systemdeets


In [1]:
import datetime

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import shijian

%matplotlib inline
shijian.setup_Jupyter()

In [2]:
df = pd.read_csv("gpudeets.csv")
df = shijian.add_time_variables(df = df)
df.tail()


Out[2]:
datetime temperature_C power_draw_W utilization_MiB memory_used_MiB memory_total_percentage month month_name weekday weekday_name time_through_day fraction_through_day hour hours_through_day days_through_week days_through_year
datetime
2018-03-08 14:21:24.041169 2018-03-08 14:21:24.041169 91 94.81 2774 8114 100 3 March 3 Thursday 14:21:24.041169 0.598195 14 14.356678 3.598195 67
2018-03-08 14:21:34.085132 2018-03-08 14:21:34.085132 91 95.20 2774 8114 100 3 March 3 Thursday 14:21:34.085132 0.598311 14 14.359468 3.598311 67
2018-03-08 14:21:44.127469 2018-03-08 14:21:44.127469 91 93.69 2774 8114 100 3 March 3 Thursday 14:21:44.127469 0.598427 14 14.362258 3.598427 67
2018-03-08 14:21:54.155904 2018-03-08 14:21:54.155904 91 95.43 2774 8114 100 3 March 3 Thursday 14:21:54.155904 0.598543 14 14.365043 3.598543 67
2018-03-08 14:22:04.192842 2018-03-08 14:22:04.192842 91 93.65 2774 8114 100 3 March 3 Thursday 14:22:04.192842 0.598660 14 14.367831 3.598660 67

temperature


In [3]:
df.plot(y = ["temperature_C"]);


power draw


In [4]:
df.plot(y = ["power_draw_W"]);


histograms


In [5]:
plt.rcParams["figure.figsize"] = (17, 8)
df[["temperature_C", "power_draw_W"]].hist(bins = 50);



In [ ]: