.Read(b2)
check(err)
fmt.Printf("%d bytes @ %d: %s\n", n2, o2, string(b2))
// The `io` package provides some functions that may
// be helpful for file reading. For example, reads
// like the ones above can be more robustly
// implemented with `ReadAtLeast`.
o3, err := f.Seek(6, 0)
check(err)
b3 := make([]byte, 2)
n3, err := io.ReadAtLeast(f, b3, 2)
check(err)
fmt.Printf("%d bytes @ %d: %s\n", n3, o3, string(b3))
// There is no built-in rewind, but `Seek(0, 0)`
// accomplishes this.
_, err = f.Seek(0, 0)
check(err)
// The `bufio` package implements a buffered
// reader that may be useful both for its efficiency
// with many small reads and because of the additional
// reading methods it provides.
r4 := bufio.NewReader(f)
b4, err := r4.Peek(5)
check(err)
fmt.Printf("5 bytes: %s\n", string(b4))
// Close the file when you're done (usually this would
// be scheduled immediately after `Open`ing with
// `defer`).
f.Close()
}
$ echo "hello" > /tmp/dat
$ echo "go" >> /tmp/dat
In [112]:
main()
In [113]:
// Writing files in Go follows similar patterns to the
// ones we saw earlier for reading.
//package main
import (
"bufio"
"fmt"
"io/ioutil"
"os"
)
func check(e error) {
if e != nil {
panic(e)
}
}
func main() {
// To start, here's how to dump a string (or just
// bytes) into a file.
d1 := []byte("hello\ngo\n")
err := ioutil.WriteFile("/tmp/dat1", d1, 0644)
check(err)
// For more granular writes, open a file for writing.
f, err := os.Create("/tmp/dat2")
check(err)
// It's idiomatic to defer a `Close` immediately
// after opening a file.
defer f.Close()
// You can `Write` byte slices as you'd expect.
d2 := []byte{115, 111, 109, 101, 10}
n2, err := f.Write(d2)
check(err)
fmt.Printf("wrote %d bytes\n", n2)
// A `WriteString` is also available.
n3, err := f.WriteString("writes\n")
fmt.Printf("wrote %d bytes\n", n3)
// Issue a `Sync` to flush writes to stable storage.
f.Sync()
// `bufio` provides buffered writers in addition
// to the buffered readers we saw earlier.
w := bufio.NewWriter(f)
n4, err := w.WriteString("buffered\n")
fmt.Printf("wrote %d bytes\n", n4)
// Use `Flush` to ensure all buffered operations have
// been applied to the underlying writer.
w.Flush()
}
main()
$ cat /tmp/dat1
$ cat /tmp/dat2
In [114]:
// [Environment variables](http://en.wikipedia.org/wiki/Environment_variable)
// are a universal mechanism for [conveying configuration
// information to Unix programs](http://www.12factor.net/config).
// Let's look at how to set, get, and list environment variables.
//package main
import "os"
import "strings"
import "fmt"
func main() {
// To set a key/value pair, use `os.Setenv`. To get a
// value for a key, use `os.Getenv`. This will return
// an empty string if the key isn't present in the
// environment.
os.Setenv("FOO", "1")
fmt.Println("FOO:", os.Getenv("FOO"))
fmt.Println("BAR:", os.Getenv("BAR"))
// Use `os.Environ` to list all key/value pairs in the
// environment. This returns a slice of strings in the
// form `KEY=value`. You can `strings.Split` them to
// get the key and value. Here we print all the keys.
fmt.Println()
for _, e := range os.Environ() {
pair := strings.Split(e, "=")
fmt.Println(pair[0])
}
}
main()
In [115]:
// Sometimes our Go programs need to spawn other, non-Go
// processes. For example, the syntax highlighting on this
// site is [implemented](https://github.com/mmcgrana/gobyexample/blob/master/tools/generate.go)
// by spawning a [`pygmentize`](http://pygments.org/)
// process from a Go program. Let's look at a few examples
// of spawning processes from Go.
//package main
import "fmt"
import "io/ioutil"
import "os/exec"
func main() {
// We'll start with a simple command that takes no
// arguments or input and just prints something to
// stdout. The `exec.Command` helper creates an object
// to represent this external process.
dateCmd := exec.Command("date")
// `.Output` is another helper that handles the common
// case of running a command, waiting for it to finish,
// and collecting its output. If there were no errors,
// `dateOut` will hold bytes with the date info.
dateOut, err := dateCmd.Output()
if err != nil {
panic(err)
}
fmt.Println("> date")
fmt.Println(string(dateOut))
// Next we'll look at a slightly more involved case
// where we pipe data to the external process on its
// `stdin` and collect the results from its `stdout`.
grepCmd := exec.Command("grep", "hello")
// Here we explicitly grab input/output pipes, start
// the process, write some input to it, read the
// resulting output, and finally wait for the process
// to exit.
grepIn, _ := grepCmd.StdinPipe()
grepOut, _ := grepCmd.StdoutPipe()
grepCmd.Start()
grepIn.Write([]byte("hello grep\ngoodbye grep"))
grepIn.Close()
grepBytes, _ := ioutil.ReadAll(grepOut)
grepCmd.Wait()
// We ommited error checks in the above example, but
// you could use the usual `if err != nil` pattern for
// all of them. We also only collect the `StdoutPipe`
// results, but you could collect the `StderrPipe` in
// exactly the same way.
fmt.Println("> grep hello")
fmt.Println(string(grepBytes))
// Note that when spawning commands we need to
// provide an explicitly delineated command and
// argument array, vs. being able to just pass in one
// command-line string. If you want to spawn a full
// command with a string, you can use `bash`'s `-c`
// option:
lsCmd := exec.Command("bash", "-c", "ls -a -l -h")
lsOut, err := lsCmd.Output()
if err != nil {
panic(err)
}
fmt.Println("> ls -a -l -h")
fmt.Println(string(lsOut))
}
main()
In [ ]:
// In the previous example we looked at
// [spawning external processes](spawning-processes). We
// do this when we need an external process accessible to
// a running Go process. Sometimes we just want to
// completely replace the current Go process with another
// (perhaps non-Go) one. To do this we'll use Go's
// implementation of the classic
// <a href="http://en.wikipedia.org/wiki/Exec_(operating_system)"><code>exec</code></a>
// function.
//package main
import "syscall"
import "os"
import "os/exec"
func main() {
// For our example we'll exec `ls`. Go requires an
// absolute path to the binary we want to execute, so
// we'll use `exec.LookPath` to find it (probably
// `/bin/ls`).
binary, lookErr := exec.LookPath("ls")
if lookErr != nil {
panic(lookErr)
}
// `Exec` requires arguments in slice form (as
// apposed to one big string). We'll give `ls` a few
// common arguments. Note that the first argument should
// be the program name.
args := []string{"ls", "-a", "-l", "-h"}
// `Exec` also needs a set of [environment variables](environment-variables)
// to use. Here we just provide our current
// environment.
env := os.Environ()
// Here's the actual `syscall.Exec` call. If this call is
// successful, the execution of our process will end
// here and be replaced by the `/bin/ls -a -l -h`
// process. If there is an error we'll get a return
// value.
execErr := syscall.Exec(binary, args, env)
if execErr != nil {
panic(execErr)
}
}
main()
In [1]:
a,b := 1,2
a+b
In [ ]: