In [ ]:
In [1]:
from __future__ import unicode_literals, print_function
import json
import pathlib
import random
import spacy
from spacy.pipeline import EntityRecognizer
from spacy.gold import GoldParse
from spacy.tagger import Tagger
import os
import re
try:
unicode
except:
unicode = str
In [2]:
nlp = spacy.load('en')
#nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
In [3]:
def tex2doc(tex_file): #read the whole tex file in the spaCy doc object
with open(tex_file, 'r') as tex:
data=tex.read()
doc = nlp(data)
return doc
In [4]:
def rule_based_annotation(doc):
annotation = []
for match in re.finditer('let \$(\S+( \S+){0,3})\$ be an? (\S+)', doc.text, re.IGNORECASE):
annotation.append((match.span(1)[0],match.span(1)[1], 'VAR'))
annotation.append((match.span(3)[0],match.span(3)[1], 'TYPE'))
return (doc.text, annotation)
In [5]:
annotated_data=[]
directory = os.fsencode('tex_files/')
for file in os.listdir(directory)[0:3]:
filename = os.fsdecode(file)
print("file: ", filename)
doc = tex2doc(os.path.join(os.fsdecode(directory), filename))
annotated_data.append(rule_based_annotation(doc))
file: pione.tex
file: intersection.tex
file: spaces-simplicial.tex
In [6]:
print(len(annotated_data))
print(annotated_data[0])
3
("\\input{preamble}\n\n% OK, start here.\n%\n\\begin{document}\n\n\\title{Fundamental Groups of Schemes}\n\n\n\\maketitle\n\n\\phantomsection\n\\label{section-phantom}\n\n\\tableofcontents\n\n\\section{Introduction}\n\\label{section-introduction}\n\n\\noindent\nIn this chapter we discuss Grothendieck's fundamental group of a scheme\nand applications. A foundational reference is \\cite{SGA1}.\nA nice introduction is \\cite{Lenstra}.\nOther references \\cite{Murre-lectures} and \\cite{Grothendieck-Murre}.\n\n\n\n\n\n\n\n\n\n\n\\section{Schemes \\'etale over a point}\n\\label{section-schemes-etale-point}\n\n\\noindent\nIn this section we describe schemes \\'etale over the spectrum of a field.\nBefore we state the result we introduce the category of $G$-sets for a\ntopological group $G$.\n\n\\begin{definition}\n\\label{definition-G-set-continuous}\nLet $G$ be a topological group.\nA {\\it $G$-set}, sometime called a {\\it discrete $G$-set},\nis a set $X$ endowed with a left action $a : G \\times X \\to X$\nsuch that $a$ is continuous when $X$ is given the discrete topology and\n$G \\times X$ the product topology.\nA {\\it morphism of $G$-sets} $f : X \\to Y$ is simply any $G$-equivariant\nmap from $X$ to $Y$.\nThe category of $G$-sets is denoted {\\it $G\\textit{-Sets}$}.\n\\end{definition}\n\n\\noindent\nThe condition that $a : G \\times X \\to X$ is continuous signifies\nsimply that the stabilizer of any $x \\in X$ is open in $G$.\nIf $G$ is an abstract group $G$ (i.e., a group but not a topological group)\nthen this agrees with our preceding definition (see for example\nSites, Example \\ref{sites-example-site-on-group})\nprovided we endow $G$ with the discrete topology.\n\n\\medskip\\noindent\nRecall that if $L/K$ is an infinite Galois extension then the\nGalois group $G = \\text{Gal}(L/K)$ comes endowed with a canonical\ntopology, see Fields, Section \\ref{fields-section-infinite-galois}.\n\n\\begin{lemma}\n\\label{lemma-sheaves-point}\nLet $K$ be a field. Let $K^{sep}$ a separable closure of $K$.\nConsider the profinite group $G = \\text{Gal}(K^{sep}/K)$.\nThe functor\n$$\n\\begin{matrix}\n\\text{schemes \\'etale over }K &\n\\longrightarrow &\nG\\textit{-Sets} \\\\\nX/K & \\longmapsto &\n\\Mor_{\\Spec(K)}(\\Spec(K^{sep}), X)\n\\end{matrix}\n$$\nis an equivalence of categories.\n\\end{lemma}\n\n\\begin{proof}\nA scheme $X$ over $K$ is \\'etale over $K$ if and only if\n$X \\cong \\coprod_{i\\in I} \\Spec(K_i)$ with\neach $K_i$ a finite separable extension of $K$\n(Morphisms, Lemma \\ref{morphisms-lemma-etale-over-field}).\nThe functor of the lemma associates to $X$ the $G$-set\n$$\n\\coprod\\nolimits_i \\Hom_K(K_i, K^{sep})\n$$\nwith its natural left $G$-action. Each element has an open stabilizer\nby definition of the topology on $G$. Conversely, any $G$-set $S$\nis a disjoint union of its orbits. Say $S = \\coprod S_i$. Pick $s_i \\in S_i$\nand denote $G_i \\subset G$ its open stabilizer. By Galois theory\n(Fields, Theorem \\ref{fields-theorem-inifinite-galois-theory})\nthe fields $(K^{sep})^{G_i}$ are finite separable field extensions of $K$, and\nhence the scheme\n$$\n\\coprod\\nolimits_i \\Spec((K^{sep})^{G_i})\n$$\nis \\'etale over $K$. This gives an inverse to the functor of the lemma.\nSome details omitted.\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-covering-surjective}\nUnder the correspondence of Lemma \\ref{lemma-sheaves-point},\nthe coverings in the small \\'etale site\n$\\Spec(K)_\\etale$ of $K$ correspond to surjective families of\nmaps in $G\\textit{-Sets}$.\n\\end{remark}\n\n\n\n\n\n\n\n\n\n\\section{Galois categories}\n\\label{section-galois}\n\n\\noindent\nIn this section we discuss some of the material the reader can\nfind in \\cite[Expos\\'e V, Sections 4, 5, and 6]{SGA1}.\n\n\\medskip\\noindent\nLet $F : \\mathcal{C} \\to \\textit{Sets}$ be a functor.\nRecall that by our conventions categories have a set of objects and\nfor any pair of objects a set of morphisms. There is a canonical\ninjective map\n\\begin{equation}\n\\label{equation-embedding-product}\n\\text{Aut}(F)\n\\longrightarrow\n\\prod\\nolimits_{X \\in \\Ob(\\mathcal{C})} \\text{Aut}(F(X))\n\\end{equation}\nFor a set $E$ we endow $\\text{Aut}(E)$ with the compact open topology, see\nTopology, Example \\ref{topology-example-automorphisms-of-a-set}.\nOf course this is the discrete topology when $E$ is finite, which\nis the case of interest in this section\\footnote{When we discuss the\npro-\\'etale fundamental group the general case will be of interest.}.\nWe endow $\\text{Aut}(F)$ with the topology induced from the\nproduct topology on the right hand side of (\\ref{equation-embedding-product}).\nIn particular, the action maps\n$$\n\\text{Aut}(F) \\times F(X) \\longrightarrow F(X)\n$$\nare continuous when $F(X)$ is given the discrete topology because this\nis true for the action maps $\\text{Aut}(E) \\times E \\to E$ for any set $E$.\nThe universal property of our topology on $\\text{Aut}(F)$ is the following:\nsuppose that $G$ is a topological group and $G \\to \\text{Aut}(F)$\nis a group homomorphism such that the induced actions $G \\times F(X) \\to F(X)$\nare continuous for all $X \\in \\Ob(\\mathcal{C})$ where $F(X)$ has\nthe discrete topology. Then $G \\to \\text{Aut}(F)$ is continuous.\n\n\\medskip\\noindent\nThe following lemma tells us that the group of automorphisms of a functor\nto the category of finite sets is automatically a profinite group.\n\n\\begin{lemma}\n\\label{lemma-aut-inverse-limit}\nLet $\\mathcal{C}$ be a category and let $F : \\mathcal{C} \\to \\textit{Sets}$\nbe a functor. The map (\\ref{equation-embedding-product}) identifies\n$\\text{Aut}(F)$ with a closed subgroup of\n$\\prod_{X \\in \\Ob(\\mathcal{C})} \\text{Aut}(F(X))$.\nIn particular, if $F(X)$ is finite for all $X$, then\n$\\text{Aut}(F)$ is a profinite group.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\xi = (\\gamma_X) \\in \\prod \\text{Aut}(F(X))$ be an element not in\n$\\text{Aut}(F)$. Then there exists a morphism $f : X \\to X'$ of $\\mathcal{C}$\nand an element $x \\in F(X)$ such that\n$F(f)(\\gamma_X(x)) \\not = \\gamma_{X'}(F(f)(x))$.\nConsider the open neighbourhood\n$U = \\{\\gamma \\in \\text{Aut}(F(X)) \\mid \\gamma(x) = \\gamma_X(x)\\}$\nof $\\gamma_X$ and the open neighbourhood\n$U' = \\{\\gamma' \\in \\text{Aut}(F(X')) \\mid \\gamma'(F(f)(x)) =\n\\gamma_{X'}(F(f)(x))\\}$.\nThen\n$U \\times U' \\times \\prod_{X'' \\not = X, X'} \\text{Aut}(F(X''))$\nis an open neighbourhood of $\\xi$ not meeting $\\text{Aut}(F)$.\nThe final statement is follows from the fact that\n$\\prod \\text{Aut}(F(X))$ is a profinite space if each $F(X)$ is finite.\n\\end{proof}\n\n\\begin{example}\n\\label{example-galois-category-G-sets}\nLet $G$ be a topological group. An important example will be the\nforgetful functor\n\\begin{equation}\n\\label{equation-forgetful}\n\\textit{Finite-}G\\textit{-Sets} \\longrightarrow \\textit{Sets}\n\\end{equation}\nwhere $\\textit{Finite-}G\\textit{-Sets}$ is the full subcategory of\n$G\\textit{-Sets}$ whose objects are the finite $G$-sets.\nThe category $G\\textit{-Sets}$ of $G$-sets is defined in\nDefinition \\ref{definition-G-set-continuous}.\n\\end{example}\n\n\\noindent\nLet $G$ be a topological group. The {\\it profinite completion} of $G$\nwill be the profinite group\n$$\nG^\\wedge =\n\\lim_{U \\subset G\\text{ open, normal, finite index}} G/U\n$$\nwith its profinite topology. Observe that the limit is cofiltered\nas a finite intersection of open, normal subgroups of finite index\nis another. The universal property of the profinite completion is\nthat any continuous map $G \\to H$ to a profinite group $H$ factors\ncanonically as $G \\to G^\\wedge \\to H$.\n\n\\begin{lemma}\n\\label{lemma-single-out-profinite}\nLet $G$ be a topological group. The automorphism group of the functor\n(\\ref{equation-forgetful}) endowed with its profinite topology from\nLemma \\ref{lemma-aut-inverse-limit} is the profinite completion of $G$.\n\\end{lemma}\n\n\\begin{proof}\nDenote $F_G$ the functor (\\ref{equation-forgetful}). Any morphism\n$X \\to Y$ in $\\textit{Finite-}G\\textit{-Sets}$ commutes with the action\nof $G$. Thus any $g \\in G$ defines an automorphism of $F_G$ and\nwe obtain a canonical homomorphism $G \\to \\text{Aut}(F_G)$ of groups.\nObserve that any finite $G$-set $X$ is a finite disjoint union of\n$G$-sets of the form $G/H_i$ with canonical $G$-action where\n$H_i \\subset G$ is an open subgroup of finite index. Then\n$U_i = \\bigcap gH_ig^{-1}$ is open, normal, and has finite index.\nMoreover $U_i$ acts trivially on $G/H_i$ hence\n$U = \\bigcap U_i$ acts trivially on $F_G(X)$. Hence the action\n$G \\times F_G(X) \\to F_G(X)$ is continuous. By the universal\nproperty of the topology on $\\text{Aut}(F_G)$ the map\n$G \\to \\text{Aut}(F_G)$ is continuous.\nBy Lemma \\ref{lemma-aut-inverse-limit} and the universal property\nof profinite completion there is an induced\ncontinuous group homomorphism\n$$\nG^\\wedge \\longrightarrow \\text{Aut}(F_G)\n$$\nMoreover, since $G/U$ acts faithfully on $G/U$ this map is\ninjective. If the image is dense, then the map is surjective and hence a\nhomeomorphism by Topology, Lemma \\ref{topology-lemma-bijective-map}.\n\n\\medskip\\noindent\nLet $\\gamma \\in \\text{Aut}(F_G)$ and let $X \\in \\Ob(\\mathcal{C})$.\nWe will show there is a $g \\in G$ such that $\\gamma$ and $g$\ninduce the same action on $F_G(X)$. This will finish the proof.\nAs before we see that $X$ is a finite disjoint union of $G/H_i$.\nWith $U_i$ and $U$ as above, the finite $G$-set $Y = G/U$\nsurjects onto $G/H_i$ for all $i$ and hence it suffices to\nfind $g \\in G$ such that $\\gamma$ and $g$ induce the same action\non $F_G(G/U) = G/U$. Let $e \\in G$ be the neutral element and\nsay that $\\gamma(eU) = g_0U$ for some $g_0 \\in G$. For any\n$g_1 \\in G$ the morphism\n$$\nR_{g_1} : G/U \\longrightarrow G/U,\\quad gU \\longmapsto gg_1U\n$$\nof $\\textit{Finite-}G\\textit{-Sets}$ commutes with the action of\n$\\gamma$. Hence\n$$\n\\gamma(g_1U) = \\gamma(R_{g_1}(eU)) = R_{g_1}(\\gamma(eU)) =\nR_{g_1}(g_0U) = g_0g_1U\n$$\nThus we see that $g = g_0$ works.\n\\end{proof}\n\n\\noindent\nRecall that an exact functor is one which commutes with all\nfinite limits and finite colimits. In particular such a functor\ncommutes with equalizers, coequalizers, fibred products,\npushouts, etc.\n\n\\begin{lemma}\n\\label{lemma-second-fundamental-functor}\nLet $G$ be a topological group. Let\n$F : \\textit{Finite-}G\\textit{-Sets} \\to \\textit{Sets}$\nbe an exact functor with $F(X)$ finite for all $X$.\nThen $F$ is isomorphic to the functor (\\ref{equation-forgetful}).\n\\end{lemma}\n\n\\begin{proof}\nLet $X$ be a nonempty object of $\\textit{Finite-}G\\textit{-Sets}$.\nThe diagram\n$$\n\\xymatrix{\nX \\ar[r] \\ar[d] & \\{*\\} \\ar[d] \\\\\n\\{*\\} \\ar[r] & \\{*\\}\n}\n$$\nis cocartesian. Hence we conclude that $F(X)$ is nonempty.\nLet $U \\subset G$ be an open, normal subgroup with finite index.\nObserve that\n$$\nG/U \\times G/U = \\coprod\\nolimits_{gU \\in G/U} G/U\n$$\nwhere the summand corresponding to $gU$ corresponds to the orbit of\n$(eU, gU)$ on the left hand side. Then we see that\n$$\nF(G/U) \\times F(G/U) = F(G/U \\times G/U) = \\coprod\\nolimits_{gU \\in G/U} F(G/U)\n$$\nHence $|F(G/U)| = |G/U|$ as $F(G/U)$ is nonempty. Thus we see that\n$$\n\\lim_{U \\subset G\\text{ open, normal, finite idex}} F(G/U)\n$$\nis nonempty (Categories, Lemma \\ref{categories-lemma-nonempty-limit}).\nPick $\\gamma = (\\gamma_U)$ an element in this limit.\nDenote $F_G$ the functor (\\ref{equation-forgetful}). We can identify\n$F_G$ with the functor\n$$\nX \\longmapsto \\colim_U \\Mor(G/U, X)\n$$\nwhere $f : G/U \\to X$ corresponds to $f(eU) \\in X = F_G(X)$\n(details omitted). Hence the element $\\gamma$ determines\na well defined map\n$$\nt : F_G \\longrightarrow F\n$$\nNamely, given $x \\in X$ choose $U$ and $f : G/U \\to X$ sending\n$eU$ to $x$ and then set $t_X(x) = F(f)(\\gamma_U)$.\nWe will show that $t$ induces a bijective map\n$t_{G/U} : F_G(G/U) \\to F(G/U)$ for any $U$.\nThis implies in a straightforward manner that $t$\nis an isomorphism (details omitted).\nSince $|F_G(G/U)| = |F(G/U)|$ it suffices to show\nthat $t_{G/U}$ is surjective. The image contains at least\none element, namely\n$t_{G/U}(eU) = F(\\text{id}_{G/U})(\\gamma_U) = \\gamma_U$.\nFor $g \\in G$ denote $R_g : G/U \\to G/U$ right multiplication.\nThen set of fixed points of $F(R_g) : F(G/U) \\to F(G/U)$\nis equal to $F(\\emptyset) = \\emptyset$ if $g \\not \\in U$ because $F$\ncommutes with equalizers. It follows that if\n$g_1, \\ldots, g_{|G/U|}$ is a system of representatives\nfor $G/U$, then the elements $F(R_{g_i})(\\gamma_U)$ are pairwise distinct\nand hence fill out $F(G/U)$. Then\n$$\nt_{G/U}(g_iU) = F(R_{g_i})(\\gamma_U)\n$$\nand the proof is complete.\n\\end{proof}\n\n\\begin{example}\n\\label{example-from-C-F-to-G-sets}\nLet $\\mathcal{C}$ be a category and let $F : \\mathcal{C} \\to \\textit{Sets}$\nbe a functor such that $F(X)$ is finite for all $X \\in \\Ob(\\mathcal{C})$.\nBy Lemma \\ref{lemma-aut-inverse-limit} we see that $G = \\text{Aut}(F)$\ncomes endowed with the structure of a profinite topological group in a\ncanonical manner. We obtain a functor\n\\begin{equation}\n\\label{equation-remember}\n\\mathcal{C} \\longrightarrow \\textit{Finite-}G\\textit{-Sets},\\quad\nX \\longmapsto F(X)\n\\end{equation}\nwhere $F(X)$ is endowed with the induced action of $G$. This action\nis continuous by our construction of the topology on $\\text{Aut}(F)$.\n\\end{example}\n\n\\noindent\nThe purpose of defining Galois categories is to single out those\npairs $(\\mathcal{C}, F)$ for which the functor (\\ref{equation-remember})\nis an equivalence. Our definition of a Galois category is as follows.\n\n\\begin{definition}\n\\label{definition-galois-category}\n\\begin{reference}\nDifferent from the definition in \\cite[Expos\\'e V, Definition 5.1]{SGA1}.\nCompare with \\cite[Definition 7.2.1]{BS}.\n\\end{reference}\nLet $\\mathcal{C}$ be a category and let $F : \\mathcal{C} \\to \\textit{Sets}$\nbe a functor. The pair $(\\mathcal{C}, F)$ is a {\\it Galois category} if\n\\begin{enumerate}\n\\item $\\mathcal{C}$ has finite limits and finite colimits,\n\\item\n\\label{item-connected-components}\nevery object of $\\mathcal{C}$ is a finite (possibly empty)\ncoproduct of connected objects,\n\\item $F(X)$ is finite for all $X \\in \\Ob(\\mathcal{C})$, and\n\\item $F$ reflects isomorphisms and is exact.\n\\end{enumerate}\nHere we say $X \\in \\Ob(\\mathcal{C})$ is connected if\nit is not initial and for any monomorphism $Y \\to X$\neither $Y$ is initial or $Y \\to X$ is an isomorphism.\n\\end{definition}\n\n\\noindent\n{\\bf Warning:} This definition is not the same (although eventually we'll\nsee it is equivalent) as the definition given in most references.\nNamely, in \\cite[Expos\\'e V, Definition 5.1]{SGA1} a Galois category is\ndefined to be a category equivalent to $\\textit{Finite-}G\\textit{-Sets}$\nfor some profinite group $G$. Then Grothendieck characterizes\nGalois categories by a list of axioms (G1) -- (G6) which are weaker\nthan our axioms above. The motivation for our choice is to stress the\nexistence of finite limits and finite colimits and exactness of the\nfunctor $F$. The price we'll pay for this later is that we'll have\nto work a bit harder to apply the results of this section.\n\n\\begin{lemma}\n\\label{lemma-epi-mono}\nLet $(\\mathcal{C}, F)$ be a Galois category. Let\n$X \\to Y \\in \\text{Arrows}(\\mathcal{C})$. Then\n\\begin{enumerate}\n\\item $F$ is faithful,\n\\item $X \\to Y$ is a monomorphism\n$\\Leftrightarrow F(X) \\to F(Y)$ is injective,\n\\item $X \\to Y$ is an epimorphism\n$\\Leftrightarrow F(X) \\to F(Y)$ is surjective,\n\\item an object $A$ of $\\mathcal{C}$ is initial if and only if\n$F(A) = \\emptyset$,\n\\item an object $Z$ of $\\mathcal{C}$ is final if and only if\n$F(Z)$ is a singleton,\n\\item if $X$ and $Y$ are connected, then $X \\to Y$ is an epimorphism,\n\\item\n\\label{item-one-element}\nif $X$ is connected and $a, b : X \\to Y$ are two morphisms\nthen $a = b$ as soon as $F(a)$ and $F(b)$ agree on one element of $F(X)$,\n\\item if $X = \\coprod_{i = 1, \\ldots, n} X_i$ and\n$Y = \\coprod_{j = 1, \\ldots, m} Y_j$ where $X_i$, $Y_j$ are connected,\nthen there is map $\\alpha : \\{1, \\ldots, n\\} \\to \\{1, \\ldots, m\\}$\nsuch that $X \\to Y$ comes from a collection of morphisms\n$X_i \\to Y_{\\alpha(i)}$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nProof of (1). Suppose $a, b : X \\to Y$ with $F(a) = F(b)$.\nLet $E$ be the equalizer of $a$ and $b$. Then $F(E) = F(X)$\nand we see that $E = X$ because $F$ reflects isomorphisms.\n\n\\medskip\\noindent\nProof of (2). This is true because $F$ turns the morphism $X \\to X \\times_Y X$\ninto the map $F(X) \\to F(X) \\times_{F(Y)} F(X)$ and $F$ reflects isomorphisms.\n\n\\medskip\\noindent\nProof of (3). This is true because $F$ turns the morphism $Y \\amalg_X Y \\to Y$\ninto the map $F(Y) \\amalg_{F(X)} F(Y) \\to F(Y)$ and $F$ reflects isomorphisms.\n\n\\medskip\\noindent\nProof of (4). There exists an initial object $A$ and certainly\n$F(A) = \\emptyset$. On the other hand, if $X$ is an object with\n$F(X) = \\emptyset$, then the unique map $A \\to X$ induces a bijection\n$F(A) \\to F(X)$ and hence $A \\to X$ is an isomorphism.\n\n\\medskip\\noindent\nProof of (5). There exists a final object $Z$ and certainly\n$F(Z)$ is a singleton. On the other hand, if $X$ is an object with\n$F(X)$ a singleton, then the unique map $X \\to Z$ induces a bijection\n$F(X) \\to F(Z)$ and hence $X \\to Z$ is an isomorphism.\n\n\\medskip\\noindent\nProof of (6). The equalizer $E$ of the two maps $Y \\to Y \\amalg_X Y$ is not\nan initial object of $\\mathcal{C}$ because $X \\to Y$ factors through $E$\nand $F(X) \\not = \\emptyset$. Hence $E = Y$ and we conclude.\n\n\\medskip\\noindent\nProof of (\\ref{item-one-element}).\nThe equalizer $E$ of $a$ and $b$ comes with a monomorphism\n$E \\to X$ and $F(E) \\subset F(X)$ is the set of elements where\n$F(a)$ and $F(b)$ agree. To finish use that either $E$ is initial\nor $E = X$.\n\n\\medskip\\noindent\nProof of (8). For each $i, j$ we see that $E_{ij} = X_i \\times_Y Y_j$\nis either initial or equal to $X_i$. Picking $s \\in F(X_i)$\nwe see that $E_{ij} = X_i$ if and only if $s$ maps to an element\nof $F(Y_j) \\subset F(Y)$, hence this happens for a unique $j = \\alpha(i)$.\n\\end{proof}\n\n\\noindent\nBy the lemma above we see that, given a connected object $X$ of a\nGalois category $(\\mathcal{C}, F)$, the automorphism group\n$\\text{Aut}(X)$ has order at most $|F(X)|$. Namely, given $s \\in F(X)$\nand $g \\in \\text{Aut}(X)$ we see that $g(s) = s$ if and only\nif $g = \\text{id}_X$ by (\\ref{item-one-element}).\nWe say $X$ is {\\it Galois} if equality holds.\nEquivalently, $X$ is Galois if it is connected and\n$\\text{Aut}(X)$ acts transitively on $F(X)$.\n\n\\begin{lemma}\n\\label{lemma-galois}\nLet $(\\mathcal{C}, F)$ be a Galois category. For any connected object $X$\nof $\\mathcal{C}$ there exists a Galois object $Y$ and a morphism $Y \\to X$.\n\\end{lemma}\n\n\\begin{proof}\nWe will use the results of Lemma \\ref{lemma-epi-mono} without further mention.\nLet $n = |F(X)|$. Consider $X^n$ endowed with its natural action of\n$S_n$. Let\n$$\nX^n = \\coprod\\nolimits_{t \\in T} Z_t\n$$\nbe the decomposition into connected objects. Pick a $t$ such that\n$F(Z_t)$ contains $(s_1, \\ldots, s_n)$ with $s_i$ pairwise distinct.\nIf $(s'_1, \\ldots, s'_n) \\in F(Z_t)$ is another element, then we\nclaim $s'_i$ are pairwise distinct as well. Namely, if not, say\n$s'_i = s'_j$, then $Z_t$ is the image of an connected component of\n$X^{n - 1}$ under the diagonal morphism\n$$\n\\Delta_{ij} : X^{n - 1} \\longrightarrow X^n\n$$\nSince morphisms of connected objects are epimorphisms and induce\nsurjections after applying $F$ it would follow that $s_i = s_j$\nwhich is not the case.\n\n\\medskip\\noindent\nLet $G \\subset S_n$ be the subgroup of elements with $g(Z_t) = Z_t$.\nLooking at the action of $S_n$ on\n$$\nF(X)^n = F(X^n) = \\coprod\\nolimits_{t' \\in T} F(Z_{t'})\n$$\nwe see that $G = \\{g \\in S_n \\mid g(s_1, \\ldots, s_n) \\in F(Z_t)\\}$.\nNow pick a second element $(s'_1, \\ldots, s'_n) \\in F(Z_t)$.\nAbove we have seen that $s'_i$ are pairwise distinct. Thus we can\nfind a $g \\in S_n$ with $g(s_1, \\ldots, s_n) = (s'_1, \\ldots, s'_n)$.\nIn other words, the action of $G$ on $F(Z_t)$ is transitive and\nthe proof is complete.\n\\end{proof}\n\n\\noindent\nHere is a key lemma.\n\n\\begin{lemma}\n\\label{lemma-tame}\n\\begin{reference}\nCompare with \\cite[Definition 7.2.4]{BS}.\n\\end{reference}\nLet $(\\mathcal{C}, F)$ be a Galois category. Let $G = \\text{Aut}(F)$\nbe as in Example \\ref{example-from-C-F-to-G-sets}. For any connected\n$X$ in $\\mathcal{C}$ the action of $G$ on $F(X)$ is transitive.\n\\end{lemma}\n\n\\begin{proof}\nWe will use the results of Lemma \\ref{lemma-epi-mono} without further mention.\nLet $I$ be the set of isomorphism classes of Galois objects in $\\mathcal{C}$.\nFor each $i \\in I$ let $X_i$ be a representative of the isomorphism class.\nChoose $\\gamma_i \\in F(X_i)$ for each $i \\in I$.\nWe define a partial ordering on $I$ by setting $i \\geq i'$ if\nand only if there is a morphism $f_{ii'} : X_i \\to X_{i'}$.\nGiven such a morphism we can post-compose by an automorphism\n$X_{i'} \\to X_{i'}$ to assure that $F(f_{ii'})(\\gamma_i) = \\gamma_{i'}$.\nWith this normalization the morphism $f_{ii'}$ is unique.\nObserve that $I$ is a directed partially ordered set:\n(Categories, Definition \\ref{categories-definition-directed-set})\nif $i_1, i_2 \\in I$ there exists a Galois object $Y$ and a morphism\n$Y \\to X_{i_1} \\times X_{i_2}$ by Lemma \\ref{lemma-galois} applied\nto a connected component of $X_{i_1} \\times X_{i_2}$.\nThen $Y \\cong X_i$ for some $i \\in I$ and $i \\geq i_1$, $i \\geq I_2$.\n\n\\medskip\\noindent\nWe claim that the functor $F$ is isomorphic to the functor $F'$\nwhich sends $X$ to\n$$\nF'(X) = \\colim_I \\Mor_\\mathcal{C}(X_i, X)\n$$\nvia the transformation of functors $t : F' \\to F$ defined as follows:\ngiven $f : X_i \\to X$ we set $t_X(f) = F(f)(\\gamma_i)$.\nUsing (\\ref{item-one-element}) we find that $t_X$ is injective.\nTo show surjectivity, let $\\gamma \\in F(X)$. Then we can immediately\nreduce to the case where $X$ is connected by the definition of\na Galois category. Then we may assume $X$ is Galois by\nLemma \\ref{lemma-galois}. In this case $X$ is isomorphic to $X_i$\nfor some $i$ and we can choose the isomorphism $X_i \\to X$ such\nthat $\\gamma_i$ maps to $\\gamma$ (by definition of Galois objects).\nWe conclude that $t$ is an isomorphism.\n\n\\medskip\\noindent\nSet $A_i = \\text{Aut}(X_i)$.\nWe claim that for $i \\geq i'$ there is a canonical map\n$h_{ii'} : A_i \\to A_{i'}$ such that for all $a \\in A_i$\nthe diagram\n$$\n\\xymatrix{\nX_i \\ar[d]_a \\ar[r]_{f_{ii'}} & X_{i'} \\ar[d]^{h_{ii'}(a)} \\\\\nX_i \\ar[r]^{f_{ii'}} & X_{i'}\n}\n$$\ncommutes. Namely, just let $h_{ii'}(a) = a' : X_{i'} \\to X_{i'}$\nbe the unique automorphism such that\n$F(a')(\\gamma_{i'}) = F(f_{ii'} \\circ a)(\\gamma_i)$.\nAs before this makes the diagram commute and moreover the choice\nis unique.\nIt follows that\n$h_{i'i''} \\circ h_{ii'} = h_{ii''}$\nif $i \\geq i' \\geq i''$.\nSince $F(X_i) \\to F(X_{i'})$ is surjective we see that\n$A_i \\to A_{i'}$ is surjective.\nTaking the inverse limit we obtain a group\n$$\nA = \\lim_I A_i\n$$\nThis is a profinite group since the automorphism groups are finite.\nThe map $A \\to A_i$ is surjective for all $i$ by\nCategories, Lemma \\ref{categories-lemma-nonempty-limit}.\n\n\\medskip\\noindent\nSince elements of $A$ act on the inverse system $X_i$ we get an action of\n$A$ (on the right) on $F'$ by pre-composing. In other words, we get\na homomorphism $A^{opp} \\to G$. Since $A \\to A_i$ is surjective we conclude\nthat $G$ acts transitively on $F(X_i)$ for all $i$. Since every connected\nobject is dominated by one of the $X_i$ we conclude the lemma is true.\n\\end{proof}\n\n\\begin{proposition}\n\\label{proposition-galois}\n\\begin{reference}\nThis is a weak version of \\cite[Expos\\'e V]{SGA1}.\nThe proof is borrowed from \\cite[Theorem 7.2.5]{BS}.\n\\end{reference}\nLet $(\\mathcal{C}, F)$ be a Galois category. Let $G = \\text{Aut}(F)$\nbe as in Example \\ref{example-from-C-F-to-G-sets}. The functor\n$F : \\mathcal{C} \\to \\textit{Finite-}G\\textit{-Sets}$\n(\\ref{equation-remember}) an equivalence.\n\\end{proposition}\n\n\\begin{proof}\nWe will use the results of Lemma \\ref{lemma-epi-mono} without further mention.\nIn particular we know the functor is faithful.\nBy Lemma \\ref{lemma-tame} we know that for any connected $X$ the\naction of $G$ on $F(X)$ is transitive. Hence $F$ preserves\nthe decomposition into connected components (existence of which is\nan axiom of a Galois category). Let $X$ and $Y$ be objects and let\n$s : F(X) \\to F(Y)$ be a map. Then the graph\n$\\Gamma_s \\subset F(X) \\times F(Y)$ of $s$\nis a union of connected components. Hence there exists a\nunion of connected components $Z$ of $X \\times Y$,\nwhich comes equipped with a monomorphism $Z \\to X \\times Y$,\nwith $F(Z) = \\Gamma_s$. Since $F(Z) \\to F(X)$ is bijective\nwe see that $Z \\to X$ is an isomorphism and we conclude\nthat $s = F(f)$ where $f : X \\cong Z \\to Y$ is the composition.\nHence $F$ is fully faithful.\n\n\\medskip\\noindent\nTo finish the proof we show that $F$ is essentially surjective.\nIt suffices to show that $G/H$ is in the essential image for\nany open subgroup $H \\subset G$ of finite index.\nBy definition of the topology on $G$ there exists a finite\ncollection of objects $X_i$ such that\n$$\n\\Ker(G \\longrightarrow \\prod\\nolimits_i \\text{Aut}(F(X_i)))\n$$\nis contained in $H$. We may assume $X_i$ is connected\nfor all $i$. We can choose a Galois object $Y$ mapping\nto a connected component of $\\prod X_i$ using\nLemma \\ref{lemma-galois}. Choose an isomorphism $F(Y) = G/U$\nin $G\\textit{-sets}$ for some open subgroup $U \\subset G$.\nAs $Y$ is Galois, the group\n$\\text{Aut}(Y) = \\text{Aut}_{G\\textit{-Sets}}(G/U)$ acts transitively\non $F(Y) = G/U$. This implies that $U$ is normal. Since\n$F(Y)$ surjects onto $F(X_i)$ for each $i$ we see that\n$U \\subset H$. Let $M \\subset \\text{Aut}(Y)$ be the finite subgroup\ncorresponding to\n$$\n(H/U)^{opp} \\subset (G/U)^{opp} = \\text{Aut}_{G\\textit{-Sets}}(G/U)\n= \\text{Aut}(Y).\n$$\nSet $X = Y/M$, i.e., $X$ is the coequalizer\nof the arrows $m : Y \\to Y$, $m \\in M$.\nSince $F$ is exact we see that $F(X) = G/H$ and the\nproof is complete.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-functoriality-galois}\nLet $(\\mathcal{C}, F)$ and $(\\mathcal{C}', F')$ be Galois categories.\nLet $H : \\mathcal{C} \\to \\mathcal{C}'$ be an exact functor.\nThere exists an isomorphism $t : F' \\circ H \\to F$.\nThe choice of $t$ determines a continuous homomorphism\n$h : G' = \\text{Aut}(F') \\to \\text{Aut}(F) = G$ and\na $2$-commutative diagram\n$$\n\\xymatrix{\n\\mathcal{C} \\ar[r]_H \\ar[d] & \\mathcal{C}' \\ar[d] \\\\\n\\textit{Finite-}G\\textit{-Sets} \\ar[r]^h &\n\\textit{Finite-}G'\\textit{-Sets}\n}\n$$\nThe map $h$ is independent of $t$ up\nto an inner automorphism of $G$.\nConversely, given a continuous homomorphism $h : G' \\to G$ there\nis an exact functor $H : \\mathcal{C} \\to \\mathcal{C}'$ and an\nisomorphism $t$ recovering $h$ as above.\n\\end{lemma}\n\n\\begin{proof}\nBy Proposition \\ref{proposition-galois} and\nLemma \\ref{lemma-single-out-profinite} we may assume\n$\\mathcal{C} = \\textit{Finite-}G\\textit{-Sets}$ and $F$ is the\nforgetful functor and similarly for $\\mathcal{C}'$. Thus the existence of\n$t$ follows from Lemma \\ref{lemma-second-fundamental-functor}. The map $h$\ncomes from transport of structure via $t$. The commutativity of the\ndiagram is obvious. Uniqueness of $h$ up to inner conjugation by\nan element of $G$ comes from the fact that the choice of $t$ is\nunique up to an element of $G$. The final statement is straightforward.\n\\end{proof}\n\n\n\n\n\n\\section{Functors and homomorphisms}\n\\label{section-translation}\n\n\\noindent\nLet $(\\mathcal{C}, F)$, $(\\mathcal{C}', F')$, $(\\mathcal{C}'', F'')$\nbe Galois categories. Set $G = \\text{Aut}(F)$, $G' = \\text{Aut}(F')$, and\n$G'' = \\text{Aut}(F'')$. Let $H : \\mathcal{C} \\to \\mathcal{C}'$\nand $H' : \\mathcal{C}' \\to \\mathcal{C}''$ be exact functors.\nLet $h : G' \\to G$ and $h' : G'' \\to G'$ be the corresponding\ncontinuous homomorphism as in Lemma \\ref{lemma-functoriality-galois}.\nIn this section we consider the corresponding $2$-commutative diagram\n\\begin{equation}\n\\label{equation-translation}\n\\vcenter{\n\\xymatrix{\n\\mathcal{C} \\ar[r]_H \\ar[d] &\n\\mathcal{C}' \\ar[r]_{H'} \\ar[d] &\n\\mathcal{C}'' \\ar[d] \\\\\n\\textit{Finite-}G\\textit{-Sets} \\ar[r]^h &\n\\textit{Finite-}G'\\textit{-Sets} \\ar[r]^{h'} &\n\\textit{Finite-}G''\\textit{-Sets}\n}\n}\n\\end{equation}\nand we relate exactness properties of the sequence\n$1 \\to G'' \\to G' \\to G \\to 1$ to properties of the functors $H$ and $H'$.\n\n\\begin{lemma}\n\\label{lemma-functoriality-galois-surjective}\nIn diagram (\\ref{equation-translation}) the following are equivalent\n\\begin{enumerate}\n\\item $h : G' \\to G$ is surjective,\n\\item $H : \\mathcal{C} \\to \\mathcal{C}'$ is fully faithful,\n\\item if $X \\in \\Ob(\\mathcal{C})$ is connected, then $H(X)$ is connected,\n\\item if $X \\in \\Ob(\\mathcal{C})$ is connected and there is\na morphism $*' \\to H(X)$ in $\\mathcal{C}'$, then\nthere is a morphism $* \\to X$, and\n\\item for any object $X$ of $\\mathcal{C}$ the map\n$\\Mor_\\mathcal{C}(*, X) \\to \\Mor_{\\mathcal{C}'}(*', H(X))$\nis bijective.\n\\end{enumerate}\nHere $*$ and $*'$ are final objects of $\\mathcal{C}$ and $\\mathcal{C}'$.\n\\end{lemma}\n\n\\begin{proof}\nThe implications (5) $\\Rightarrow$ (4) and (2) $\\Rightarrow$ (5) are clear.\n\n\\medskip\\noindent\nAssume (3). Let $X$ be a connected object of $\\mathcal{C}$ and let\n$*' \\to H(X)$ be a morphism. Since $H(X)$ is connected by (3)\nwe see that $*' \\to H(X)$ is an isomorphism. Hence the $G'$-set\ncorresponding to $H(X)$ has exactly one element, which means the\n$G$-set corresponding to $X$ has one element which means $X$ is\nisomorphic to the final object of $\\mathcal{C}$, in particular\nthere is a map $* \\to X$. In this way we see that (3) $\\Rightarrow$ (4).\n\n\\medskip\\noindent\nIf (1) is true, then the functor\n$\\textit{Finite-}G\\textit{-Sets} \\to \\textit{Finite-}G'\\textit{-Sets}$\nis fully faithful: in this case a map of $G$-sets commutes with the\naction of $G$ if and only if it commutes with the action of $G'$.\nThus (1) $\\Rightarrow$ (2).\n\n\\medskip\\noindent\nIf (1) is true, then for a $G$-set $X$ the $G$-orbits and $G'$-orbits\nagree. Thus (1) $\\Rightarrow$ (3).\n\n\\medskip\\noindent\nTo finish the proof it suffices to show that (4) implies (1).\nIf (1) is false, i.e., if $h$ is not surjective, then there is\nan open subgroup $U \\subset G$ containing $h(G')$ which is not\nequal to $G$. Then the finite $G$-set $M = G/U$ has a transitive\naction but $G'$ has a fixed point. The object $X$ of $\\mathcal{C}$\ncorresponding to $M$ would contradict (3). In this way we see that\n(3) $\\Rightarrow$ (1) and the proof is complete.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-composition-trivial}\nIn diagram (\\ref{equation-translation}) the following are equivalent\n\\begin{enumerate}\n\\item $h \\circ h'$ is trivial, and\n\\item the image of $H' \\circ H$ consists of objects isomorphic to finite\ncoproducts of final objects.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nWe may replace $H$ and $H'$ by the canonical functors\n$\\textit{Finite-}G\\textit{-Sets} \\to \\textit{Finite-}G'\\textit{-Sets}\n\\to \\textit{Finite-}G''\\textit{-Sets}$ determined by $h$ and $h'$.\nThen we are saying that the action of $G''$ on every $G$-set is trivial\nif and only if the homomorphism $G'' \\to G$ is trivial. This is clear.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-functoriality-galois-ses}\nIn diagram (\\ref{equation-translation}) the following are equivalent\n\\begin{enumerate}\n\\item the sequence $G'' \\xrightarrow{h'} G' \\xrightarrow{h} G \\to 1$\nis exact in the following sense: $h$ is surjective, $h \\circ h'$ is trivial,\nand $\\Ker(h)$ is the smallest closed normal subgroup containing $\\Im(h')$,\n\\item $H$ is fully faithful and an object $X'$ of $\\mathcal{C}'$ is in\nthe essential image of $H$ if and only if $H'(X')$ is isomorphic to a\nfinite coproduct of final objects, and\n\\item $H$ is fully faithful, $H \\circ H'$ sends every object to a finite\ncoproduct of final objects, and for an object $X'$ of $\\mathcal{C}'$\nsuch that $H'(X')$ is a finite coproduct of final objects there exists\nan object $X$ of $\\mathcal{C}$ and an epimorphism $H(X) \\to X'$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nBy Lemmas \\ref{lemma-functoriality-galois-surjective} and\n\\ref{lemma-composition-trivial} we may assume that\n$H$ is fully faithful, $h$ is surjective, $H' \\circ H$ maps\nobjects to disjoint unions of the final object, and $h \\circ h'$\nis trivial. Let $N \\subset G'$ be the smallest closed normal\nsubgroup containing the image of $h'$. It is clear that\n$N \\subset \\Ker(h)$.\nWe may assume the functors $H$ and $H'$ are the canonical functors\n$\\textit{Finite-}G\\textit{-Sets} \\to \\textit{Finite-}G'\\textit{-Sets}\n\\to \\textit{Finite-}G''\\textit{-Sets}$ determined by $h$ and $h'$.\n\n\\medskip\\noindent\nSuppose that (2) holds. This means that for a finite $G'$-set $X'$\nsuch that $G''$ acts trivially, the action of $G'$ factors through $G$.\nApply this to $X' = G'/U'N$ where $U'$ is a small open subgroup of $G'$.\nThen we see that $\\Ker(h) \\subset U'N$ for all $U'$. Since $N$ is closed\nthis implies $\\Ker(h) \\subset N$, i.e., (1) holds.\n\n\\medskip\\noindent\nSuppose that (1) holds. This means that $N = \\Ker(h)$. Let $X'$ be a\nfinite $G'$-set such that $G''$ acts trivially. This means that\n$\\Ker(G' \\to \\text{Aut}(X'))$ is a closed normal subgroup containing\n$\\Im(h')$. Hence $N = \\Ker(h)$ is contained in it and the $G'$-action\non $X'$ factors through $G$, i.e., (2) holds.\n\n\\medskip\\noindent\nSuppose that (3) holds. This means that for a finite $G'$-set $X'$\nsuch that $G''$ acts trivially, there is a surjection of $G'$-sets\n$X \\to X'$ where $X$ is a $G$-set. Clearly this means the action of\n$G'$ on $X'$ factors through $G$, i.e., (2) holds.\n\n\\medskip\\noindent\nThe implication (2) $\\Rightarrow$ (3) is immediate. This finishes the proof.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-functoriality-galois-injective}\nIn diagram (\\ref{equation-translation}) the following are equivalent\n\\begin{enumerate}\n\\item $h'$ is injective, and\n\\item for every connected object $X''$ of $\\mathcal{C}''$\nthere exists an object $X'$ of $\\mathcal{C}'$ and a diagram\n$$\nX'' \\leftarrow Y'' \\rightarrow H(X')\n$$\nin $\\mathcal{C}''$ where $Y'' \\to X''$ is an epimorphism and\n$Y'' \\to H(X')$ is a monomorphism.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nWe may replace $H'$ by the corresponding functor between the categories\nof finite $G'$-sets and finite $G''$-sets.\n\n\\medskip\\noindent\nAssume $h' : G'' \\to G'$ is injective. Let $H'' \\subset G''$\nbe an open subgroup. Since the topology on $G''$ is the induced\ntopology from $G'$ there exists an open subgroup $H' \\subset G'$\nsuch that $(h')^{-1}(H') \\subset H''$.\nThen the desired diagram is\n$$\nG''/H'' \\leftarrow G''/(h')^{-1}(H') \\rightarrow G'/H'\n$$\nConversely, assume (2) holds for the functor\n$\\textit{Finite-}G'\\textit{-Sets} \\to \\textit{Finite-}G''\\textit{-Sets}$.\nLet $g'' \\in \\Ker(h')$. Pick any open subgroup $H'' \\subset G''$.\nBy assumption there exists a finite $G'$-set $X'$ and a diagram\n$$\nG''/H'' \\leftarrow Y'' \\rightarrow X'\n$$\nof $G''$-sets with the left arrow surjective and the right arrow injective.\nSince $g''$ is in the kernel of $h'$ we see that $g''$ acts trivially on $X'$.\nHence $g''$ acts trivially on $Y''$ and hence trivially on $G''/H''$.\nThus $g'' \\in H''$. As this holds for all open subgroups we conclude\nthat $g''$ is the identity element as desired.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-functoriality-galois-normal}\nIn diagram (\\ref{equation-translation}) the following are equivalent\n\\begin{enumerate}\n\\item the image of $h'$ is normal, and\n\\item for every connected object $X'$ of $\\mathcal{C}'$ such that\nthere is a morphism from the final object of $\\mathcal{C}''$\nto $H'(X')$ we have that $H'(X')$ is isomorphic to a finite coproduct\nof final objects.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThis translates into the following statement for the continuous\ngroup homomorphism $h' : G'' \\to G'$: the image of $h'$ is normal\nif and only if every open subgroup $U' \\subset G'$ which\ncontains $h'(G'')$ also contains every conjugate of $h'(G'')$.\nThe result follows easily from this; some details omitted.\n\\end{proof}\n\n\n\n\n\n\n\\section{Finite \\'etale morphisms}\n\\label{section-finite-etale}\n\n\\noindent\nIn this section we prove enough basic results on finite \\'etale\nmorphisms to be able to construct the \\'etale fundamental group.\n\n\\medskip\\noindent\nLet $X$ be a scheme. We will use the notation $\\textit{F\\'Et}_X$\nto denote the category of schemes finite and \\'etale over $X$.\nThus\n\\begin{enumerate}\n\\item an object of $\\textit{F\\'Et}_X$ is a finite \\'etale morphism\n$Y \\to X$ with target $X$, and\n\\item a morphism in $\\textit{F\\'Et}_X$\nfrom $Y \\to X$ to $Y' \\to X$ is a morphism $Y \\to Y'$ making\nthe diagram\n$$\n\\xymatrix{\nY \\ar[rr] \\ar[rd] & & Y' \\ar[ld] \\\\\n& X\n}\n$$\ncommute.\n\\end{enumerate}\nWe will often call an object of $\\textit{F\\'Et}_X$ a\n{\\it finite \\'etale cover} of $X$ (even if $Y$ is empty).\nIt turns out that there is a stack $p : \\textit{F\\'Et} \\to \\Sch$\nover the category of schemes whose fibre over $X$ is the category\n$\\textit{F\\'Et}_X$ just defined. See Examples of Stacks, Section\n\\ref{examples-stacks-section-finite-etale}.\n\n\\begin{example}\n\\label{example-finite-etale-geometric-point}\nLet $k$ be an algebraically closed field and $X = \\Spec(k)$. In this case\n$\\textit{F\\'Et}_X$ is equivalent to the category of finite sets. This works\nmore generally when $k$ is separably algebraically closed. The reason is\nthat a scheme \\'etale over $k$ is the disjoint union of spectra of\nfields finite separable over $k$, see\nMorphisms, Lemma \\ref{morphisms-lemma-etale-over-field}.\n\\end{example}\n\n\\begin{lemma}\n\\label{lemma-finite-etale-covers-limits-colimits}\nLet $X$ be a scheme. The category $\\textit{F\\'Et}_X$ has finite limits and\nfinite colimits and for any morphism $X' \\to X$ the base change functor\n$\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_{X'}$ is exact.\n\\end{lemma}\n\n\\begin{proof}\nFinite limits and left exactness. By\nCategories, Lemma \\ref{categories-lemma-finite-limits-exist}\nit suffices to show that $\\textit{F\\'Et}_X$ has a final object\nand fibred products. This is clear because the category of\nall schemes over $X$ has a final object (namely $X$) and fibred products\nand fibred products of schemes finite \\'etale over $X$ are\nfinite \\'etale over $X$. Moreover, it is clear that base\nchange commutes with these operations and hence base change\nis left exact (Categories, Lemma\n\\ref{categories-lemma-characterize-left-exact}).\n\n\\medskip\\noindent\nFinite colimits and right exactness. By\nCategories, Lemma \\ref{categories-lemma-colimits-exist}\nit suffices to show that $\\textit{F\\'Et}_X$ has finite\ncoproducts and coequalizers. Finite coproducts are given\nby disjoint unions (the empty coproduct is the empty scheme).\nLet $a, b : Z \\to Y$ be two morphisms of $\\textit{F\\'Et}_X$.\nSince $Z \\to X$ and $Y \\to X$ are finite \\'etale we can write\n$Z = \\underline{\\Spec}(\\mathcal{C})$ and $Y = \\underline{\\Spec}(\\mathcal{B})$\nfor some finite locally free $\\mathcal{O}_X$-algebras $\\mathcal{C}$\nand $\\mathcal{B}$. The morphisms $a, b$ induce two maps\n$a^\\sharp, b^\\sharp : \\mathcal{B} \\to \\mathcal{C}$.\nLet $\\mathcal{A} = \\text{Eq}(a^\\sharp, b^\\sharp)$ be their\nequalizer. If\n$$\n\\underline{\\Spec}(\\mathcal{A}) \\longrightarrow X\n$$\nis finite \\'etale, then it is clear that this is the coequalizer\n(after all we can write any object of $\\textit{F\\'Et}_X$\nas the relative spectrum of a sheaf of $\\mathcal{O}_X$-algebras).\nThis we may do after replacing $X$ by the members of an \\'etale\ncovering (Descent, Lemmas \\ref{descent-lemma-descending-property-finite}\nand \\ref{descent-lemma-descending-property-separated}).\nThus by \\'Etale Morphisms, Lemma \\ref{etale-lemma-finite-etale-etale-local}\nwe may assume that\n$Y = \\coprod_{i = 1, \\ldots, n} X$ and $Z = \\coprod_{j = 1, \\ldots, m} X$.\nThen\n$$\n\\mathcal{C} = \\prod\\nolimits_{1 \\leq j \\leq m} \\mathcal{O}_X\n\\quad\\text{and}\\quad\n\\mathcal{B} = \\prod\\nolimits_{1 \\leq i \\leq n} \\mathcal{O}_X\n$$\nAfter a further replacement by the members of an open covering\nwe may assume that $a, b$ correspond to\nmaps $a_s, b_s : \\{1, \\ldots, m\\} \\to \\{1, \\ldots, n\\}$, i.e.,\nthe summand $X$ of $Z$ corresponding to the index $j$ maps into\nthe summand $X$ of $Y$ corresponding to the index $a_s(j)$, resp.\\ $b_s(j)$\nunder the morphism $a$, resp.\\ $b$.\nLet $\\{1, \\ldots, n\\} \\to T$ be the coequalizer of $a_s, b_s$.\nThen we see that\n$$\n\\mathcal{A} = \\prod\\nolimits_{t \\in T} \\mathcal{O}_X\n$$\nwhose spectrum is certainly finite \\'etale over $X$. We\nomit the verification that this is compatible with base change.\nThus base change is a right exact functor.\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-colimits-commute-forgetful}\nLet $X$ be a scheme. Consider the natural functors\n$F_1 : \\textit{F\\'Et}_X \\to \\Sch$ and $F_2 : \\textit{F\\'Et}_X \\to \\Sch/X$.\nThen\n\\begin{enumerate}\n\\item The functors $F_1$ and $F_2$ commute with finite colimits.\n\\item The functor $F_2$ commutes with finite limits,\n\\item The functor $F_1$ commutes with connected finite limits, i.e.,\nwith equalizers and fibre products.\n\\end{enumerate}\nThe results on limits are immediate from the discussion in\nthe proof of Lemma \\ref{lemma-finite-etale-covers-limits-colimits}\nand Categories, Lemma \\ref{categories-lemma-connected-limit-over-X}.\nIt is clear that $F_1$ and $F_2$ commute with finite coproducts.\nBy the dual of Categories, Lemma\n\\ref{categories-lemma-characterize-left-exact}\nwe need to show that $F_1$ and $F_2$ commute with coequalizers.\nIn the proof of Lemma \\ref{lemma-finite-etale-covers-limits-colimits}\nwe saw that coequalizers in $\\textit{F\\'Et}_X$ look \\'etale locally\nlike this\n$$\n\\xymatrix{\n\\coprod_{j \\in J} U \\ar@<1ex>[r]^a \\ar@<-1ex>[r]_b &\n\\coprod_{i \\in I} U \\ar[r] &\n\\coprod_{t \\in \\text{Coeq}(a, b)} U\n}\n$$\nwhich is certainly a coequalizer in the category of schemes.\nHence the statement follows from the fact that being a coequalizer\nis fpqc local as formulate precisely in\nDescent, Lemma \\ref{descent-lemma-coequalizer-fpqc-local}.\n\\end{remark}\n\n\\begin{lemma}\n\\label{lemma-internal-hom-finite-etale}\nLet $X$ be a scheme. Given $U, V$ finite \\'etale over $X$ there\nexists a scheme $W$ finite \\'etale over $X$ such that\n$$\n\\Mor_X(X, W) = \\Mor_X(U, V)\n$$\nand such that the same remains true after any base change.\n\\end{lemma}\n\n\\begin{proof}\nBy More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-hom-from-finite-locally-free-separated-lqf}\nthere exists a scheme $W$ representing $\\mathit{Mor}_X(U, V)$.\n(Use that an \\'etale morphism is locally quasi-finite by\nMorphisms, Lemmas \\ref{morphisms-lemma-etale-locally-quasi-finite}\nand that a finite morphism is separated.)\nThis scheme clearly satisfies the formula after any base change.\nTo finish the proof we have to show that $W \\to X$ is finite \\'etale.\nThis we may do after replacing $X$ by the members of an \\'etale\ncovering (Descent, Lemmas \\ref{descent-lemma-descending-property-finite}\nand \\ref{descent-lemma-descending-property-separated}).\nThus by \\'Etale Morphisms, Lemma \\ref{etale-lemma-finite-etale-etale-local}\nwe may assume that $U = \\coprod_{i = 1, \\ldots, n} X$\nand $V = \\coprod_{j = 1, \\ldots, m} X$.\nIn this case\n$W = \\coprod_{\\alpha : \\{1, \\ldots, n\\} \\to \\{1, \\ldots, m\\}} X$\nby inspection (details omitted) and the proof is complete.\n\\end{proof}\n\n\\noindent\nLet $X$ be a scheme. A {\\it geometric point} of $X$ is a morphism\n$\\Spec(k) \\to X$ where $k$ is algebraically closed. Such a point is\nusually denoted $\\overline{x}$, i.e., by an overlined small case letter.\nWe often use $\\overline{x}$ to denote the scheme $\\Spec(k)$ as well as\nthe morphism, and we use $\\kappa(\\overline{x})$\nto denote $k$. We say $\\overline{x}$ {\\it lies over} $x$\nto indicate that $x \\in X$ is the image of $\\overline{x}$.\nWe will discuss this further in\n\\'Etale Cohomology, Section \\ref{etale-cohomology-section-stalks}.\nGiven $\\overline{x}$ and an \\'etale morphism $U \\to X$ we can\nconsider\n$$\n|U_{\\overline{x}}| : \\text{the underlying set of points of the\nscheme }U_{\\overline{x}} = U \\times_X \\overline{x}\n$$\nSince $U_{\\overline{x}}$ as a scheme over $\\overline{x}$\nis a disjoint union of copies of $\\overline{x}$\n(Morphisms, Lemma \\ref{morphisms-lemma-etale-over-field})\nwe can also describe this set as\n$$\n|U_{\\overline{x}}| =\n\\left\\{\n\\begin{matrix}\n\\text{commutative} \\\\\n\\text{diagrams}\n\\end{matrix}\n\\vcenter{\n\\xymatrix{\n\\overline{x} \\ar[rd]_{\\overline{x}} \\ar[r]_{\\overline{u}} & U \\ar[d] \\\\\n& X\n}\n}\n\\right\\}\n$$\nThe assignment $U \\mapsto |U_{\\overline{x}}|$ is a functor\nwhich is often denoted $F_{\\overline{x}}$.\n\n\\begin{lemma}\n\\label{lemma-finite-etale-connected-galois-category}\nLet $X$ be a connected scheme. Let $\\overline{x}$ be a geometric point.\nThe functor\n$$\nF_{\\overline{x}} : \\textit{F\\'Et}_X \\longrightarrow \\textit{Sets},\\quad\nY \\longmapsto |Y_{\\overline{x}}|\n$$\ndefines a Galois category (Definition \\ref{definition-galois-category}).\n\\end{lemma}\n\n\\begin{proof}\nAfter identifying $\\textit{F\\'Et}_{\\overline{x}}$ with the category of\nfinite sets (Example \\ref{example-finite-etale-geometric-point})\nwe see that our functor $F_{\\overline{x}}$\nis nothing but the base change functor for the morphism $\\overline{x} \\to X$.\nThus we see that $\\textit{F\\'Et}_X$ has finite limits and finite colimits\nand that $F_{\\overline{x}}$ is exact by\nLemma \\ref{lemma-finite-etale-covers-limits-colimits}.\nWe will also use that finite limits in $\\textit{F\\'Et}_X$\nagree with the corresponding finite limits in the category\nof schemes over $X$, see Remark \\ref{remark-colimits-commute-forgetful}.\n\n\\medskip\\noindent\nIf $Y' \\to Y$ is a monomorphism in $\\textit{F\\'Et}_X$\nthen we see that $Y' \\to Y' \\times_Y Y'$ is an isomorphism, and\nhence $Y' \\to Y$ is a monomorphism of schemes. It follows that\n$Y' \\to Y$ is an open immersion\n(\\'Etale Morphisms, Theorem \\ref{etale-theorem-etale-radicial-open}). Since\n$Y'$ is finite over $X$ and $Y$ separated over $X$,\nthe morphism $Y' \\to Y$ is finite\n(Morphisms, Lemma \\ref{morphisms-lemma-finite-permanence}), hence closed\n(Morphisms, Lemma \\ref{morphisms-lemma-finite-proper}),\nhence it is the inclusion of an open and closed subscheme of $Y$.\nIt follows that $Y$ is a connected objects of the category\n$\\textit{F\\'Et}_X$ (as in Definition \\ref{definition-galois-category})\nif and only if $Y$ is connected as a scheme. Then it follows from\nTopology, Lemma \\ref{topology-lemma-finite-fibre-connected-components}\nthat $Y$ is a finite coproduct of its connected components\nboth as a scheme and in the sense of\nDefinition \\ref{definition-galois-category}.\n\n\\medskip\\noindent\nLet $Y \\to Z$ be a morphism in $\\textit{F\\'Et}_X$ which induces a\nbijection $F_{\\overline{x}}(Y) \\to F_{\\overline{x}}(Z)$. We have to\nshow that $Y \\to Z$ is an isomorphism. By the above we may assume\n$Z$ is connected. Since $Y \\to Z$ is finite \\'etale and hence finite\nlocally free it suffices to show that $Y \\to Z$ is finite locally\nfree of degree $1$. This is true in a neighbourhood of any point of\n$Z$ lying over $\\overline{x}$ and since $Z$ is connected and\nthe degree is locally constant we conclude.\n\\end{proof}\n\n\n\n\\section{Fundamental groups}\n\\label{section-fundamental-groups}\n\n\\noindent\nIn this section we define Grothendieck's algebraic fundamental group.\nThe following definition makes sense thanks to\nLemma \\ref{lemma-finite-etale-connected-galois-category}.\n\n\\begin{definition}\n\\label{definition-fundamental-group}\nLet $X$ be a connected scheme. Let $\\overline{x}$ be a geometric point\nof $X$. The {\\it fundamental group} of $X$ with\n{\\it base point} $\\overline{x}$ is the group\n$$\n\\pi_1(X, \\overline{x}) = \\text{Aut}(F_{\\overline{x}})\n$$\nof automorphisms of the fibre functor\n$F_{\\overline{x}} : \\textit{F\\'Et}_X \\to \\textit{Sets}$\nendowed with its canonical profinite topology from\nLemma \\ref{lemma-aut-inverse-limit}.\n\\end{definition}\n\n\\noindent\nCombining the above with the material from Section \\ref{section-galois}\nwe obtain the following theorem.\n\n\\begin{theorem}\n\\label{theorem-fundamental-group}\nLet $X$ be a connected scheme. Let $\\overline{x}$ be a geometric point\nof $X$.\n\\begin{enumerate}\n\\item The fibre functor $F_{\\overline{x}}$ defines an equivalence of\ncategories\n$$\n\\textit{F\\'Et}_X \\longrightarrow\n\\textit{Finite-}\\pi_1(X, \\overline{x})\\textit{-Sets}\n$$\n\\item Given a second geometric point $\\overline{x}'$ of $X$ there\nexists an isomorphism $t : F_{\\overline{x}} \\to F_{\\overline{x}'}$.\nThis gives an isomorphism $\\pi_1(X, \\overline{x}) \\to \\pi_1(X, \\overline{x}')$\ncompatible with the equivalences in (1). This isomorphism is\nindependent of $t$ up to inner conjugation.\n\\item Given a morphism $f : X \\to Y$ of connected schemes denote\n$\\overline{y} = f \\circ \\overline{x}$. There is a canonical\ncontinuous homomorphism\n$$\nf_* : \\pi_1(X, \\overline{x}) \\to \\pi_1(Y, \\overline{y})\n$$\nsuch that the diagram\n$$\n\\xymatrix{\n\\textit{F\\'Et}_Y \\ar[r]_{\\text{base change}} \\ar[d]_{F_{\\overline{y}}} &\n\\textit{F\\'Et}_X \\ar[d]^{F_{\\overline{x}}} \\\\\n\\textit{Finite-}\\pi_1(Y, \\overline{y})\\textit{-Sets} \\ar[r]^{f_*} &\n\\textit{Finite-}\\pi_1(X, \\overline{x})\\textit{-Sets}\n}\n$$\nis commutative.\n\\end{enumerate}\n\\end{theorem}\n\n\\begin{proof}\nPart (1) follows from Lemma \\ref{lemma-finite-etale-connected-galois-category}\nand Proposition \\ref{proposition-galois}.\nPart (2) is a special case of Lemma \\ref{lemma-functoriality-galois}.\nFor part (3) observe that the diagram\n$$\n\\xymatrix{\n\\textit{F\\'Et}_Y \\ar[r] \\ar[d]_{F_{\\overline{y}}} &\n\\textit{F\\'Et}_X \\ar[d]^{F_{\\overline{x}}} \\\\\n\\textit{Sets} \\ar@{=}[r] & \\textit{Sets}\n}\n$$\nis commutative (actually commutative, not just $2$-commutative) because\n$\\overline{y} = f \\circ \\overline{x}$. Hence\nwe can apply Lemma \\ref{lemma-functoriality-galois} with the implied\ntransformation of functors to get (3).\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-finite-etale-under-galois}\nLet $X$ be a connected scheme with geometric point $\\overline{x}$.\nSince $F_{\\overline{x}} : \\textit{F\\'Et}_X \\to \\textit{Sets}$ is a\nGalois category (Lemma \\ref{lemma-finite-etale-connected-galois-category})\nthe material in Section \\ref{section-galois} applies.\nWe will say a finite \\'etale morphism $Y \\to X$ is a\n{\\it Galois cover} if $Y$ defines a Galois object of\n$\\textit{F\\'Et}_X$. Recall that this means that\n$Y$ is connected and that $G = \\text{Aut}(Y/X)$\nacts transitively (or equivalently simply transitively)\non $F_{\\overline{x}}(Y)$. For any finite \\'etale\nmorphism $f : Y \\to X$ with $Y$ connected, there is a Galois cover $Y' \\to X$\nwhich dominates $Y$ (Lemma \\ref{lemma-galois}).\nThe Galois objects of $\\textit{F\\'Et}_X$ correspond,\nvia the equivalence\n$F_{\\overline{x}} : \\textit{F\\'Et}_X \\to\n\\textit{Finite-}\\pi_1(X, \\overline{x})\\textit{-Sets}$\nof Theorem \\ref{theorem-fundamental-group},\nwith the finite $\\pi_1(X, \\overline{x})\\textit{-Sets}$\nof the form $G = \\pi_1(X, \\overline{x})/H$ where $H$ is a\nnormal open subgroup. Equivalently, if $G$ is a finite group\nand $\\pi_1(X, \\overline{x}) \\to G$ is a continuous surjection,\nthen $G$ viewed as a $\\pi_1(X, \\overline{x})$-set corresponds\nto a Galois covering.\n\\end{remark}\n\n\\begin{lemma}\n\\label{lemma-fundamental-group-Galois-group}\nLet $K$ be a field and set $X = \\Spec(K)$. Let $\\overline{K}$ be an\nalgebraic closure and denote $\\overline{x} : \\Spec(\\overline{K}) \\to X$\nthe corresponding geometric point. Let $K^{sep} \\subset \\overline{K}$\nbe the separable algebraic closure.\n\\begin{enumerate}\n\\item The functor of Lemma \\ref{lemma-sheaves-point} induces an equivalence\n$$\n\\textit{F\\'Et}_X \\longrightarrow\n\\textit{Finite-}\\text{Gal}(K^{sep}/K)\\textit{-Sets}.\n$$\ncompatible with $F_{\\overline{x}}$ and the functor\n$\\textit{Finite-}\\text{Gal}(K^{sep}/K)\\textit{-Sets} \\to \\textit{Sets}$.\n\\item This induces a canonical isomorphism\n$$\n\\text{Gal}(K^{sep}/K) \\longrightarrow \\pi_1(X, \\overline{x})\n$$\nof profinite topological groups.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe functor of Lemma \\ref{lemma-sheaves-point} is the same as the functor\n$F_{\\overline{x}}$ because for any $Y$ \\'etale over $X$ we have\n$$\n\\Mor_X(\\Spec(\\overline{K}), Y) = \\Mor_X(\\Spec(K^{sep}), Y)\n$$\nNamely, as seen in the proof of Lemma \\ref{lemma-sheaves-point} we have\n$Y = \\coprod_{i \\in I} \\Spec(L_i)$ with $L_i/K$ finite separable over $K$.\nHence any $K$-algebra homomorphism $L_i \\to \\overline{K}$ factors\nthrough $K^{sep}$. Also, note that $F_{\\overline{x}}(Y)$ is finite\nif and only if $I$ is finite if and only if $Y \\to X$ is finite \\'etale.\nThis proves (1).\n\n\\medskip\\noindent\nPart (2) is a formal consequence of (1),\nLemma \\ref{lemma-functoriality-galois}, and\nLemma \\ref{lemma-single-out-profinite}.\n(Please also see the remark below.)\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-variance}\nIn the situation of Lemma \\ref{lemma-fundamental-group-Galois-group}\nlet us give a more explicit construction of the isomorphism\n$\\text{Gal}(K^{sep}/K) \\to\n\\pi_1(X, \\overline{x}) = \\text{Aut}(F_{\\overline{x}})$.\nObserve that\n$\\text{Gal}(K^{sep}/K) = \\text{Aut}(\\overline{K}/K)$\nas $\\overline{K}$ is the perfection of $K^{sep}$.\nSince $F_{\\overline{x}}(Y) = \\Mor_X(\\Spec(\\overline{K}), Y)$\nwe may consider the map\n$$\n\\text{Aut}(\\overline{K}/K) \\times F_{\\overline{x}}(Y) \\to F_{\\overline{x}}(Y),\n\\quad\n(\\sigma, \\overline{y}) \\mapsto\n\\sigma \\cdot \\overline{y} = \\overline{y} \\circ \\Spec(\\sigma)\n$$\nThis is an action because\n$$\n\\sigma\\tau \\cdot \\overline{y} =\n\\overline{y} \\circ \\Spec(\\sigma\\tau) =\n\\overline{y} \\circ \\Spec(\\tau) \\circ \\Spec(\\sigma) =\n\\sigma \\cdot (\\tau \\cdot \\overline{y})\n$$\nThe action is functorial in $Y \\in \\textit{F\\'Et}_X$ and we\nobtain the desired map.\n\\end{remark}\n\n\n\n\n\n\n\n\\section{Topological invariance of the fundamental group}\n\\label{section-topological-invariance}\n\n\\noindent\nThe main result of this section is that a universal homeomorphism\nof connected schemes induces an isomorphism on fundamental groups.\nSee Proposition \\ref{proposition-universal-homeomorphism}.\n\n\\medskip\\noindent\nInstead of directly proving two schemes have the same fundamental\ngroup, we often prove that their categories of finite \\'etale\ncoverings are the same. This of course implies that\ntheir fundamental groups are equal provided they are connected.\n\n\\begin{lemma}\n\\label{lemma-what-equivalence-gives}\nLet $f : X \\to Y$ be a morphism of quasi-compact and quasi-separated schemes\nsuch that the base change functor $\\textit{F\\'Et}_Y \\to \\textit{F\\'Et}_X$\nis an equivalence of categories. In this case\n\\begin{enumerate}\n\\item $f$ induces a homeomorphism $\\pi_0(X) \\to \\pi_0(Y)$,\n\\item if $X$ or equivalently $Y$ is connected, then\n$\\pi_1(X, \\overline{x}) = \\pi_1(Y, \\overline{y})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nLet $Y = Y_0 \\amalg Y_1$ be a decomposition into nonempty open and closed\nsubschemes. We claim that $f(X)$ meets both $Y_i$. Namely, if not,\nsay $f(X) \\subset Y_1$, then we can consider the finite \\'etale\nmorphism $V = Y_1 \\to Y$. This is not an\nisomorphism but $V \\times_Y X \\to X$ is an isomorphism, which is\na contradiction.\n\n\\medskip\\noindent\nSuppose that $X = X_0 \\amalg X_1$ is a decomposition into open and closed\nsubschemes. Consider the finite \\'etale morphism $U = X_1 \\to X$. Then\n$U = X \\times_Y V$ for some finite \\'etale morphism $V \\to Y$. The degree\nof the morphism $V \\to Y$ is locally constant, hence we obtain a decomposition\n$Y = \\coprod_{d \\geq 0} Y_d$ into open and closed subschemes\nsuch that $V \\to Y$ has degree $d$ over $Y_d$. Since\n$f^{-1}(Y_d) = \\emptyset$ for $d > 1$ we conclude that $Y_d = \\emptyset$\nfor $d > 1$ by the above. And we conclude that $f^{-1}(Y_i) = X_i$\nfor $i = 0, 1$.\n\n\\medskip\\noindent\nIt follows that $f^{-1}$ induces a bijection between the set of\nopen and closed subsets of $Y$ and the set of open and closed subsets of $X$.\nNote that $X$ and $Y$ are spectral spaces, see Properties, Lemma\n\\ref{properties-lemma-quasi-compact-quasi-separated-spectral}.\nBy Topology, Lemma \\ref{topology-lemma-connected-component-intersection}\nthe lattice of open and closed subsets of a spectral space\ndetermines the set of connected components.\nHence $\\pi_0(X) \\to \\pi_0(Y)$ is bijective. Since $\\pi_0(X)$ and\n$\\pi_0(Y)$ are profinite spaces\n(Topology, Lemma \\ref{topology-lemma-pi0-profinite})\nwe conclude that $\\pi_0(X) \\to \\pi_0(Y)$ is a homeomorphism by\nTopology, Lemma \\ref{topology-lemma-bijective-map}. This proves (1).\nPart (2) is immediate.\n\\end{proof}\n\n\\noindent\nThe following lemma tells us that the fundamental group of a henselian\npair is the fundamental group of the closed subset.\n\n\\begin{lemma}\n\\label{lemma-gabber}\nLet $(A, I)$ be a henselian pair. Set $X = \\Spec(A)$ and $Z = \\Spec(A/I)$.\nThe functor\n$$\n\\textit{F\\'Et}_X \\longrightarrow \\textit{F\\'Et}_Z,\\quad\nU \\longmapsto U \\times_X Z\n$$\nis an equivalence of categories.\n\\end{lemma}\n\n\\begin{proof}\nThis is a translation of\nMore on Algebra, Lemma \\ref{more-algebra-lemma-finite-etale-equivalence}.\n\\end{proof}\n\n\\noindent\nThe following lemma tells us that the fundamental group of a thickening\nis the same as the fundamental group of the original. We will use this\nin the proof of the strong proposition concerning universal homeomorphisms\nbelow.\n\n\\begin{lemma}\n\\label{lemma-thickening}\nLet $X \\subset X'$ be a thickening of schemes. The functor\n$$\n\\textit{F\\'Et}_{X'} \\longrightarrow \\textit{F\\'Et}_X,\\quad\nU' \\longmapsto U' \\times_{X'} X\n$$\nis an equivalence of categories.\n\\end{lemma}\n\n\\begin{proof}\nFor a discussion of thickenings see\nMore on Morphisms, Section \\ref{more-morphisms-section-thickenings}.\nLet $U' \\to X'$ be an \\'etale morphism such that $U = U' \\times_{X'} X \\to X$\nis finite \\'etale. Then $U' \\to X'$ is finite \\'etale as well.\nThis follows for example from More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-properties-that-extend-over-thickenings}.\nNow, if $X \\subset X'$ is a finite order thickening then this remark\ncombined with \\'Etale Morphisms, Theorem\n\\ref{etale-theorem-remarkable-equivalence}\nproves the lemma. Below we will prove the lemma for general thickenings, but\nwe suggest the reader skip the proof.\n\n\\medskip\\noindent\nLet $X' = \\bigcup X_i'$ be an affine open covering. Set\n$X_i = X \\times_{X'} X_i'$, $X_{ij}' = X'_i \\cap X'_j$,\n$X_{ij} = X \\times_{X'} X_{ij}'$, $X_{ijk}' = X'_i \\cap X'_j \\cap X'_k$,\n$X_{ijk} = X \\times_{X'} X_{ijk}'$.\nSuppose that we can prove\nthe theorem for each of the thickenings\n$X_i \\subset X'_i$, $X_{ij} \\subset X_{ij}'$, and $X_{ijk} \\subset X_{ijk}'$.\nThen the result follows for $X \\subset X'$ by relative glueing of\nschemes, see\nConstructions, Section \\ref{constructions-section-relative-glueing}.\nObserve that the schemes $X_i'$, $X_{ij}'$, $X_{ijk}'$ are\neach separated as open subschemes of affine schemes. Repeating the\nargument one more time we reduce to the case where the schemes\n$X'_i$, $X_{ij}'$, $X_{ijk}'$ are affine.\n\n\\medskip\\noindent\nIn the affine case we have $X' = \\Spec(A')$ and $X = \\Spec(A'/I')$\nwhere $I'$ is a locally nilpotent ideal. Then $(A', I')$ is a\nhenselian pair (More on Algebra, Lemma\n\\ref{more-algebra-lemma-locally-nilpotent-henselian})\nand the result follows from Lemma \\ref{lemma-gabber} (which is\nmuch easier in this case).\n\\end{proof}\n\n\\noindent\nThe ``correct'' way to prove the following proposition would be to\ndeduce it from the invariance of the \\'etale site, see\n\\'Etale Cohomology, Theorem\n\\ref{etale-cohomology-theorem-topological-invariance}.\n\n\\begin{proposition}\n\\label{proposition-universal-homeomorphism}\nLet $f : X \\to Y$ be a universal homeomorphism of schemes. Then\n$$\n\\textit{F\\'Et}_Y \\longrightarrow \\textit{F\\'Et}_X,\\quad\nV \\longmapsto V \\times_Y X\n$$\nis an equivalence. Thus if $X$ and $Y$ are connected, then\n$f$ induces an isomorphism $\\pi_1(X, \\overline{x}) \\to \\pi_1(Y, \\overline{y})$\nof fundamental groups.\n\\end{proposition}\n\n\\begin{proof}\nRecall that a universal homeomorphism is the same thing as an\nintegral, universally injective, surjective morphism, see\nMorphisms, Lemma \\ref{morphisms-lemma-universal-homeomorphism}.\nIn particular, the diagonal $\\Delta : X \\to X \\times_Y X$ is a thickening\nby Morphisms, Lemma \\ref{morphisms-lemma-universally-injective}.\nThus by Lemma \\ref{lemma-thickening}\nwe see that given a finite \\'etale morphism $U \\to X$\nthere is a unique isomorphism\n$$\n\\varphi : U \\times_Y X \\to X \\times_Y U\n$$\nof schemes finite \\'etale over $X \\times_Y X$ which pulls back under\n$\\Delta$ to $\\text{id} : U \\to U$ over $X$.\nSince $X \\to X \\times_Y X \\times_Y X$\nis a thickening as well (it is bijective and a closed immersion)\nwe conclude that $(U, \\varphi)$ is a descent datum relative to $X/Y$.\nBy \\'Etale Morphisms, Proposition \\ref{etale-proposition-effective}\nwe conclude that $U = X \\times_Y V$ for some $V \\to Y$\nquasi-compact, separated, and \\'etale.\nWe omit the proof that $V \\to Y$ is finite (hints:\nthe morphism $U \\to V$ is surjective and $U \\to Y$ is integral).\nWe conclude that $\\textit{F\\'Et}_Y \\to \\textit{F\\'Et}_X$\nis essentially surjective.\n\n\\medskip\\noindent\nArguing in the same manner as above we see that given\n$V_1 \\to Y$ and $V_2 \\to Y$ in $\\textit{F\\'Et}_Y$ any\nmorphism $a : X \\times_Y V_1 \\to X \\times_Y V_2$ over $X$\nis compatible with the canonical descent data. Thus $a$\ndescends to a morphism $V_1 \\to V_2$ over $Y$ by\n\\'Etale Morphisms, Lemma \\ref{etale-lemma-fully-faithful-cases}.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\\section{Finite \\'etale covers of proper schemes}\n\\label{section-finite-etale-over-proper}\n\n\\noindent\nIn this section we show that the fundamental group of a connected proper\nscheme over a henselian local ring is the same as the fundamental\ngroup of its special fibre. We also show that the fundamental\ngroup of a connected proper scheme over an algebraically closed field $k$\ndoes not change if we replace $k$ by an algebraically closed extension.\nInstead of stating and proving the results in the connected case\nwe prove the results in general and we leave it to the reader to deduce\nthe result for fundamental groups using\nLemma \\ref{lemma-what-equivalence-gives}.\n\n\\begin{lemma}\n\\label{lemma-finite-etale-on-proper-over-henselian}\nLet $A$ be a henselian local ring. Let $X$ be a proper scheme over $A$\nwith closed fibre $X_0$. Then the functor\n$$\n\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_{X_0},\\quad\nU \\longmapsto U_0 = U \\times_X X_0\n$$\nis an equivalence of categories.\n\\end{lemma}\n\n\\begin{proof}\nThe proof given here is an example of applying algebraization and\napproximation. We proceed in a number of stages.\n\n\\medskip\\noindent\nEssential surjectivity when $A$ is a complete local Noetherian ring.\nLet $X_n = X \\times_{\\Spec(A)} \\Spec(A/\\mathfrak m^{n + 1})$.\nBy \\'Etale Morphisms, Theorem \\ref{etale-theorem-remarkable-equivalence}\nthe inclusions\n$$\nX_0 \\to X_1 \\to X_2 \\to \\ldots\n$$\ninduce equivalence of categories between the category\nof schemes \\'etale over $X_0$ and the category of schemes\n\\'etale over $X_n$.\nMoreover, if $U_n \\to X_n$ corresponds to a finite \\'etale\nmorphism $U_0 \\to X_0$, then $U_n \\to X_n$ is finite too, for example\nby More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-thicken-property-morphisms-cartesian}.\nIn this case the morphism $U_0 \\to \\Spec(A/\\mathfrak m)$\nis proper as $X_0$ is proper over $A/\\mathfrak m$. Thus we may apply\nGrothendieck's algebraization theorem\n(in the form of\nCohomology of Schemes, Lemma\n\\ref{coherent-lemma-algebraize-formal-scheme-finite-over-proper})\nto see that there is a finite morphism $U \\to X$ whose restriction\nto $X_0$ recovers $U_0$. By More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-check-smoothness-on-infinitesimal-nbhds}\nwe see that $U \\to X$ is \\'etale at every point of $U_0$.\nHowever, since every point of $U$ specializes to a point of $U_0$\n(as $U$ is proper over $A$), we conclude that $U \\to X$ is \\'etale.\nIn this way we conclude the functor is essentially surjective.\n\n\\medskip\\noindent\nFully faithfulness when $A$ is a complete local Noetherian ring.\nLet $U \\to X$ and $V \\to X$ be finite \\'etale morphisms and\nlet $\\varphi_0 : U_0 \\to V_0$ be a morphism over $X_0$. Look at\nthe morphism\n$$\n\\Gamma_{\\varphi_0} : U_0 \\longrightarrow U_0 \\times_{X_0} V_0\n$$\nThis morphism is both finite \\'etale and a closed immersion.\nBy essential surjectivity applied to $X = U \\times_X V$ we find\na finite \\'etale morphism $W \\to U \\times_X V$ whose special\nfibre is isomorphic to $\\Gamma_{\\varphi_0}$. Consider the projection\n$W \\to U$. It is finite \\'etale and an isomorphism over $U_0$ by\nconstruction. By \\'Etale Morphisms, Lemma\n\\ref{etale-lemma-finite-etale-one-point}\n$W \\to U$ is an isomorphism in an open neighbourhood of $U_0$.\nThus it is an isomorphism and the composition $\\varphi : U \\cong W \\to V$\nis the desired lift of $\\varphi_0$.\n\n\\medskip\\noindent\nEssential surjectivity when $A$ is a henselian local Noetherian G-ring.\nLet $U_0 \\to X_0$ be a finite \\'etale morphism.\nLet $A^\\wedge$ be the completion of $A$ with respect to the maximal ideal.\nLet $X^\\wedge$ be the base change of $X$ to $A^\\wedge$.\nBy the result above there exists a finite \\'etale morphism\n$V \\to X^\\wedge$ whose special fibre is $U_0$.\nWrite $A^\\wedge = \\colim A_i$ with $A \\to A_i$ of finite type.\nBy Limits, Lemma \\ref{limits-lemma-descend-finite-presentation}\nthere exists an $i$ and a finitely presented morphism $U_i \\to X_{A_i}$\nwhose base change to $X^\\wedge$ is $V$. After increasing $i$\nwe may assume that $U_i \\to X_{A_i}$ is finite and \\'etale\n(Limits, Lemmas \\ref{limits-lemma-descend-finite-finite-presentation} and\n\\ref{limits-lemma-descend-etale}). Writing\n$$\nA_i = A[x_1, \\ldots, x_n]/(f_1, \\ldots, f_m)\n$$\nthe ring map $A_i \\to A^\\wedge$ can be reinterpreted as a solution\n$(a_1, \\ldots, a_n)$ in $A^\\wedge$ for the system of equations $f_j = 0$.\nBy Smoothing Ring Maps, Theorem \\ref{smoothing-theorem-approximation-property}\nwe can approximate this solution (to order $11$ for example) by a solution\n$(b_1, \\ldots, b_n)$ in $A$. Translating back we find an $A$-algebra map\n$A_i \\to A$ which gives the same closed point as the original map\n$A_i \\to A^\\wedge$ (as $11 > 1$). The base change $U \\to X$ of $V \\to X_{A_i}$\nby this ring map will therefore be a finite \\'etale morphism whose\nspecial fibre is isomorphic to $U_0$.\n\n\\medskip\\noindent\nFully faithfulness when $A$ is a henselian local Noetherian G-ring.\nThis can be deduced from essential surjectivity in exactly the same\nmanner as was done in the case that $A$ is complete Noetherian.\n\n\\medskip\\noindent\nGeneral case. Let $(A, \\mathfrak m)$ be a henselian local ring.\nSet $S = \\Spec(A)$ and denote $s \\in S$ the closed point. By Limits, Lemma\n\\ref{limits-lemma-proper-limit-of-proper-finite-presentation-noetherian}\nwe can write $X \\to \\Spec(A)$ as a cofiltered limit of\nproper morphisms $X_i \\to S_i$ with $S_i$ of finite type over $\\mathbf{Z}$.\nFor each $i$ let $s_i \\in S_i$ be the image of $s$.\nSince $S = \\lim S_i$ and $A = \\mathcal{O}_{S, s}$ we have\n$A = \\colim \\mathcal{O}_{S_i, s_i}$. The ring $A_i = \\mathcal{O}_{S_i, s_i}$\nis a Noetherian local G-ring (More on Algebra, Proposition\n\\ref{more-algebra-proposition-ubiquity-G-ring}).\nBy More on Algebra, Lemma \\ref{more-algebra-lemma-henselization-colimit}\nwe see that $A = \\colim A_i^h$. By\nMore on Algebra, Lemma \\ref{more-algebra-lemma-henselization-G-ring}\nthe rings $A_i^h$ are G-rings. Thus we see that $A = \\colim A_i^h$ and\n$$\nX = \\lim (X_i \\times_{S_i} \\Spec(A_i^h))\n$$\nas schemes. The category of schemes finite \\'etale over $X$ is the limit\nof the category of schemes finite \\'etale over\n$X_i \\times_{S_i} \\Spec(A_i^h)$ (by\nLimits, Lemmas\n\\ref{limits-lemma-descend-finite-presentation},\n\\ref{limits-lemma-descend-finite-finite-presentation}, and\n\\ref{limits-lemma-descend-etale})\nThe same thing is true for schemes finite \\'etale over\n$X_0 = \\lim (X_i \\times_{S_i} s_i)$.\nThus we formally deduce the result for $X / \\Spec(A)$\nfrom the result for the $(X_i \\times_{S_i} \\Spec(A_i^h)) / \\Spec(A_i^h)$\nwhich we dealt with above.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-finite-etale-invariant-over-proper}\nLet $k \\subset k'$ be an extension of algebraically closed fields.\nLet $X$ be a proper scheme over $k$. Then the functor\n$$\nU \\longmapsto U_{k'}\n$$\nis an equivalence of categories between schemes finite \\'etale over\n$X$ and schemes finite \\'etale over $X_{k'}$.\n\\end{lemma}\n\n\\begin{proof}\nLet us prove the functor is essentially surjective.\nLet $U' \\to X_{k'}$ be a finite \\'etale morphism.\nWrite $k' = \\colim A_i$ as a filtered colimit of finite type $k$-algebras.\nBy Limits, Lemma \\ref{limits-lemma-descend-finite-presentation}\nthere exists an $i$ and a finitely presented morphism $U_i \\to X_{A_i}$\nwhose base change to $X_{k'}$ is $U'$. After increasing $i$\nwe may assume that $U_i \\to X_{A_i}$ is finite and \\'etale\n(Limits, Lemmas \\ref{limits-lemma-descend-finite-finite-presentation} and\n\\ref{limits-lemma-descend-etale}).\nSince $k$ is algebraically closed we can find a\n$k$-valued point $t$ in $\\Spec(A_i)$. Let $U = (U_i)_t$ be the\nfibre of $U_i$ over $t$. Let $A_i^h$ be the\nhenselization of $(A_i)_{\\mathfrak m}$ where $\\mathfrak m$ is\nthe maximal ideal corresponding to the point $t$. By\nLemma \\ref{lemma-finite-etale-on-proper-over-henselian}\nwe see that $(U_i)_{A_i^h} = U \\times \\Spec(A_i^h)$ as schemes\nover $X_{A_i^h}$. Now since\n$A_i^h$ is algebraic over $A_i$ (see for example discussion in\nSmoothing Ring Maps, Example \\ref{smoothing-example-describe-henselian})\nand since $k'$ is algebraically closed\nwe can find a ring map $A_i^h \\to k'$ extending the given\ninclusion $A_i \\subset k'$. Hence we conclude that $U'$\nis isomorphic to the base change of $U$.\nThe proof of fully faithfulness is exactly the same.\n\\end{proof}\n\n\n\n\n\n\n\n\n\\section{Local connectedness}\n\\label{section-unibranch}\n\n\\noindent\nIn this section we ask when $\\pi_1(U) \\to \\pi_1(X)$ is surjective\nfor $U$ a dense open of a scheme $X$. We will see that this is the\ncase (roughly) when $U \\cap B$ is connected for any small\n``ball'' $B$ around a point $x \\in X \\setminus U$.\n\n\\begin{lemma}\n\\label{lemma-dense-faithful}\nLet $f : X \\to Y$ be a morphism of schemes. If $f(X)$ is dense in $Y$\nthen the base change functor $\\textit{F\\'Et}_Y \\to \\textit{F\\'Et}_X$\nis faithful.\n\\end{lemma}\n\n\\begin{proof}\nSince the category of finite \\'etale coverings has an\ninternal hom (Lemma \\ref{lemma-internal-hom-finite-etale})\nit suffices to prove the following: Given $W$ finite \\'etale over $Y$\nand a morphism $s : X \\to W$ over $X$ there is at most one section\n$t : Y \\to W$ such that $s = t \\circ f$. Consider two sections\n$t_1, t_2 : Y \\to W$ such that $s = t_1 \\circ f = t_2 \\circ f$.\nSince the equalizer of $t_1$ and $t_2$ is closed in $Y$\n(Schemes, Lemma \\ref{schemes-lemma-where-are-they-equal})\nand since $f(X)$ is dense in $Y$ we see that $t_1$ and $t_2$\nagree on $Y_{red}$. Then it follows that $t_1$ and $t_2$ have\nthe same image which is an open and closed subscheme of $W$ mapping\nisomorphically to $Y$\n(\\'Etale Morphisms, Proposition \\ref{etale-proposition-properties-sections})\nhence they are equal.\n\\end{proof}\n\n\\noindent\nThe condition in the following lemma that the punctured spectrum\nof the strict henselization is connected follows for example from\nthe assumption that the local ring is geometrically unibranch, see\nMore on Algebra, Lemma \\ref{more-algebra-lemma-geometrically-unibranch}.\nThere is a partial converse in\nProperties, Lemma \\ref{properties-lemma-geometrically-unibranch}.\n\n\\begin{lemma}\n\\label{lemma-same-etale-extensions}\nLet $(A, \\mathfrak m)$ be a local ring. Set $X = \\Spec(A)$\nand let $U = X \\setminus \\{\\mathfrak m\\}$. If the punctured spectrum\nof the strict henselization of $A$ is connected, then\n$$\n\\textit{F\\'Et}_X \\longrightarrow \\textit{F\\'Et}_U,\\quad\nY \\longmapsto Y \\times_X U\n$$\nis a fully faithful functor.\n\\end{lemma}\n\n\\begin{proof}\nAssume $A$ is strictly henselian. In this case any finite \\'etale\ncover $Y$ of $X$ is isomorphic to a finite disjoint union of\ncopies of $X$. Thus it suffices to prove that any morphism\n$U \\to U \\amalg \\ldots \\amalg U$ over $U$, extends uniquely to a morphism\n$X \\to X \\amalg \\ldots \\amalg X$ over $X$.\nIf $U$ is connected (in particular nonempty), then this is true.\n\n\\medskip\\noindent\nThe general case. Since the category of finite \\'etale coverings has an\ninternal hom (Lemma \\ref{lemma-internal-hom-finite-etale})\nit suffices to prove the following: Given $Y$ finite \\'etale over $X$\nany morphism $s : U \\to Y$ over $X$ extends to a morphism $t : X \\to Y$\nover $Y$. Let $A^{sh}$ be the strict henselization of $A$ and denote\n$X^{sh} = \\Spec(A^{sh})$, $U^{sh} = U \\times_X X^{sh}$,\n$Y^{sh} = Y \\times_X X^{sh}$. By the first paragraph and our assumption\non $A$, we can extend the base change $s^{sh} : U^{sh} \\to Y^{sh}$ of $s$ to\n$t^{sh} : X^{sh} \\to Y^{sh}$. Set $A' = A^{sh} \\otimes_A A^{sh}$.\nThen the two pullbacks $t'_1, t'_2$ of $t^{sh}$ to $X' = \\Spec(A')$\nare extensions of the pullback $s'$ of $s$ to $U' = U \\times_X X'$.\nAs $A \\to A'$ is flat we see that $U' \\subset X'$ is (topologically) dense\nby going down for $A \\to A'$\n(Algebra, Lemma \\ref{algebra-lemma-flat-going-down}). Thus\n$t'_1 = t'_2$ by Lemma \\ref{lemma-dense-faithful}.\nHence $t^{sh}$ descends to a morphism $t : X \\to Y$\nfor example by\nDescent, Lemma \\ref{descent-lemma-fpqc-universal-effective-epimorphisms}.\n\\end{proof}\n\n\\noindent\nIn view of Lemma \\ref{lemma-same-etale-extensions}\nit is interesting to know when the\npunctured spectrum of a ring (and of its strict henselization)\nis connected. The following famous lemma due to Hartshorne\ngives a sufficient condition.\n\n\\begin{lemma}\n\\label{lemma-depth-2-connected-punctured-spectrum}\n\\begin{reference}\n\\cite[Proposition 2.1]{Hartshorne-connectedness}\n\\end{reference}\n\\begin{slogan}\nHartshorne's connectedness\n\\end{slogan}\nLet $A$ be a Noetherian local ring of depth $\\geq 2$.\nThen the punctured spectra of $A$, $A^h$, and $A^{sh}$ are connected.\n\\end{lemma}\n\n\\begin{proof}\nLet $U$ be the punctured spectrum of $A$.\nIf $U$ is disconnected then we see that\n$\\Gamma(U, \\mathcal{O}_U)$ has a nontrivial idempotent.\nBut $A$, being local, does not have a nontrivial idempotent.\nHence $A \\to \\Gamma(U, \\mathcal{O}_U)$ is not an isomorphism.\nBy Local Cohomology, Lemma\n\\ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local}\nwe conclude that either $H^0_\\mathfrak m(A)$ or $H^1_\\mathfrak m(A)$\nis nonzero. Thus $\\text{depth}(A) \\leq 1$ by\nDualizing Complexes, Lemma \\ref{dualizing-lemma-depth}.\nTo see the result for $A^h$ and $A^{sh}$ use\nMore on Algebra, Lemma \\ref{more-algebra-lemma-henselization-depth}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-quasi-compact-dense-open-connected-at-infinity-Noetherian}\nLet $X$ be a scheme. Let $U \\subset X$ be a dense open. Assume\n\\begin{enumerate}\n\\item the underlying topological space of $X$ is Noetherian, and\n\\item for every $x \\in X \\setminus U$ the punctured spectrum of the\nstrict henselization of $\\mathcal{O}_{X, x}$ is connected.\n\\end{enumerate}\nThen $\\textit{F\\'Et}_X \\to \\textit{F\\'et}_U$ is fully faithful.\n\\end{lemma}\n\n\\begin{proof}\nLet $Y_1, Y_2$ be finite \\'etale over $X$ and let\n$\\varphi : (Y_1)_U \\to (Y_2)_U$ be a morphism over $U$. We have to show that\n$\\varphi$ lifts uniquely to a morphism $Y_1 \\to Y_2$ over $X$.\nUniqueness follows from Lemma \\ref{lemma-dense-faithful}.\n\n\\medskip\\noindent\nLet $x \\in X \\setminus U$ be a generic point of an irreducible component\nof $X \\setminus U$. Set $V = U \\times_X \\Spec(\\mathcal{O}_{X, x})$.\nBy our choice of $x$ this is the punctured spectrum of\n$\\Spec(\\mathcal{O}_{X, x})$. By\nLemma \\ref{lemma-same-etale-extensions}\nwe can extend the morphism $\\varphi_V : (Y_1)_V \\to (Y_2)_V$\nuniquely to a morphism\n$(Y_1)_{\\Spec(\\mathcal{O}_{X, x})} \\to (Y_2)_{\\Spec(\\mathcal{O}_{X, x})}$.\nBy Limits, Lemma \\ref{limits-lemma-glueing-near-point}\nwe find an open $U \\subset U'$ containing $x$ and an extension\n$\\varphi' : (Y_1)_{U'} \\to (Y_2)_{U'}$ of $\\varphi$.\nSince the underlying topological space of $X$ is Noetherian\nthis finishes the proof by Noetherian induction on the complement\nof the open over which $\\varphi$ is defined.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-retrocompact-dense-open-connected-at-infinity-closed}\nLet $X$ be a scheme. Let $U \\subset X$ be a dense open. Assume\n\\begin{enumerate}\n\\item $U \\to X$ is quasi-compact,\n\\item every point of $X \\setminus U$ is closed, and\n\\item for every $x \\in X \\setminus U$ the punctured spectrum of the\nstrict henselization of $\\mathcal{O}_{X, x}$ is connected.\n\\end{enumerate}\nThen $\\textit{F\\'Et}_X \\to \\textit{F\\'et}_U$ is fully faithful.\n\\end{lemma}\n\n\\begin{proof}\nLet $Y_1, Y_2$ be finite \\'etale over $X$ and let\n$\\varphi : (Y_1)_U \\to (Y_2)_U$ be a morphism over $U$. We have to show that\n$\\varphi$ lifts uniquely to a morphism $Y_1 \\to Y_2$ over $X$.\nUniqueness follows from Lemma \\ref{lemma-dense-faithful}.\n\n\\medskip\\noindent\nLet $x \\in X \\setminus U$. Set $V = U \\times_X \\Spec(\\mathcal{O}_{X, x})$.\nSince every point of $X \\setminus U$ is closed $V$ is the punctured spectrum\nof $\\Spec(\\mathcal{O}_{X, x})$. By\nLemma \\ref{lemma-same-etale-extensions}\nwe can extend the morphism $\\varphi_V : (Y_1)_V \\to (Y_2)_V$\nuniquely to a morphism\n$(Y_1)_{\\Spec(\\mathcal{O}_{X, x})} \\to (Y_2)_{\\Spec(\\mathcal{O}_{X, x})}$.\nBy Limits, Lemma \\ref{limits-lemma-glueing-near-point}\n(this uses that $U$ is retrocompact in $X$)\nwe find an open $U \\subset U'_x$ containing $x$ and an extension\n$\\varphi'_x : (Y_1)_{U'_x} \\to (Y_2)_{U'_x}$ of $\\varphi$.\nNote that given two points $x, x' \\in X \\setminus U$ the\nmorphisms $\\varphi'_x$ and $\\varphi'_{x'}$ agree over\n$U'_x \\cap U'_{x'}$ as $U$ is dense in that open\n(Lemma \\ref{lemma-dense-faithful}). Thus we can extend $\\varphi$\nto $\\bigcup U'_x = X$ as desired.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-quasi-compact-dense-open-connected-at-infinity}\nLet $X$ be a scheme. Let $U \\subset X$ be a dense open. Assume\n\\begin{enumerate}\n\\item every quasi-compact open of $X$ has finitely many\nirreducible components,\n\\item for every $x \\in X \\setminus U$ the punctured spectrum of the\nstrict henselization of $\\mathcal{O}_{X, x}$ is connected.\n\\end{enumerate}\nThen $\\textit{F\\'Et}_X \\to \\textit{F\\'et}_U$ is fully faithful.\n\\end{lemma}\n\n\\begin{proof}\nLet $Y_1, Y_2$ be finite \\'etale over $X$ and let\n$\\varphi : (Y_1)_U \\to (Y_2)_U$ be a morphism over $U$. We have to show that\n$\\varphi$ lifts uniquely to a morphism $Y_1 \\to Y_2$ over $X$.\nUniqueness follows from Lemma \\ref{lemma-dense-faithful}.\nWe will prove existence by showing that we can enlarge $U$\nif $U \\not = X$ and using Zorn's lemma to finish the proof.\n\n\\medskip\\noindent\nLet $x \\in X \\setminus U$ be a generic point of an irreducible component\nof $X \\setminus U$. Set $V = U \\times_X \\Spec(\\mathcal{O}_{X, x})$.\nBy our choice of $x$ this is the punctured spectrum of\n$\\Spec(\\mathcal{O}_{X, x})$. By\nLemma \\ref{lemma-same-etale-extensions}\nwe can extend the morphism $\\varphi_V : (Y_1)_V \\to (Y_2)_V$\n(uniquely) to a morphism\n$(Y_1)_{\\Spec(\\mathcal{O}_{X, x})} \\to (Y_2)_{\\Spec(\\mathcal{O}_{X, x})}$.\nChoose an affine neighbourhood $W \\subset X$ of $x$.\nSince $U \\cap W$ is dense in $W$ it contains the generic points\n$\\eta_1, \\ldots, \\eta_n$ of $W$. Choose an affine open\n$W' \\subset W \\cap U$ containing $\\eta_1, \\ldots, \\eta_n$.\nSet $V' = W' \\times_X \\Spec(\\mathcal{O}_{X, x})$.\nBy Limits, Lemma \\ref{limits-lemma-glueing-near-point}\napplied to $x \\in W \\supset W'$\nwe find an open $W' \\subset W'' \\subset W$ with $x \\in W''$\nand a morphism $\\varphi'' : (Y_1)_{W''} \\to (Y_2)_{W''}$\nagreeing with $\\varphi$ over $W'$. Since $W'$ is dense in\n$W'' \\cap U$, we see by Lemma \\ref{lemma-dense-faithful}\nthat $\\varphi$ and $\\varphi''$ agree over $U \\cap W'$.\nThus $\\varphi$ and $\\varphi''$ glue to a morphism\n$\\varphi'$ over $U' = U \\cup W''$ agreeing with $\\varphi$ over $U$.\nObserve that $x \\in U'$ so that we've extended $\\varphi$\nto a strictly larger open.\n\n\\medskip\\noindent\nConsider the set $\\mathcal{S}$ of pairs $(U', \\varphi')$ where $U \\subset U'$\nand $\\varphi'$ is an extension of $\\varphi$. We endow $\\mathcal{S}$\nwith a partial ordering in the obvious manner. If $(U'_i, \\varphi'_i)$\nis a totally ordered subset, then it has a maximum $(U', \\varphi')$.\nJust take $U' = \\bigcup U'_i$ and let\n$\\varphi' : (Y_1)_{U'} \\to (Y_2)_{U'}$ be the morphism\nagreeing with $\\varphi'_i$ over $U'_i$. Thus Zorn's lemma applies\nand $\\mathcal{S}$ has a maximal element. By the argument above\nwe see that this maximal element is an extension of $\\varphi$\nover all of $X$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-local-exact-sequence}\nLet $(A, \\mathfrak m)$ be a local ring. Set $X = \\Spec(A)$ and\n$U = X \\setminus \\{\\mathfrak m\\}$. Let $U^{sh}$ be the punctured spectrum\nof the strict henselization $A^{sh}$ of $A$.\nAssume $U$ is quasi-compact and $U^{sh}$ is connected. Then the sequence\n$$\n\\pi_1(U^{sh}, \\overline{u}) \\to \\pi_1(U, \\overline{u}) \\to\n\\pi_1(X, \\overline{u}) \\to 1\n$$\nis exact in the sense of Lemma \\ref{lemma-functoriality-galois-ses} part (1).\n\\end{lemma}\n\n\\begin{proof}\nThe map $\\pi_1(U) \\to \\pi_1(X)$ is surjective by\nLemmas \\ref{lemma-same-etale-extensions} and\n\\ref{lemma-functoriality-galois-surjective}.\n\n\\medskip\\noindent\nWrite $X^{sh} = \\Spec(A^{sh})$. Let $Y \\to X$ be a finite \\'etale morphism.\nThen $Y^{sh} = Y \\times_X X^{sh} \\to X^{sh}$ is a finite \\'etale morphism.\nSince $A^{sh}$ is strictly henselian we see that $Y^{sh}$ is isomorphic\nto a disjoint union of copies of $X^{sh}$. Thus the same is true for\n$Y \\times_X U^{sh}$. It follows that the composition\n$\\pi_1(U^{sh}) \\to \\pi_1(U) \\to \\pi_1(X)$ is trivial, see\nLemma \\ref{lemma-composition-trivial}.\n\n\\medskip\\noindent\nTo finish the proof, it suffices according to\nLemma \\ref{lemma-functoriality-galois-ses}\nto show the following: Given a finite \\'etale morphism\n$V \\to U$ such that $V \\times_U U^{sh}$ is a disjoint\nunion of copies of $U^{sh}$, we can find a finite \\'etale\nmorphism $Y \\to X$ with $V \\cong Y \\times_X U$ over $U$.\nThe assumption implies that there exists a finite \\'etale\nmorphism $Y^{sh} \\to X^{sh}$ and an isomorphism\n$V \\times_U U^{sh} \\cong Y^{sh} \\times_{X^{sh}} U^{sh}$.\nConsider the following diagram\n$$\n\\xymatrix{\nU \\ar[d] & U^{sh} \\ar[d] \\ar[l] &\nU^{sh} \\times_U U^{sh} \\ar[d] \\ar@<1ex>[l] \\ar@<-1ex>[l] &\nU^{sh} \\times_U U^{sh} \\times_U U^{sh}\n\\ar[d] \\ar@<1ex>[l] \\ar[l] \\ar@<-1ex>[l] \\\\\nX & X^{sh} \\ar[l] &\nX^{sh} \\times_X X^{sh} \\ar@<1ex>[l] \\ar@<-1ex>[l] &\nX^{sh} \\times_X X^{sh} \\times_X X^{sh} \\ar@<1ex>[l] \\ar[l] \\ar@<-1ex>[l]\n}\n$$\nSince $U \\subset X$ is quasi-compact by assumption, all the\ndownward arrows are quasi-compact open immersions.\nLet $\\xi \\in X^{sh} \\times_X X^{sh}$ be a point not\nin $U^{sh} \\times_U U^{sh}$. Then $\\xi$ lies over the closed\npoint $x^{sh}$ of $X^{sh}$.\nConsider the local ring homomorphism\n$$\nA^{sh} = \\mathcal{O}_{X^{sh}, x^{sh}} \\to\n\\mathcal{O}_{X^{sh} \\times_X X^{sh}, \\xi}\n$$\ndetermined by the first projection $X^{sh} \\times_X X^{sh}$.\nThis is a filtered colimit of local homomorphisms which are\nlocalizations \\'etale ring maps.\nSince $A^{sh}$ is strictly henselian, we conclude that it is an\nisomorphism. Since this holds for every $\\xi$ in the complement\nit follows there are no specializations among these points and\nhence every such $\\xi$ is a closed point (you can also prove\nthis directly). As the local ring at $\\xi$ is isomorphic\nto $A^{sh}$, it is strictly henselian and has connected punctured spectrum.\nSimilarly for points $\\xi$ of $X^{sh} \\times_X X^{sh} \\times_X X^{sh}$ not\nin $U^{sh} \\times_U U^{sh} \\times_U U^{sh}$. It follows from\nLemma \\ref{lemma-retrocompact-dense-open-connected-at-infinity-closed}\nthat pullback along the vertical arrows induce fully faithful functors on\nthe categories of finite \\'etale schemes. Thus the\ncanonical descent datum on $V \\times_U U^{sh}$ relative to\nthe fpqc covering $\\{U^{sh} \\to U\\}$ translates into a\ndescent datum for $Y^{sh}$ relative to the fpqc covering $\\{X^{sh} \\to X\\}$.\nSince $Y^{sh} \\to X^{sh}$ is finite hence affine, this descent datum is\neffective (Descent, Lemma \\ref{descent-lemma-affine}).\nThus we get an affine morphism $Y \\to X$ and an isomorphism\n$Y \\times_X X^{sh} \\to Y^{sh}$ compatible with descent data.\nBy fully faithfulness of descent data\n(as in Descent, Lemma \\ref{descent-lemma-refine-coverings-fully-faithful})\nwe get an isomorphism $V \\to U \\times_X Y$.\nFinally, $Y \\to X$ is finite \\'etale as $Y^{sh} \\to X^{sh}$ is, see\nDescent, Lemmas \\ref{descent-lemma-descending-property-etale} and\n\\ref{descent-lemma-descending-property-finite}.\n\\end{proof}\n\n\\noindent\nLet $X$ be an irreducible scheme. Let $\\eta \\in X$ be the geometric\npoint. The canonical morphism $\\eta \\to X$ induces a canonical map\n\\begin{equation}\n\\label{equation-inclusion-generic-point}\n\\text{Gal}(\\kappa(\\eta)^{sep}/\\kappa(\\eta)) = \\pi_1(\\eta, \\overline{\\eta})\n\\longrightarrow \\pi_1(X, \\overline{\\eta})\n\\end{equation}\nThe identification on the left hand side is\nLemma \\ref{lemma-fundamental-group-Galois-group}.\n\n\\begin{lemma}\n\\label{lemma-irreducible-geometrically-unibranch}\nLet $X$ be an irreducible, geometrically unibranch scheme.\nFor any nonempty open $U \\subset X$ the canonical map\n$$\n\\pi_1(U, \\overline{u}) \\longrightarrow \\pi_1(X, \\overline{u})\n$$\nis surjective. The map (\\ref{equation-inclusion-generic-point})\n$\\pi_1(\\eta, \\overline{\\eta}) \\to \\pi_1(X, \\overline{\\eta})$\nis surjective as well.\n\\end{lemma}\n\n\\begin{proof}\nBy Lemma \\ref{lemma-thickening} we may replace $X$ by its reduction.\nThus we may assume that $X$ is an integral scheme. By\nLemma \\ref{lemma-functoriality-galois-surjective}\nthe assertion of the lemma translates into the statement that\nthe functors $\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_U$ and\n$\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_\\eta$ are fully faithful.\n\n\\medskip\\noindent\nThe result for $\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_U$ follows\nfrom Lemma \\ref{lemma-quasi-compact-dense-open-connected-at-infinity}\nand the fact that for a local ring $A$ which is\ngeometrically unibranch its strict henselization has an\nirreducible spectrum. See\nMore on Algebra, Lemma \\ref{more-algebra-lemma-geometrically-unibranch}.\n\n\\medskip\\noindent\nObserve that the residue field $\\kappa(\\eta) = \\mathcal{O}_{X, \\eta}$\nis the filtered colimit of $\\mathcal{O}_X(U)$ over $U \\subset X$\nnonempty open affine. Hence $\\textit{F\\'Et}_\\eta$ is the colimit of the\ncategories $\\textit{F\\'Et}_U$ over such $U$, see\nLimits, Lemmas \\ref{limits-lemma-descend-finite-presentation},\n\\ref{limits-lemma-descend-finite-finite-presentation}, and\n\\ref{limits-lemma-descend-etale}.\nA formal argument then shows that fully faithfulness for\n$\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_\\eta$ follows from the\nfully faithfulness of the functors $\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_U$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-exact-sequence-finite-nr-closed-pts}\nLet $X$ be a scheme. Let $x_1, \\ldots, x_n \\in X$ be a finite\nnumber of closed points such that\n\\begin{enumerate}\n\\item $U = X \\setminus \\{x_1, \\ldots, x_n\\}$ is connected and is\na retrocompact open of $X$, and\n\\item for each $i$ the punctured spectrum $U_i^{sh}$ of the\nstrict henselization of $\\mathcal{O}_{X, x_i}$ is connected.\n\\end{enumerate}\nThen the map $\\pi_1(U) \\to \\pi_1(X)$ is surjective and the kernel\nis the smallest closed normal subgroup of $\\pi_1(U)$ containing\nthe image of $\\pi_1(U_i^{sh}) \\to \\pi_1(U)$ for $i = 1, \\ldots, n$.\n\\end{lemma}\n\n\\begin{proof}\nSurjectivity follows from\nLemmas \\ref{lemma-retrocompact-dense-open-connected-at-infinity-closed} and\n\\ref{lemma-functoriality-galois-surjective}.\nWe can consider the sequence of maps\n$$\n\\pi_1(U) \\to \\ldots \\to\n\\pi_1(X \\setminus \\{x_1, x_2\\}) \\to \\pi_1(X \\setminus \\{x_1\\}) \\to \\pi_1(X)\n$$\nA group theory argument then shows it suffices to prove the statement on the\nkernel in the case $n = 1$ (details omitted). Write\n$x = x_1$, $U^{sh} = U_1^{sh}$,\nset $A = \\mathcal{O}_{X, x}$, and let $A^{sh}$ be the strict henselization.\nConsider the diagram\n$$\n\\xymatrix{\nU \\ar[d] &\n\\Spec(A) \\setminus \\{\\mathfrak m\\} \\ar[l] \\ar[d] &\nU^{sh} \\ar[d] \\ar[l] \\\\\nX & \\Spec(A) \\ar[l] & \\Spec(A^{sh}) \\ar[l]\n}\n$$\nBy Lemma \\ref{lemma-functoriality-galois-ses}\nwe have to show finite \\'etale morphisms\n$V \\to U$ which pull back to trivial coverings of $U^{sh}$\nextend to finite \\'etale schemes over $X$.\nBy Lemma \\ref{lemma-local-exact-sequence}\nwe know the corresponding statement\nfor finite \\'etale schemes over the punctured spectrum of $A$.\nHowever, by Limits, Lemma \\ref{limits-lemma-glueing-near-closed-point}\nschemes of finite presentation over $X$ are the same thing as\nschemes of finite presentation over $U$ and $A$ glued over\nthe punctured spectrum of $A$. This finishes the proof.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\\section{Fundamental groups of normal schemes}\n\\label{section-normal}\n\n\\noindent\nLet $X$ be an integral, geometrically unibranch scheme. In the previous section\nwe have seen that the fundamental group of $X$ is a quotient of the\nGalois group of the function field $K$ of $X$. Since the map is continuous\nthe kernel is a normal closed subgroup of the Galois group. Hence this kernel\ncorresponds to a Galois extension $M/K$ by Galois theory\n(Fields, Theorem \\ref{fields-theorem-inifinite-galois-theory}).\nIn this section we will determine $M$ when $X$ is a normal integral scheme.\n\n\\medskip\\noindent\nLet $X$ be an integral normal scheme with function field $K$.\nLet $K \\subset L$ be a finite extension. Consider the normalization\n$Y \\to X$ of $X$ in the morphism $\\Spec(L) \\to X$ as defined in\nMorphisms, Section \\ref{morphisms-section-normalization-X-in-Y}.\nWe will say (in this setting) that {\\it $X$ is unramified in $L$}\nif $Y \\to X$ is an unramified morphism of schemes. In\nLemma \\ref{lemma-unramified} we will elucidate this condition.\nObserve that the scheme theoretic fibre of $Y \\to X$ over $\\Spec(K)$\nis $\\Spec(L)$. Hence the field extension $L/K$ is separable if $X$ is\nunramified in $L$, see\nMorphisms, Lemmas \\ref{morphisms-lemma-unramified-over-field}.\n\n\\begin{lemma}\n\\label{lemma-unramified-in-L}\nIn the situation above the following are equivalent\n\\begin{enumerate}\n\\item $X$ is unramified in $L$,\n\\item $Y \\to X$ is \\'etale, and\n\\item $Y \\to X$ is finite \\'etale.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nObserve that $Y \\to X$ is an integral morphism.\nIn each case the morphism $Y \\to X$ is locally of finite type\nby definition.\nHence we find that in each case the lemma is finite by\nMorphisms, Lemma \\ref{morphisms-lemma-finite-integral}.\nIn particular we see that (2) is equivalent to (3).\nAn \\'etale morphism is unramified, hence (2) implies (1).\n\n\\medskip\\noindent\nConversely, assume $Y \\to X$ is unramified. Let $x \\in X$.\nWe can choose an \\'etale neighbourhood $(U, u) \\to (X, x)$ such that\n$$\nY \\times_X U = \\coprod V_j \\longrightarrow U\n$$\nis a disjoint union of closed immersions, see\n\\'Etale Morphisms, Lemma \\ref{etale-lemma-finite-unramified-etale-local}.\nShrinking we may assume $U$ is quasi-compact.\nThen $U$ has finitely many irreducible components\n(Descent, Lemma \\ref{descent-lemma-locally-finite-nr-irred-local-fppf}).\nSince $U$ is normal\n(Descent, Lemma \\ref{descent-lemma-normal-local-smooth}) the\nirreducible components of $U$ are open and closed\n(Properties, Lemma \\ref{properties-lemma-normal-locally-finite-nr-irreducibles})\nand we may assume $U$ is irreducible. Then $U$ is an integral\nscheme whose generic point $\\xi$ maps to the generic point of $X$.\nOn the other hand, we know that $Y \\times_X U$\nis the normalization of $U$ in $\\Spec(L) \\times_X U$\nby More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-normalization-smooth-localization}.\nEvery point of $\\Spec(L) \\times_X U$ maps to $\\xi$.\nThus every $V_j$ contains a point mapping to $\\xi$ by\nMorphisms, Lemma \\ref{morphisms-lemma-normalization-generic}.\nThus $V_j \\to U$ is an isomorphism as $U = \\overline{\\{\\xi\\}}$.\nThus $Y \\times_X U \\to U$ is \\'etale. By\nDescent, Lemma \\ref{descent-lemma-descending-property-etale}\nwe conclude that $Y \\to X$ is \\'etale over the\nimage of $U \\to X$ (an open neighbourhood of $x$).\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-finite-etale-covering-normal-unramified}\nLet $X$ be a normal integral scheme with function field $K$.\nLet $Y \\to X$ be a finite \\'etale morphism. If $Y$ is connected,\nthen $Y$ is an integral normal scheme and $Y$ is the normalization\nof $X$ in the function field of $Y$.\n\\end{lemma}\n\n\\begin{proof}\nThe scheme $Y$ is normal by\nDescent, Lemma \\ref{descent-lemma-normal-local-smooth}.\nSince $Y \\to X$ is flat every generic point of $Y$ maps\nto the generic point of $X$ by\nMorphisms, Lemma \\ref{morphisms-lemma-generalizations-lift-flat}.\nSince $Y \\to X$ is finite we see that $Y$ has a finite number\nof irreducible components. Thus $Y$ is the disjoint union of\na finite number of integral normal schemes by\nProperties, Lemma \\ref{properties-lemma-normal-locally-finite-nr-irreducibles}.\nThus if $Y$ is connected, then $Y$ is an integral normal scheme.\n\n\\medskip\\noindent\nLet $L$ be the function field of $Y$ and let $Y' \\to X$ be the normalization\nof $X$ in $L$. By\nMorphisms, Lemma \\ref{morphisms-lemma-characterize-normalization}\nwe obtain a factorization $Y' \\to Y \\to X$ and $Y' \\to Y$ is\nthe normalization of $Y$ in $L$. Since $Y$ is normal it is clear\nthat $Y' = Y$ (this can also be deduced from\nMorphisms, Lemma \\ref{morphisms-lemma-finite-birational-over-normal}).\n\\end{proof}\n\n\\begin{proposition}\n\\label{proposition-normal}\nLet $X$ be a normal integral scheme with function field $K$.\nThen the canonical map (\\ref{equation-inclusion-generic-point})\n$$\n\\text{Gal}(K^{sep}/K) = \\pi_1(\\eta, \\overline{\\eta})\n\\longrightarrow \\pi_1(X, \\overline{\\eta})\n$$\nis identified with the quotient map\n$\\text{Gal}(K^{sep}/K) \\to \\text{Gal}(M/K)$ where $M \\subset K^{sep}$\nis the union of the finite subextensions $L$\nsuch that $X$ is unramified in $L$.\n\\end{proposition}\n\n\\begin{proof}\nThe normal scheme $X$ is geometrically unibranch\n(Properties, Lemma \\ref{properties-lemma-normal-geometrically-unibranch}).\nHence Lemma \\ref{lemma-irreducible-geometrically-unibranch} applies to $X$.\nThus $\\pi_1(\\eta, \\overline{\\eta}) \\to \\pi_1(X, \\overline{\\eta})$\nis surjective and top horizontal arrow of the commutative diagram\n$$\n\\xymatrix{\n\\textit{F\\'Et}_X \\ar[r] \\ar[d] \\ar[rd]_c & \\textit{F\\'Et}_\\eta \\ar[d] \\\\\n\\textit{Finite-}\\pi_1(X, \\overline{\\eta})\\textit{-sets} \\ar[r] &\n\\textit{Finite-}\\text{Gal}(K^{sep}/K)\\textit{-sets}\n}\n$$\nis fully faithful. The left vertical arrow is the equivalence of\nTheorem \\ref{theorem-fundamental-group}\nand the right vertical arrow is the equivalence of\nLemma \\ref{lemma-fundamental-group-Galois-group}. The lower\nhorizontal arrow is induced by the map of the proposition.\nBy Lemmas \\ref{lemma-unramified-in-L} and\n\\ref{lemma-finite-etale-covering-normal-unramified}\nwe see that the essential image of $c$\nconsists of $\\text{Gal}(K^{sep}/K)\\textit{-Sets}$ isomorphic\nto sets of the form\n$$\nS = \\Hom_K(\\prod\\nolimits_{i = 1, \\ldots, n} L_i, K^{sep}) =\n\\coprod\\nolimits_{i = 1, \\ldots, n} \\Hom_K(L_i, K^{sep})\n$$\nwith $L_i/K$ finite separable such that $X$ is unramified in $L_i$.\nThus if $M \\subset K^{sep}$ is as in the statement of the lemma,\nthen $\\text{Gal}(K^{sep}/M)$ is exactly the subgroup of\n$\\text{Gal}(K^{sep}/K)$ acting trivially on every object\nin the essential image of $c$. On the other hand, the essential image of $c$\nis exactly the category of $S$ such that the $\\text{Gal}(K^{sep}/K)$-action\nfactors through the surjection\n$\\text{Gal}(K^{sep}/K) \\to \\pi_1(X, \\overline{\\eta})$.\nWe conclude that $\\text{Gal}(K^{sep}/M)$ is the kernel.\nHence $\\text{Gal}(K^{sep}/M)$ is a normal subgroup, $M/K$ is Galois,\nand we have a short exact sequence\n$$\n1 \\to \\text{Gal}(K^{sep}/M) \\to\n\\text{Gal}(K^{sep}/K) \\to\n\\text{Gal}(M/K) \\to 1\n$$\nby Galois theory (Fields, Theorem\n\\ref{fields-theorem-inifinite-galois-theory} and\nLemma \\ref{fields-lemma-ses-infinite-galois}). The proof is done.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-local-exact-sequence-normal}\nLet $(A, \\mathfrak m)$ be a normal local ring.\nSet $X = \\Spec(A)$. Let $A^{sh}$ be the strict henselization of $A$.\nLet $K$ and $K^{sh}$ be the fraction fields of $A$ and $A^{sh}$.\nThen the sequence\n$$\n\\pi_1(\\Spec(K^{sh})) \\to \\pi_1(\\Spec(K)) \\to \\pi_1(X) \\to 1\n$$\nis exact in the sense of Lemma \\ref{lemma-functoriality-galois-ses} part (1).\n\\end{lemma}\n\n\\begin{proof}\nNote that $A^{sh}$ is a normal domain, see\nMore on Algebra, Lemma \\ref{more-algebra-lemma-henselization-normal}.\nThe map $\\pi_1(\\Spec(K)) \\to \\pi_1(X)$ is surjective by\nProposition \\ref{proposition-normal}.\n\n\\medskip\\noindent\nWrite $X^{sh} = \\Spec(A^{sh})$. Let $Y \\to X$ be a finite \\'etale morphism.\nThen $Y^{sh} = Y \\times_X X^{sh} \\to X^{sh}$ is a finite \\'etale morphism.\nSince $A^{sh}$ is strictly henselian we see that $Y^{sh}$ is isomorphic\nto a disjoint union of copies of $X^{sh}$. Thus the same is true for\n$Y \\times_X \\Spec(K^{sh})$. It follows that the composition\n$\\pi_1(\\Spec(K^{sh})) \\to \\pi_1(X)$ is trivial, see\nLemma \\ref{lemma-composition-trivial}.\n\n\\medskip\\noindent\nTo finish the proof, it suffices according to\nLemma \\ref{lemma-functoriality-galois-ses}\nto show the following: Given a finite \\'etale morphism\n$V \\to \\Spec(K)$ such that $V \\times_{\\Spec(K)} \\Spec(K^{sh})$\nis a disjoint union of copies of $\\Spec(K^{sh})$, we can find a\nfinite \\'etale morphism\n$Y \\to X$ with $V \\cong Y \\times_X \\Spec(K)$ over $\\Spec(K)$.\nWrite $V = \\Spec(L)$, so $L$ is a finite product of\nfinite separable extensions of $K$.\nLet $B \\subset L$ be the integral closure of $A$ in $L$.\nIf $A \\to B$ is \\'etale, then we can take $Y = \\Spec(B)$\nand the proof is complete. By\nAlgebra, Lemma \\ref{algebra-lemma-integral-closure-commutes-smooth}\n(and a limit argument we omit)\nwe see that $B \\otimes_A A^{sh}$ is the integral closure of\n$A^{sh}$ in $L^{sh} = L \\otimes_K K^{sh}$.\nOur assumption is that $L^{sh}$ is a product of copies of\n$K^{sh}$ and hence $B^{sh}$ is a product of copies of $A^{sh}$.\nThus $A^{sh} \\to B^{sh}$ is \\'etale. As $A \\to A^{sh}$ is\nfaithfully flat it follows that $A \\to B$ is \\'etale\n(Descent, Lemma \\ref{descent-lemma-descending-property-etale})\nas desired.\n\\end{proof}\n\n\n\n\n\n\n\n\\section{Group actions and integral closure}\n\\label{section-group-actions-integral}\n\n\\noindent\nIn this section we continue the discussion of\nMore on Algebra, Section \\ref{more-algebra-section-group-actions-integral}.\nRecall that a normal local ring is a domain by definition.\n\n\\begin{lemma}\n\\label{lemma-get-algebraic-closure}\nLet $A$ be a normal domain whose fraction field is separably algebraically\nclosed. Let $\\mathfrak p \\subset A$ be a nonzero prime ideal.\nThen the residue field $\\kappa(\\mathfrak p)$ is algebraically closed.\n\\end{lemma}\n\n\\begin{proof}\nAssume the lemma is not true to get a contradiction. Then there exists a\nmonic irreducible polynomial $P(T) \\in \\kappa(\\mathfrak p)[T]$ of\ndegree $d > 1$. After replacing $P$ by $a^d P(a^{-1}T)$ for suitable $a \\in A$\n(to clear denominators) we may assume that $P$ is the image of a\nmonic polynomial $Q$ in $A[T]$. Observe that $Q$ is irreducible in\n$f.f.(A)[T]$. Namely a factorization over $f.f.(A)$ leads to a factorization\nover $A$ by Algebra, Lemma \\ref{algebra-lemma-polynomials-divide}\nwhich we could reduce modulo $\\mathfrak p$ to get a factorization of $P$.\nAs $f.f.(A)$ is separably closed, $Q$ is not a separable polynomial\n(Fields, Definition \\ref{fields-definition-separable}).\nThen the characteristic of $f.f.(A)$ is $p > 0$ and $Q$ has\nvanishing linear term (Fields, Definition \\ref{fields-definition-separable}).\nHowever, then we can replace $Q$ by\n$Q + a T$ where $a \\in \\mathfrak p$ is nonzero to get a contradiction.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-normal-local-domain-separablly-closed-fraction-field}\nA normal local ring with separably closed fraction field is\nstrictly henselian.\n\\end{lemma}\n\n\\begin{proof}\nLet $(A, \\mathfrak m, \\kappa)$ be normal local with separably\nclosed fraction field $K$. If $A = K$, then we are done. If not,\nthen the residue field $\\kappa$ is algebraically closed\nby Lemma \\ref{lemma-get-algebraic-closure} and it suffices to\ncheck that $A$ is henselian.\nLet $f \\in A[T]$ be monic and let $a_0 \\in \\kappa$ be a root\nof multiplicity $1$ of the reduction $\\overline{f} \\in \\kappa[T]$.\nLet $f = \\prod f_i$ be the factorization in $K[T]$.\nBy Algebra, Lemma \\ref{algebra-lemma-polynomials-divide} we have\n$f_i \\in A[T]$. Thus $a_0$ is a root of $f_i$ for some $i$.\nAfter replacing $f$ by $f_i$ we may assume $f$ is irreducible.\nThen, since the derivative $f'$ cannot be zero in $A[T]$\nas $a_0$ is a single root, we conclude that $f$ is linear\ndue to the fact that $K$ is separably algebraically closed.\nThus $A$ is henselian, see\nAlgebra, Definition \\ref{algebra-definition-henselian}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-inertia-base-change}\nLet $G$ be a finite group acting on a ring $R$. Let $R^G \\to A$ be a ring\nmap. Let $\\mathfrak q' \\subset A \\otimes_{R^G} R$ be a prime lying\nover the prime $\\mathfrak q \\subset R$. Then\n$$\nI_\\mathfrak q = \\{\\sigma \\in G \\mid\n\\sigma(\\mathfrak q) = \\mathfrak q\\text{ and }\n\\sigma \\bmod \\mathfrak q = \\text{id}_{\\kappa(\\mathfrak q)}\\}\n$$\nis equal to\n$$\nI_{\\mathfrak q'} = \\{\\sigma \\in G \\mid\n\\sigma(\\mathfrak q') = \\mathfrak q'\\text{ and }\n\\sigma \\bmod \\mathfrak q' = \\text{id}_{\\kappa(\\mathfrak q')}\\}\n$$\n\\end{lemma}\n\n\\begin{proof}\nSince $\\mathfrak q$ is the inverse image of $\\mathfrak q'$\nand since $\\kappa(\\mathfrak q) \\subset \\kappa(\\mathfrak q')$,\nwe get $I_{\\mathfrak q'} \\subset I_\\mathfrak q$.\nConversely, if $\\sigma \\in I_\\mathfrak q$, the $\\sigma$\nacts trivially on the fibre ring $A \\otimes_{R^G} \\kappa(\\mathfrak q)$.\nThus $\\sigma$ fixes all the primes lying over $\\mathfrak q$\nand induces the identity on their residue fields.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-inertia-invariants-etale}\nLet $G$ be a finite group acting on a ring $R$. Let $\\mathfrak q \\subset R$\nbe a prime. Set\n$$\nI = \\{\\sigma \\in G \\mid \\sigma(\\mathfrak q) = \\mathfrak q\n\\text{ and } \\sigma \\bmod \\mathfrak q = \\text{id}_\\mathfrak q\\}\n$$\nThen $R^G \\to R^I$ is \\'etale at $R^I \\cap \\mathfrak q$.\n\\end{lemma}\n\n\\begin{proof}\nThe strategy of the proof is to use \\'etale localization to\nreduce to the case where $R \\to R^I$ is a local isomorphism at\n$R^I \\cap \\mathfrak p$.\nLet $R^G \\to A$ be an \\'etale ring map. We claim that if the result\nholds for the action of $G$ on $A \\otimes_{R^G} R$ and some prime\n$\\mathfrak q'$ of $A \\otimes_{R^G} R$ lying over $\\mathfrak q$, then\nthe result is true.\n\n\\medskip\\noindent\nTo check this, note that since $R^G \\to A$ is flat we have\n$A = (A \\otimes_{R^G} R)^G$, see More on Algebra,\nLemma \\ref{more-algebra-lemma-base-change-invariants}.\nBy Lemma \\ref{lemma-inertia-base-change} the group $I$ does not change.\nThen a second application of More on Algebra,\nLemma \\ref{more-algebra-lemma-base-change-invariants}\nshows that $A \\otimes_{R^G} R^I = (A \\otimes_{R^G} R)^I$\n(because $R^I \\to A \\otimes_{R^G} R^I$ is flat).\nThus\n$$\n\\xymatrix{\n\\Spec((A \\otimes_{R^G} R)^I) \\ar[d] \\ar[r] & \\Spec(R^I) \\ar[d] \\\\\n\\Spec(A) \\ar[r] & \\Spec(R^G)\n}\n$$\nis cartesian and the horizontal arrows are \\'etale. Thus if the\nleft vertical arrow is \\'etale in some open neighbourhood $W$ of\n$(A \\otimes_{R^G} R)^I \\cap \\mathfrak q'$, then the right vertical\narrow is \\'etale at the points of the (open) image of $W$ in\n$\\Spec(R^I)$, see\nDescent, Lemma \\ref{descent-lemma-smooth-permanence}. In particular\nthe morphism $\\Spec(R^I) \\to \\Spec(R^G)$ is \\'etale at $R^I \\cap \\mathfrak q$.\n\n\\medskip\\noindent\nLet $\\mathfrak p = R^G \\cap \\mathfrak q$.\nBy More on Algebra, Lemma \\ref{more-algebra-lemma-one-orbit}\nthe fibre of $\\Spec(R) \\to \\Spec(R^G)$ over $\\mathfrak p$ is\nfinite. Moreover the residue field extensions at these points\nare algebraic, normal, with finite automorphism groups by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-one-orbit-geometric}.\nThus we may apply\nMore on Morphisms,\nLemma \\ref{more-morphisms-lemma-etale-makes-integral-split}\nto the integral ring map $R^G \\to R$ and the prime $\\mathfrak p$.\nCombined with the claim above we reduce to the case where\n$R = A_1 \\times \\ldots \\times A_n$ with each $A_i$ having a single\nprime $\\mathfrak q_i$ lying over $\\mathfrak p$ such that the\nresidue field extensions $\\kappa(\\mathfrak q_i)/\\kappa(\\mathfrak p)$\nare purely inseparable. Of course $\\mathfrak q$ is one of\nthese primes, say $\\mathfrak q = \\mathfrak q_1$.\n\n\\medskip\\noindent\nIt may not be the case that $G$ permutes the factors $A_i$\n(this would be true if the spectrum of $A_i$ were connected,\nfor example if $R^G$ was local). This we can fix as follows;\nwe suggest the reader think this through for themselves, perhaps\nusing idempotents instead of topology.\nRecall that the product decomposition gives a corresponding\ndisjoint union decomposition of $\\Spec(R)$ by open and closed\nsubsets $U_i$. Since $G$ is finite, we can refine this covering\nby a finite disjoint union decomposition\n$\\Spec(R) = \\coprod_{j \\in J} W_j$ by open\nand closed subsets $W_j$, such that for all $j \\in J$ there exists\na $j' \\in J$ with $\\sigma(W_j) = W_{j'}$. The union of the\n$W_j$ not meeting $\\{\\mathfrak q_1, \\ldots, \\mathfrak q_n\\}$\nis a closed subset not meeting the fibre over $\\mathfrak p$\nhence maps to a closed subset of $\\Spec(R^G)$ not meeting\n$\\mathfrak p$ as $\\Spec(R) \\to \\Spec(R^G)$ is closed.\nHence after replacing $R^G$ by a principal localization\n(permissible by the claim) we may assume each $W_j$ meets\none of the points $\\mathfrak q_i$. Then we set $U_i = W_j$\nif $\\mathfrak q_i \\in W_j$. The corresponding product decomposition\n$R = A_1 \\times \\ldots \\times A_n$ is one\nwhere $G$ permutes the factors $A_i$.\n\n\\medskip\\noindent\nThus we may assume we have a product decomposition\n$R = A_1 \\times \\ldots \\times A_n$ compatible with $G$-action,\nwhere each $A_i$ has a single prime $\\mathfrak q_i$ lying\nover $\\mathfrak p$ and the field extensions\n$\\kappa(\\mathfrak q_i)/\\kappa(\\mathfrak p)$ are purely inseparable.\nWrite $A' = A_2 \\times \\ldots \\times A_n$ so that\n$$\nR = A_1 \\times A'\n$$\nSince $\\mathfrak q = \\mathfrak q_1$ we find that every\n$\\sigma \\in I$ preserves the product decomposition above.\nHence\n$$\nR^I = (A_1)^I \\times (A')^I\n$$\nObserve that $I = D = \\{\\sigma \\in G \\mid \\sigma(\\mathfrak q) = \\mathfrak q\\}$\nbecause $\\kappa(\\mathfrak q)/\\kappa(\\mathfrak p)$ is purely inseparable.\nSince the action of $G$ on primes over $\\mathfrak p$ is transitive\n(More on Algebra, Lemma \\ref{more-algebra-lemma-one-orbit})\nwe conclude that, the index of $I$ in $G$ is $n$ and we can write\n$G = eI \\amalg \\sigma_2I \\amalg \\ldots \\amalg \\sigma_nI$ so that\n$A_i = \\sigma_i(A_1)$ for $i = 2, \\ldots, n$. It follows that\n$$\nR^G = (A_1)^I.\n$$\nThus the map $R^G \\to R^I$ is \\'etale at $R^I \\cap \\mathfrak q$\nand the proof is complete.\n\\end{proof}\n\n\\noindent\nThe following lemma generalizes\nMore on Algebra, Lemma \\ref{more-algebra-lemma-inertial-invariants-unramified}.\n\n\\begin{lemma}\n\\label{lemma-inertial-invariants-unramified}\nLet $A$ be a normal domain with fraction field $K$.\nLet $L/K$ be a (possibly infinite) Galois extension.\nLet $G = \\text{Gal}(L/K)$ and let\n$B$ be the integral closure of $A$ in $L$.\nLet $\\mathfrak q \\subset B$. Set\n$$\nI = \\{\\sigma \\in G \\mid\n\\sigma(\\mathfrak q) = \\mathfrak q \\text{ and }\n\\sigma \\bmod \\mathfrak q = \\text{id}_{\\kappa(\\mathfrak q)}\\}\n$$\nThen $(B^I)_{B^I \\cap \\mathfrak q}$ is a filtered colimit\nof \\'etale $A$-algebras.\n\\end{lemma}\n\n\\begin{proof}\nWe can write $L$ as the filtered colimit of finite Galois extensions\nof $K$. Hence it suffices to prove this lemma in case $L/K$ is\na finite Galois extension, see\nAlgebra, Lemma \\ref{algebra-lemma-colimit-colimit-etale}.\nSince $A = B^G$ as $A$ is integrally\nclosed in $K = L^G$ the result follows from\nLemma \\ref{lemma-inertia-invariants-etale}.\n\\end{proof}\n\n\n\n\n\n\n\n\\section{Ramification theory}\n\\label{section-ramification}\n\n\\noindent\nIn this section we continue the discussion of\nMore on Algebra, Section \\ref{more-algebra-section-ramification}\nand we relate it to our discussion of the fundamental groups of schemes.\n\n\\medskip\\noindent\nLet $(A, \\mathfrak m, \\kappa)$ be a normal local ring with\nfraction field $K$. Choose a separable algebraic closure $K^{sep}$. Let\n$A^{sep}$ be the integral closure of $A$ in $K^{sep}$.\nChoose maximal ideal $\\mathfrak m^{sep} \\subset A^{sep}$.\nLet $A \\subset A^h \\subset A^{sh}$ be the henselization and strict\nhenselization. Observe that $A^h$ and $A^{sh}$ are normal rings as well\n(More on Algebra, Lemma \\ref{more-algebra-lemma-henselization-normal}).\nDenote $K^h$ and $K^{sh}$ their fraction fields.\nSince $(A^{sep})_{\\mathfrak m^{sep}}$ is strictly henselian by\nLemma \\ref{lemma-normal-local-domain-separablly-closed-fraction-field}\nwe can choose an $A$-algebra map $A^{sh} \\to (A^{sep})_{\\mathfrak m^{sep}}$.\nNamely, first choose a $\\kappa$-embedding\\footnote{This is possible\nbecause $\\kappa(\\mathfrak m^{sh})$ is a separable algebraic closure\nof $\\kappa$ and $\\kappa(\\mathfrak m^{sep})$ is an algebraic closure\nof $\\kappa$ by Lemma \\ref{lemma-get-algebraic-closure}.}\n$\\kappa(\\mathfrak m^{sh}) \\to \\kappa(\\mathfrak m^{sep})$ and\nthen extend (uniquely) to an $A$-algebra homomorphism by\nAlgebra, Lemma \\ref{algebra-lemma-strictly-henselian-functorial}.\nWe get the following diagram\n$$\n\\xymatrix{\nK^{sep} & K^{sh} \\ar[l] & K^h \\ar[l] & K \\ar[l] \\\\\n(A^{sep})_{\\mathfrak m^{sep}} \\ar[u] &\nA^{sh} \\ar[u] \\ar[l] &\nA^h \\ar[u] \\ar[l] &\nA \\ar[u] \\ar[l]\n}\n$$\nWe can take the fundamental groups of the spectra of these rings.\nOf course, since $K^{sep}$, $(A^{sep})_{\\mathfrak m^{sep}}$, and\n$A^{sh}$ are strictly henselian, for them we obtain trivial groups.\nThus the interesting part is the following\n\\begin{equation}\n\\label{equation-inertia-diagram-pione}\n\\vcenter{\n\\xymatrix{\n\\pi_1(U^{sh}) \\ar[r] \\ar[rd]_1 & \\pi_1(U^h) \\ar[d] \\ar[r] & \\pi_1(U) \\ar[d] \\\\\n& \\pi_1(X^h) \\ar[r] & \\pi_1(X)\n}\n}\n\\end{equation}\nHere $X^h$ and $X$ are the spectra of $A^h$ and $A$ and\n$U^{sh}$, $U^h$, $U$ are the spectra of $K^{sh}$, $K^h$, and $K$.\nThe label $1$ means that the map is trivial; this follows\nas it factors through the trivial group $\\pi_1(X^{sh})$.\nOn the other hand, the profinite group $G = \\text{Gal}(K^{sep}/K)$\nacts on $A^{sep}$ and we can make the following definitions\n$$\nD = \\{\\sigma \\in G \\mid \\sigma(\\mathfrak m^{sep}) = \\mathfrak m^{sep}\\}\n\\supset\nI = \\{\\sigma \\in D \\mid \\sigma \\bmod \\mathfrak m^{sep} =\n\\text{id}_{\\kappa(\\mathfrak m^{sep})}\\}\n$$\nThese groups are sometimes called the\n{\\it decomposition group} and the {\\it inertia group}\nespecially when $A$ is a discrete valuation ring.\n\n\\begin{lemma}\n\\label{lemma-identify-inertia}\nIn the situation described above, via the isomorphism\n$\\pi_1(U) = \\text{Gal}(K^{sep}/K)$ the diagram\n(\\ref{equation-inertia-diagram-pione})\ntranslates into the diagram\n$$\n\\xymatrix{\nI \\ar[r] \\ar[rd]_1 & D \\ar[d] \\ar[r] & \\text{Gal}(K^{sep}/K) \\ar[d] \\\\\n& \\text{Gal}(\\kappa(\\mathfrak m^{sh})/\\kappa) \\ar[r] & \\text{Gal}(M/K)\n}\n$$\nwhere $K^{sep}/M/K$ is the maximal subextension unramified\nwith respect to $A$. Moreover, the vertical arrows are surjective,\nthe kernel of the left vertical arrow is $I$ and the kernel of the\nright vertical arrow is\nthe smallest closed normal subgroup of $\\text{Gal}(K^{sep}/K)$\ncontaining $I$.\n\\end{lemma}\n\n\\begin{proof}\nBy construction the group $D$ acts on $(A^{sep})_{\\mathfrak m^{sep}}$\nover $A$. By the uniqueness of $A^{sh} \\to (A^{sep})_{\\mathfrak m^{sep}}$\ngiven the map on residue fields\n(Algebra, Lemma \\ref{algebra-lemma-strictly-henselian-functorial})\nwe see that the image of $A^{sh} \\to (A^{sep})_{\\mathfrak m^{sep}}$\nis contained in $((A^{sep})_{\\mathfrak m^{sep}})^I$.\nOn the other hand,\nLemma \\ref{lemma-inertial-invariants-unramified}\nshows that $((A^{sep})_{\\mathfrak m^{sep}})^I$\nis a filtered colimit of \\'etale extensions of $A$.\nSince $A^{sh}$ is the maximal such extension, we conclude\nthat $A^{sh} = ((A^{sep})_{\\mathfrak m^{sep}})^I$.\nHence $K^{sh} = (K^{sep})^I$.\n\n\\medskip\\noindent\nRecall that $I$ is the kernel of a surjective map\n$D \\to \\text{Aut}(\\kappa(\\mathfrak m^{sep})/\\kappa)$, see\nMore on Algebra, Lemma \\ref{more-algebra-lemma-one-orbit-geometric-galois}.\nWe have $\\text{Aut}(\\kappa(\\mathfrak m^{sep})/\\kappa) =\n\\text{Gal}(\\kappa(\\mathfrak m^{sh})/\\kappa)$\nas we have seen above that these fields are the algebraic\nand separable algebraic closures of $\\kappa$.\nOn the other hand, any automorphism of $A^{sh}$ over $A$\nis an automorphism of $A^{sh}$ over $A^h$ by the uniqueness\nin Algebra, Lemma \\ref{algebra-lemma-henselian-functorial}.\nFurthermore, $A^{sh}$ is the colimit of finite \\'etale\nextensions $A^h \\subset A'$ which correspond $1$-to-$1$\nwith finite separable extension $\\kappa'/\\kappa$, see\nAlgebra, Remark \\ref{algebra-remark-construct-sh-from-h}.\nThus\n$$\n\\text{Aut}(A^{sh}/A) = \\text{Aut}(A^{sh}/A^h) =\n\\text{Gal}(\\kappa(\\mathfrak m^{sh})/\\kappa)\n$$\nLet $\\kappa \\subset \\kappa'$ be a finite Galois extension with\nGalois group $G$. Let $A^h \\subset A'$ be the finite \\'etale extension\ncorresponding to $\\kappa \\subset \\kappa'$ by\nAlgebra, Lemma \\ref{algebra-lemma-henselian-cat-finite-etale}.\nThen it follows that\n$(A')^G = A^h$ by looking at fraction fields and degrees\n(small detail omitted). Taking the colimit we conclude that\n$(A^{sh})^{\\text{Gal}(\\kappa(\\mathfrak m^{sh})/\\kappa)} = A^h$.\nCombining all of the above, we find $A^h = ((A^{sep})_{\\mathfrak m^{sep}})^D$.\nHence $K^h = (K^{sep})^D$.\n\n\\medskip\\noindent\nSince $U$, $U^h$, $U^{sh}$ are the spectra of the fields\n$K$, $K^h$, $K^{sh}$ we see that the top lines of the diagrams\ncorrespond via\nLemma \\ref{lemma-fundamental-group-Galois-group}.\nBy Lemma \\ref{lemma-gabber} we have\n$\\pi_1(X^h) = \\text{Gal}(\\kappa(\\mathfrak m^{sh})/\\kappa)$.\nThe exactness of the sequence\n$1 \\to I \\to D \\to \\text{Gal}(\\kappa(\\mathfrak m^{sh})/\\kappa) \\to 1$\nwas pointed out above.\nBy Proposition \\ref{proposition-normal}\nwe see that $\\pi_1(X) = \\text{Gal}(M/K)$.\nFinally, the statement on the kernel of\n$\\text{Gal}(K^{sep}/K) \\to \\text{Gal}(M/K) = \\pi_1(X)$\nfollows from Lemma \\ref{lemma-local-exact-sequence-normal}.\nThis finishes the proof.\n\\end{proof}\n\n\\noindent\nLet $X$ be a normal integral scheme with function field $K$.\nLet $K^{sep}$ be a separable algebraic closure of $K$.\nLet $X^{sep} \\to X$ be the normalization of $X$ in $K^{sep}$.\nSince $G = \\text{Gal}(K^{sep}/K)$ acts on $K^{sep}$\nwe obtain a right action of $G$ on $X^{sep}$.\nFor $y \\in X^{sep}$ define\n$$\nD_y = \\{\\sigma \\in G \\mid \\sigma(y) = y\\} \\supset\nI_y = \\{\\sigma \\in D \\mid \\sigma \\bmod \\mathfrak m_y =\n\\text{id}_{\\kappa(y)} \\}\n$$\nsimilarly to the above. On the other hand, for $x \\in X$\nlet $\\mathcal{O}_{X, x}^{sh}$ be a strict henselization,\nlet $K_x^{sh}$ be the fraction field of $\\mathcal{O}_{X, x}^{sh}$\nand choose a $K$-embedding $K_x^{sh} \\to K^{sep}$.\n\n\\begin{lemma}\n\\label{lemma-normal-pione-quotient-inertia}\nLet $X$ be a normal integral scheme with function field $K$.\nWith notation as above, the following three subgroups of\n$\\text{Gal}(K^{sep}/K) = \\pi_1(\\Spec(K))$\nare equal\n\\begin{enumerate}\n\\item the kernel of the surjection\n$\\text{Gal}(K^{sep}/K) \\longrightarrow \\pi_1(X)$,\n\\item the smallest normal closed subgroup containing $I_y$\nfor all $y \\in X^{sep}$, and\n\\item the smallest normal closed subgroup containing\n$\\text{Gal}(K^{sep}/K_x^{sh})$ for all $x \\in X$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe equivalence of (2) and (3) follows from\nLemma \\ref{lemma-identify-inertia}\nwhich tells us that $I_y$ is conjugate to $\\text{Gal}(K^{sep}/K_x^{sh})$\nif $y$ lies over $x$. By Lemma \\ref{lemma-local-exact-sequence-normal}\nwe see that $\\text{Gal}(K^{sep}/K_x^{sh})$ maps trivially to\n$\\pi_1(\\Spec(\\mathcal{O}_{X, x}))$ and therefore the subgroup\n$N \\subset G = \\text{Gal}(K^{sep}/K)$\nof (2) and (3) is contained in the kernel of\n$G \\longrightarrow \\pi_1(X)$.\n\n\\medskip\\noindent\nTo prove the other inclusion, since $N$ is normal, it suffices to prove:\ngiven $N \\subset U \\subset G$ with $U$ open normal,\nthe quotient map $G \\to G/U$ factors through $\\pi_1(X)$.\nIn other words, if $L/K$ is the Galois extension corresponding\nto $U$, then we have to show that $X$ is unramified in $L$\n(Section \\ref{section-normal}, especially\nProposition \\ref{proposition-normal}).\nIt suffices to do this when $X$ is affine (we do this\nso we can refer to algebra results in the rest of the proof).\nLet $Y \\to X$ be the normalization of $X$ in $L$.\nThe inclusion $L \\subset K^{sep}$ induces a morphism\n$\\pi : X^{sep} \\to Y$. For $y \\in X^{sep}$\nthe inertia group of $\\pi(y)$ in $\\text{Gal}(L/K)$\nis the image of $I_y$ in $\\text{Gal}(L/K)$; this follows\nfrom More on Algebra, Lemma\n\\ref{more-algebra-lemma-one-orbit-geometric-galois-compare}.\nSince $N \\subset U$ all these inertia groups are trivial.\nWe conclude that $Y \\to X$ is \\'etale by applying\nLemma \\ref{lemma-inertia-invariants-etale}.\n(Alternative: you can use Lemma \\ref{lemma-local-exact-sequence-normal}\nto see that the pullback of $Y$ to $\\Spec(\\mathcal{O}_{X, x})$ is\n\\'etale for all $x \\in X$ and then conclude from there\nwith a bit more work.)\n\\end{proof}\n\n\\begin{example}\n\\label{example-bigger-codim}\nLet $X$ be a normal integral Noetherian scheme with function field $K$.\nPurity of branch locus (see below) tells us that if $X$ is regular, then\nit suffices in Lemma \\ref{lemma-normal-pione-quotient-inertia}\nto consider the inertia groups $I = \\pi_1(\\Spec(K_x^{sh}))$\nfor points $x$ of codimension $1$ in $X$.\nIn general this is not enough however. Namely, let\n$Y = \\mathbf{A}_k^n = \\Spec(k[t_1, \\ldots, t_n])$\nwhere $k$ is a field not of characteristic $2$.\nLet $G = \\{\\pm 1\\}$ be the group of order $2$ acting on $Y$\nby multiplication on the coordinates. Set\n$$\nX = \\Spec(k[t_it_j, i, j \\in \\{1, \\ldots, n\\}])\n$$\nThe embedding $k[t_it_j] \\subset k[t_1, \\ldots, t_n]$\ndefines a degree $2$ morphism $Y \\to X$ which is unramified everywhere\nexcept over the maximal ideal $\\mathfrak m = (t_it_j)$\nwhich is a point of codimension $n$ in $X$.\n\\end{example}\n\n\\begin{lemma}\n\\label{lemma-unramified}\nLet $X$ be an integral normal scheme with function field $K$.\nLet $L/K$ be a finite extension. Let $Y \\to X$ be the normalization\nof $X$ in $L$. The following are equivalent\n\\begin{enumerate}\n\\item $X$ is unramified in $L$ as defined in Section \\ref{section-normal},\n\\item $Y \\to X$ is an unramified morphism of schemes,\n\\item $Y \\to X$ is an \\'etale morphism of schemes,\n\\item $Y \\to X$ is a finite \\'etale morphism of schemes,\n\\item for $x \\in X$ the projection\n$Y \\times_X \\Spec(\\mathcal{O}_{X, x}) \\to \\Spec(\\mathcal{O}_{X, x})$\nis unramified,\n\\item same as in (5) but with $\\mathcal{O}_{X, x}^h$,\n\\item same as in (5) but with $\\mathcal{O}_{X, x}^{sh}$,\n\\item for $x \\in X$ the scheme theoretic fibre $Y_x$\nis \\'etale over $x$ of degree $\\geq [L : K]$.\n\\end{enumerate}\nIf $L/K$ is Galois with Galois group $G$, then these are also\nequivalent to\n\\begin{enumerate}\n\\item[(9)] for $y \\in Y$ the group\n$I_y = \\{g \\in G \\mid g(y) = y\\text{ and }\ng \\bmod \\mathfrak m_y = \\text{id}_{\\kappa(y)}\\}$ is trivial.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe equivalence of (1) and (2) is the definition of (1).\nThe equivalence of (2), (3), and (4) is Lemma \\ref{lemma-unramified-in-L}.\nIt is straightforward to prove that (4) $\\Rightarrow$ (5),\n(5) $\\Rightarrow$ (6), (6) $\\Rightarrow$ (7).\n\n\\medskip\\noindent\nAssume (7). Observe that $\\mathcal{O}_{X, x}^{sh}$ is a normal local domain\n(More on Algebra, Lemma \\ref{more-algebra-lemma-henselization-normal}).\nLet $L^{sh} = L \\otimes_K K_x^{sh}$ where $K_x^{sh}$ is the fraction field\nof $\\mathcal{O}_{X, x}^{sh}$. Then $L^{sh} = \\prod_{i = 1, \\ldots, n} L_i$\nwith $L_i/K_x^{sh}$ finite separable. By\nAlgebra, Lemma \\ref{algebra-lemma-integral-closure-commutes-smooth}\n(and a limit argument we omit)\nwe see that $Y \\times_X \\Spec(\\mathcal{O}_{X, x}^{sh})$\nis the integral closure of $\\Spec(\\mathcal{O}_{X, x}^{sh})$ in $L^{sh}$.\nHence by Lemma \\ref{lemma-unramified-in-L} (applied to the factors\n$L_i$ of $L^{sh}$) we see that\n$Y \\times_X \\Spec(\\mathcal{O}_{X, x}^{sh}) \\to \\Spec(\\mathcal{O}_{X, x}^{sh})$\nis finite \\'etale. Looking at the generic point we see that\nthe degree is equal to $[L : K]$ and hence we see that (8) is true.\n\n\\medskip\\noindent\nAssume (8). Assume that $x \\in X$ and that the scheme theoretic fibre $Y_x$\nis \\'etale over $x$ of degree $\\geq [L : K]$. Observe that this means\nthat $Y$ has $\\geq [L : K]$ geometric points lying over $x$.\nWe will show that $Y \\to X$ is finite \\'etale over a neighbourhood of $x$.\nThis will prove (1) holds.\nTo prove this we may assume $X = \\Spec(R)$, the point $x$ corresponds to\nthe prime $\\mathfrak p \\subset R$, and $Y = \\Spec(S)$. We apply\nMore on Morphisms,\nLemma \\ref{more-morphisms-lemma-etale-makes-integral-split} and we find an\n\\'etale neighbourhood $(U, u) \\to (X, x)$ such that\n$Y \\times_X U = V_1 \\amalg \\ldots \\amalg V_m$ such that $V_i$\nhas a unique point $v_i$ lying over $u$ with $\\kappa(v_i)/\\kappa(u)$\npurely inseparable. Shrinking $U$ if necessary we may assume $U$ is\na normal integral scheme with generic point $\\xi$ (use\nDescent, Lemmas \\ref{descent-lemma-locally-finite-nr-irred-local-fppf} and\n\\ref{descent-lemma-normal-local-smooth} and\nProperties, Lemma \\ref{properties-lemma-normal-locally-finite-nr-irreducibles}).\nBy our remark on geometric points we see that $m \\geq [L : K]$.\nOn the other hand, by More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-normalization-smooth-localization}\nwe see that $\\coprod V_i \\to U$ is the normalization of $U$ in\n$\\Spec(L) \\times_X U$. As $K \\subset \\kappa(\\xi)$ is finite separable,\nwe can write $\\Spec(L) \\times_X U = \\Spec(\\prod_{i = 1, \\ldots, n} L_i)$\nwith $L_i/\\kappa(\\xi)$ finite and $[L : K] = \\sum [L_i : \\kappa(\\xi)]$.\nSince $V_j$ is nonempty for each $j$ and $m \\geq [L : K]$\nwe conclude that $m = n$ and $[L_i : \\kappa(\\xi)] = 1$\nfor all $i$. Then $V_j \\to U$ is an isomorphism in particular\n\\'etale, hence $Y \\times_X U \\to U$ is \\'etale. By\nDescent, Lemma \\ref{descent-lemma-descending-property-etale}\nwe conclude that $Y \\to X$ is \\'etale over the\nimage of $U \\to X$ (an open neighbourhood of $x$).\n\n\\medskip\\noindent\nAssume $L/K$ is Galois and (9) holds. Then $Y \\to X$ is \\'etale\nby Lemma \\ref{lemma-inertial-invariants-unramified}.\nWe omit the proof that (1) implies (9).\n\\end{proof}\n\n\\noindent\nIn the case of infinite Galois extensions of discrete valuation rings\nwe can say a tiny bit more. To do so we introduce the following notation.\nA subset $S \\subset \\mathbf{N}$ of integers is {\\it multiplicativity directed}\nif $1 \\in S$ and for $n, m \\in S$ there exists $k \\in S$ with\n$n | k$ and $m | k$. Define a partial ordering on $S$ by the rule\n$n \\geq_S m$ if and only if $m | n$. Given a field $\\kappa$ we obtain\nan inverse system of finite groups $\\{\\mu_n(\\kappa)\\}_{n \\in S}$\nwith transition maps\n$$\n\\mu_n(\\kappa) \\longrightarrow \\mu_m(\\kappa),\\quad\n\\zeta \\longmapsto \\zeta^{n/m}\n$$\nfor $n \\geq_S m$. Then we can form the profinite group\n$$\n\\lim_{n \\in S} \\mu_n(\\kappa)\n$$\nObserve that the limit is cofiltered (as $S$ is directed).\nThe construction is functorial in $\\kappa$. In particular\n$\\text{Aut}(\\kappa)$ acts on this profinite group.\nFor example, if $S = \\{1, n\\}$, then this gives $\\mu_n(\\kappa)$.\nIf $S = \\{1, \\ell, \\ell^2, \\ell^3, \\ldots\\}$ for some prime\n$\\ell$ different from the characteristic of $\\kappa$ this produces\n$\\lim_n \\mu_{\\ell^n}(\\kappa)$\nwhich is sometimes called the $\\ell$-adic Tate module of the multiplicative\ngroup of $\\kappa$ (compare with\nMore on Algebra, Example\n\\ref{more-algebra-example-spectral-sequence-principal}).\n\n\\begin{lemma}\n\\label{lemma-structure-decomposition}\nLet $A$ be a discrete valuation ring with fraction field $K$.\nLet $L/K$ be a (possibly infinite) Galois extension.\nLet $B$ be the integral closure of $A$ in $L$.\nLet $\\mathfrak m$ be a maximal ideal of $B$.\nLet $G = \\text{Gal}(L/K)$,\n$D = \\{\\sigma \\in G \\mid \\sigma(\\mathfrak m) = \\mathfrak m\\}$, and\n$I = \\{\\sigma \\in D \\mid \\sigma \\bmod \\mathfrak m =\n\\text{id}_{\\kappa(\\mathfrak m)}\\}$.\nThe decomposition group $D$ fits into a canonical exact sequence\n$$\n1 \\to I \\to D \\to \\text{Aut}(\\kappa(\\mathfrak m)/\\kappa_A) \\to 1\n$$\nThe inertia group $I$ fits into a canonical exact sequence\n$$\n1 \\to P \\to I \\to I_t \\to 1\n$$\nsuch that\n\\begin{enumerate}\n\\item $P$ is a normal subgroup of $D$,\n\\item $P$ is a pro-p-group if the characteristic of\n$\\kappa_A$ is $p > 1$ and $P = \\{1\\}$ if the characteristic of $\\kappa_A$\nis zero,\n\\item there is a multiplicatively directed $S \\subset \\mathbf{N}$\nsuch that $\\kappa(\\mathfrak m)$ contains a primitive $n$th root of unity\nfor each $n \\in S$ (elements of $S$ are prime to $p$),\n\\item there exists a canonical surjective map\n$$\n\\theta_{can} : I \\to \\lim_{n \\in S} \\mu_n(\\kappa(\\mathfrak m))\n$$\nwhose kernel is $P$, which satisfies\n$\\theta_{can}(\\tau \\sigma \\tau^{-1}) = \\tau(\\theta_{can}(\\sigma))$\nfor $\\tau \\in D$, $\\sigma \\in I$, and which induces an isomorphism\n$I_t \\to \\lim_{n \\in S} \\mu_n(\\kappa(\\mathfrak m))$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThis is mostly a reformulation of the results on finite Galois extensions\nproved in More on Algebra, Section \\ref{more-algebra-section-ramification}.\nThe surjectivity of the map $D \\to \\text{Aut}(\\kappa(\\mathfrak m)/\\kappa)$ is\nMore on Algebra, Lemma \\ref{more-algebra-lemma-one-orbit-geometric-galois}.\nThis gives the first exact sequence.\n\n\\medskip\\noindent\nTo construct the second short exact sequence let $\\Lambda$ be the set\nof finite Galois subextensions, i.e., $\\lambda \\in \\Lambda$ corresponds\nto $L/L_\\lambda/K$. Set $G_\\lambda = \\text{Gal}(L_\\lambda/K)$.\nRecall that $G_\\lambda$ is an inverse system of finite groups with surjective\ntransition maps and that $G = \\lim_{\\lambda \\in \\Lambda} G_\\lambda$, see\nFields, Lemma \\ref{fields-lemma-infinite-galois-limit}.\nWe let $B_\\lambda$ be the integral closure of $A$ in $L_\\lambda$.\nThen we set $\\mathfrak m_\\lambda = \\mathfrak m \\cap B_\\lambda$\nand we denote $P_\\lambda, I_\\lambda, D_\\lambda$ the\nwild inertia, inertia, and decomposition group of\n$\\mathfrak m_\\lambda$, see More on Algebra, Lemma\n\\ref{more-algebra-lemma-galois-inertia}.\nFor $\\lambda \\geq \\lambda'$ the restriction defines\na commutative diagram\n$$\n\\xymatrix{\nP_\\lambda \\ar[d] \\ar[r] &\nI_\\lambda \\ar[d] \\ar[r] &\nD_\\lambda \\ar[d] \\ar[r] &\nG_\\lambda \\ar[d] \\\\\nP_{\\lambda'} \\ar[r] &\nI_{\\lambda'} \\ar[r] &\nD_{\\lambda'} \\ar[r] &\nG_{\\lambda'}\n}\n$$\nwith surjective vertical maps, see\nMore on Algebra, Lemma \\ref{more-algebra-lemma-compare-inertia}.\n\n\\medskip\\noindent\nFrom the definitions it follows immediately\nthat $I = \\lim I_\\lambda$ and $D = \\lim D_\\lambda$\nunder the isomorphism $G = \\lim G_\\lambda$ above.\nSince $L = \\colim L_\\lambda$ we have $B = \\colim B_\\lambda$\nand $\\kappa(\\mathfrak m) = \\colim \\kappa(\\mathfrak m_\\lambda)$.\nSince the transition maps of the system $D_\\lambda$\nare compatible with the maps\n$D_\\lambda \\to \\text{Aut}(\\kappa(\\mathfrak m_\\lambda)/\\kappa)$\n(see More on Algebra, Lemma \\ref{more-algebra-lemma-compare-inertia})\nwe see that the map $D \\to \\text{Aut}(\\kappa(\\mathfrak m)/\\kappa)$\nis the limit of the maps\n$D_\\lambda \\to \\text{Aut}(\\kappa(\\mathfrak m_\\lambda)/\\kappa)$.\n\n\\medskip\\noindent\nThere exist canonical maps\n$$\n\\theta_{\\lambda, can} :\nI_\\lambda\n\\longrightarrow\n\\mu_{n_\\lambda}(\\kappa(\\mathfrak m_\\lambda))\n$$\nwhere $n_\\lambda = |I_\\lambda|/|P_\\lambda|$, where\n$\\mu_{n_\\lambda}(\\kappa(\\mathfrak m_\\lambda))$ has\norder $n_\\lambda$, such that\n$\\theta_{\\lambda, can}(\\tau \\sigma \\tau^{-1}) =\n\\tau(\\theta_{\\lambda, can}(\\sigma))$ for\n$\\tau \\in D_\\lambda$ and $\\sigma \\in I_\\lambda$, and such that\nwe get commutative diagrams\n$$\n\\xymatrix{\nI_\\lambda \\ar[r]_-{\\theta_{\\lambda, can}} \\ar[d] &\n\\mu_{n_\\lambda}(\\kappa(\\mathfrak m_\\lambda))\n\\ar[d]^{(-)^{n_\\lambda/n_{\\lambda'}}} \\\\\nI_{\\lambda'} \\ar[r]^-{\\theta_{\\lambda', can}} &\n\\mu_{n_{\\lambda'}}(\\kappa(\\mathfrak m_{\\lambda'}))\n}\n$$\nsee\nMore on Algebra, Remark \\ref{more-algebra-remark-canonical-inertia-character}.\n\n\\medskip\\noindent\nLet $S \\subset \\mathbf{N}$ be the collection of integers $n_\\lambda$.\nSince $\\Lambda$ is directed, we see that $S$ is multiplicatively directed.\nBy the displayed commutative diagrams above we can take the limits of\nthe maps $\\theta_{\\lambda, can}$ to obtain\n$$\n\\theta_{can} : I \\to \\lim_{n \\in S} \\mu_n(\\kappa(\\mathfrak m)).\n$$\nThis map is continuous (small detail omitted). Since the transition maps\nof the system of $I_\\lambda$ are surjective\nand $\\Lambda$ is directed, the projections $I \\to I_\\lambda$\nare surjective. For every $\\lambda$ the diagram\n$$\n\\xymatrix{\nI \\ar[d] \\ar[r]_-{\\theta_{can}} &\n\\lim_{n \\in S} \\mu_n(\\kappa(\\mathfrak m)) \\ar[d] \\\\\nI_{\\lambda} \\ar[r]^-{\\theta_{\\lambda, can}} &\n\\mu_{n_\\lambda}(\\kappa(\\mathfrak m_\\lambda))\n}\n$$\ncommutes. Hence the image of $\\theta_{can}$ surjects onto the finite group\n$\\mu_{n_\\lambda}(\\kappa(\\mathfrak m)) =\n\\mu_{n_\\lambda}(\\kappa(\\mathfrak m_\\lambda))$ of order $n_\\lambda$\n(see above). It follows that the image of $\\theta_{can}$ is dense.\nOn the other hand $\\theta_{can}$ is continuous and the\nsource is a profinite group. Hence $\\theta_{can}$ is surjective\nby a topological argument.\n\n\\medskip\\noindent\nThe property $\\theta_{can}(\\tau \\sigma \\tau^{-1}) = \\tau(\\theta_{can}(\\sigma))$\nfor $\\tau \\in D$, $\\sigma \\in I$ follows from the corresponding properties\nof the maps $\\theta_{\\lambda, can}$ and the compatibility of the map\n$D \\to \\text{Aut}(\\kappa(\\mathfrak m))$ with the maps\n$D_\\lambda \\to \\text{Aut}(\\kappa(\\mathfrak m_\\lambda))$.\nSetting $P = \\Ker(\\theta_{can})$ this implies\nthat $P$ is a normal subgroup of $D$. Setting $I_t = I/P$\nwe obtain the isomorphism $I_t \\to \\lim_{n \\in S} \\mu_n(\\kappa(\\mathfrak m))$\nfrom the surjectivity of $\\theta_{can}$.\n\n\\medskip\\noindent\nTo finish the proof we show that $P = \\lim P_\\lambda$ which proves\nthat $P$ is a pro-p-group. Recall that the tame inertia group\n$I_{\\lambda, t} = I_\\lambda/P_\\lambda$ has order $n_\\lambda$.\nSince the transition maps $P_\\lambda \\to P_{\\lambda'}$ are surjective\nand $\\Lambda$ is directed, we obtain a short exact sequence\n$$\n1 \\to \\lim P_\\lambda \\to I \\to \\lim I_{\\lambda, t} \\to 1\n$$\n(details omitted). Since for each $\\lambda$ the map $\\theta_{\\lambda, can}$\ninduces an isomorphism\n$I_{\\lambda, t} \\cong \\mu_{n_\\lambda}(\\kappa(\\mathfrak m))$\nthe desired result follows.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-structure-decomposition-separable-closure}\nLet $A$ be a discrete valuation ring with fraction field $K$.\nLet $K^{sep}$ be a separable closure of $K$.\nLet $A^{sep}$ be the integral closure of $A$ in $K^{sep}$.\nLet $\\mathfrak m^{sep}$ be a maximal ideal of $A^{sep}$.\nLet $\\mathfrak m = \\mathfrak m^{sep} \\cap A$, let\n$\\kappa = A/\\mathfrak m$, and let\n$\\overline{\\kappa} = A^{sep}/\\mathfrak m^{sep}$.\nThen $\\overline{\\kappa}$ is an algebraic closure of $\\kappa$.\nLet $G = \\text{Gal}(K^{sep}/K)$,\n$D = \\{\\sigma \\in G \\mid \\sigma(\\mathfrak m^{sep}) = \\mathfrak m^{sep}\\}$, and\n$I = \\{\\sigma \\in D \\mid \\sigma \\bmod \\mathfrak m^{sep} =\n\\text{id}_{\\kappa(\\mathfrak m^{sep})}\\}$.\nThe decomposition group $D$ fits into a canonical exact sequence\n$$\n1 \\to I \\to D \\to \\text{Gal}(\\kappa^{sep}/\\kappa) \\to 1\n$$\nwhere $\\kappa^{sep} \\subset \\overline{\\kappa}$ is the separable\nclosure of $\\kappa$.\nThe inertia group $I$ fits into a canonical exact sequence\n$$\n1 \\to P \\to I \\to I_t \\to 1\n$$\nsuch that\n\\begin{enumerate}\n\\item $P$ is a normal subgroup of $D$,\n\\item $P$ is a pro-p-group if the characteristic of\n$\\kappa_A$ is $p > 1$ and $P = \\{1\\}$ if the characteristic of $\\kappa_A$\nis zero,\n\\item there exists a canonical surjective map\n$$\n\\theta_{can} : I \\to \\lim_{n\\text{ prime to }p} \\mu_n(\\kappa^{sep})\n$$\nwhose kernel is $P$, which satisfies\n$\\theta_{can}(\\tau \\sigma \\tau^{-1}) = \\tau(\\theta_{can}(\\sigma))$\nfor $\\tau \\in D$, $\\sigma \\in I$, and which induces an isomorphism\n$I_t \\to \\lim_{n\\text{ prime to }p} \\mu_n(\\kappa^{sep})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe field $\\overline{\\kappa}$ is the algebraic closure of $\\kappa$ by\nLemma \\ref{lemma-get-algebraic-closure}.\nMost of the statements immediately follow from the corresponding\nparts of Lemma \\ref{lemma-structure-decomposition}. For example because\n$\\text{Aut}(\\overline{\\kappa}/\\kappa) = \\text{Gal}(\\kappa^{sep}/\\kappa)$\nwe obtain the first sequence.\nThen the only other assertion that needs a proof is the fact that\nwith $S$ as in Lemma \\ref{lemma-structure-decomposition} the\nlimit $\\lim_{n \\in S} \\mu_n(\\overline{\\kappa})$ is equal to\n$\\lim_{n\\text{ prime to }p} \\mu_n(\\kappa^{sep})$. To see this\nit suffices to show that every integer $n$ prime to $p$\ndivides an element of $S$.\nLet $\\pi \\in A$ be a uniformizer and consider the splitting\nfield $L$ of the polynomial $X^n - \\pi$. Since the polynomial\nis separable we see that $L$ is a finite Galois extension of $K$.\nChoose an embedding $L \\to K^{sep}$.\nObserve that if $B$ is the integral closure of $A$ in $L$,\nthen the ramification index of $A \\to B_{\\mathfrak m^{sep} \\cap B}$\nis divisible by $n$ (because $\\pi$ has an $n$th root in $B$; in fact\nthe ramification index equals $n$ but we do not need this).\nThen it follows from the construction of the $S$ in the proof of\nLemma \\ref{lemma-structure-decomposition}\nthat $n$ divides an element of $S$.\n\\end{proof}\n\n\n\n\n\n\n\n\n\\section{Geometric and arithmetic fundamental groups}\n\\label{section-galois-action}\n\n\\noindent\nIn this section we work out what happens when comparing the\nfundamental group of a scheme $X$ over a field $k$ with the\nfundamental group of $X_{\\overline{k}}$ where $\\overline{k}$\nis the algebraic closure of $k$.\n\n\\begin{lemma}\n\\label{lemma-limit}\nLet $I$ be a directed set. Let $X_i$ be an\ninverse system of quasi-compact and quasi-separated schemes\nover $I$ with affine transition morphisms.\nLet $X = \\lim X_i$ as in Limits, Section \\ref{limits-section-limits}.\nThen there is an equivalence of categories\n$$\n\\colim \\textit{F\\'Et}_{X_i} = \\textit{F\\'Et}_X\n$$\nIf $X_i$ is connected for all sufficiently large $i$ and $\\overline{x}$\nis a geometric point of $X$, then\n$$\n\\pi_1(X, \\overline{x}) = \\lim \\pi_1(X_i, \\overline{x})\n$$\n\\end{lemma}\n\n\\begin{proof}\nThe equivalence of categories follows from Limits, Lemmas\n\\ref{limits-lemma-descend-finite-presentation},\n\\ref{limits-lemma-descend-finite-finite-presentation}, and\n\\ref{limits-lemma-descend-etale}.\nThe second statement is formal given the statement on\ncategories.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-perfection}\nLet $k$ be a field with perfection $k^{perf}$. Let $X$ be a connected scheme\nover $k$. Then $X_{k^{perf}}$ is connected and\n$\\pi_1(X_{k^{perf}}) \\to \\pi_1(X)$ is an isomorphism.\n\\end{lemma}\n\n\\begin{proof}\nSpecial case of topological invariance of the fundamental group.\nSee Proposition \\ref{proposition-universal-homeomorphism}.\nTo see that $\\Spec(k^{perf}) \\to \\Spec(k)$ is a universal\nhomeomorphism you can use\nAlgebra, Lemma \\ref{algebra-lemma-radicial-integral-bijective}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-ses-field}\nLet $k$ be a field with algebraic closure $\\overline{k}$.\nLet $X$ be a quasi-compact and quasi-separated scheme over $k$.\nIf the base change $X_{\\overline{k}}$ is connected, then\nthere is a short exact sequence\n$$\n1 \\to \\pi_1(X_{\\overline{k}}) \\to \\pi_1(X) \\to \\pi_1(\\Spec(k)) \\to 1\n$$\nof profinite topological groups.\n\\end{lemma}\n\n\\begin{proof}\nConnected objects of $\\textit{F\\'Et}_{\\Spec(k)}$ are of the form\n$\\Spec(k') \\to \\Spec(k)$ with $k'/k$ a finite separable extension.\nThen $X_{\\Spec{k'}}$ is connected, as the morphism\n$X_{\\overline{k}} \\to X_{\\Spec(k')}$ is surjective and\n$X_{\\overline{k}}$ is connected by assumption. Thus\n$\\pi_1(X) \\to \\pi_1(\\Spec(k))$ is surjective by\nLemma \\ref{lemma-functoriality-galois-surjective}.\n\n\\medskip\\noindent\nBefore we go on, note that we may assume that $k$ is a perfect field.\nNamely, we have $\\pi_1(X_{k^{perf}}) = \\pi_1(X)$ and\n$\\pi_1(\\Spec(k^{perf})) = \\pi_1(\\Spec(k))$ by Lemma \\ref{lemma-perfection}.\n\n\\medskip\\noindent\nIt is clear that the composition of the functors\n$\\textit{F\\'Et}_{\\Spec(k)} \\to \\textit{F\\'Et}_X \\to\n\\textit{F\\'Et}_{X_{\\overline{k}}}$ sends objects to disjoint unions\nof copies of $X_{\\Spec(\\overline{k})}$. Therefore the composition\n$\\pi_1(X_{\\overline{k}}) \\to \\pi_1(X) \\to \\pi_1(\\Spec(k))$\nis the trivial homomorphism by Lemma \\ref{lemma-composition-trivial}.\n\n\\medskip\\noindent\nLet $U \\to X$ be a finite \\'etale morphism with $U$ connected.\nObserve that $U \\times_X X_{\\overline{k}} = U_{\\overline{k}}$.\nSuppose that $U_{\\overline{k}} \\to X_{\\overline{k}}$\nhas a section $s : X_{\\overline{k}} \\to U_{\\overline{k}}$.\nThen $s(X_{\\overline{k}})$ is an open connected component of\n$U_{\\overline{k}}$. For $\\sigma \\in \\text{Gal}(\\overline{k}/k)$\ndenote $s^\\sigma$ the base change of $s$ by $\\Spec(\\sigma)$.\nSince $U_{\\overline{k}} \\to X_{\\overline{k}}$ is finite \\'etale\nit has only a finite number of sections. Thus\n$$\n\\overline{T} = \\bigcup s^\\sigma(X_{\\overline{k}})\n$$\nis a finite union and we see that $\\overline{T}$ is a\n$\\text{Gal}(\\overline{k}/k)$-stable open and closed subset.\nBy Varieties, Lemma \\ref{varieties-lemma-closed-fixed-by-Galois}\nwe see that $\\overline{T}$ is the inverse image of a closed\nsubset $T \\subset U$. Since $U_{\\overline{k}} \\to U$ is open\n(Morphisms, Lemma \\ref{morphisms-lemma-scheme-over-field-universally-open})\nwe conclude that $T$ is open as well. As $U$ is connected we\nsee that $T = U$. Hence $U_{\\overline{k}}$ is a (finite) disjoint\nunion of copies of $X_{\\overline{k}}$. By\nLemma \\ref{lemma-functoriality-galois-normal} we conclude that the image of\n$\\pi_1(X_{\\overline{k}}) \\to \\pi_1(X)$ is normal.\n\n\\medskip\\noindent\nLet $V \\to X_{\\overline{k}}$ be a finite \\'etale cover. Recall that\n$\\overline{k}$ is the union of finite separable extensions of $k$.\nBy Lemma \\ref{lemma-limit} we find a finite separable extension $k'/k$\nand a finite \\'etale morphism $U \\to X_{k'}$ such that\n$V = X_{\\overline{k}} \\times_{X_{k'}} U =\nU \\times_{\\Spec(k')} \\Spec(\\overline{k})$.\nThen the composition $U \\to X_{k'} \\to X$ is finite \\'etale\nand $U \\times_{\\Spec(k)} \\Spec(\\overline{k})$\ncontains $V = U \\times_{\\Spec(k')} \\Spec(\\overline{k})$\nas an open and closed subscheme. (Because $\\Spec(\\overline{k})$\nis an open and closed subscheme of\n$\\Spec(k') \\times_{\\Spec(k)} \\Spec(\\overline{k})$ via\nthe multiplication map $k' \\otimes_k \\overline{k} \\to \\overline{k}$.) By\nLemma \\ref{lemma-functoriality-galois-injective}\nwe conclude that $\\pi_1(X_{\\overline{k}}) \\to \\pi_1(X)$ is injective.\n\n\\medskip\\noindent\nFinally, we have to show that for any finite \\'etale morphism\n$U \\to X$ such that $U_{\\overline{k}}$ is a disjoint union\nof copies of $X_{\\overline{k}}$ there is a finite \\'etale\nmorphism $V \\to \\Spec(k)$ and a surjection $V \\times_{\\Spec(k)} X \\to U$.\nSee Lemma \\ref{lemma-functoriality-galois-ses}.\nArguing as above using Lemma \\ref{lemma-limit}\nwe find a finite separable extension $k'/k$\nsuch that there is an isomorphism\n$U_{k'} \\cong \\coprod_{i = 1, \\ldots, n} X_{k'}$.\nThus setting $V = \\coprod_{i = 1, \\ldots, n} \\Spec(k')$\nwe conclude.\n\\end{proof}\n\n\n\n\n\n\n\\section{Homotopy exact sequence}\n\\label{section-homotopy-exact-sequence}\n\n\\noindent\nIn this section we discuss the following result.\nLet $f : X \\to S$ be a flat proper morphism of\nfinite presentation whose\ngeometric fibres are connected and reduced.\nAssume $S$ is connected and let $\\overline{s}$\nbe a geometric point of $S$. Then there is an exact\nsequence\n$$\n\\pi_1(X_{\\overline{s}}) \\to \\pi_1(X) \\to \\pi_1(S) \\to 1\n$$\nof fundamental groups. See\nProposition \\ref{proposition-first-homotopy-sequence}.\n\n\\begin{lemma}\n\\label{lemma-stein-factorization-etale}\n\\begin{reference}\n\\cite[Expose X, Proposition 1.2, p. 262]{SGA1}.\n\\end{reference}\nLet $f : X \\to S$ be a proper morphism of schemes.\nLet $X \\to S' \\to S$ be the Stein factorization of $f$, see\nMore on Morphisms, Theorem\n\\ref{more-morphisms-theorem-stein-factorization-general}.\nIf $f$ is of finite presentation, flat, with geometrically\nreduced fibres, then $S' \\to S$ is finite \\'etale.\n\\end{lemma}\n\n\\begin{proof}\nLet $s \\in S$. Set $n$ be the number of connected components of\nthe geometric fibre $X_{\\overline{s}}$. Note that $n < \\infty$ as the geometric\nfibre of $X \\to S$ at $s$ is a proper scheme over a field, hence Noetherian,\nhence has a finite number of connected components.\nBy More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-stein-universally-closed-residue-fields}\nthere are finitely many points $s'_1, \\ldots, s'_m \\in S'$ lying over $s$\nand for each $i$ the extension $\\kappa(s'_i)/\\kappa(s)$ is finite.\nMore on Morphisms,\nLemma \\ref{more-morphisms-lemma-etale-makes-integral-split}\ntells us that after replacing $S$ by an \\'etale neighbourhood\nof $s$ we may assume $S' = V_1 \\amalg \\ldots \\amalg V_m$ as a scheme\nwith $s'_i \\in V_i$ and $\\kappa(s'_i)/\\kappa(s)$ purely inseparable.\nIn this case the schemes $X_{s_i'}$ are geometrically connected\nover $\\kappa(s)$, hence $m = n$.\nThe schemes $X_i = (f')^{-1}(V_i)$, $i = 1, \\ldots, n$\nare proper, flat, of finite presentation, with geometrically\nreduced fibres over $S$. It suffices to prove the lemma\nfor each of the morphisms $X_i \\to S$. This reduces us to the case where\n$X_{\\overline{s}}$ is connected.\n\n\\medskip\\noindent\nAssume that $X_{\\overline{s}}$ is connected. By\nMore on Morphisms, Lemma \\ref{more-morphisms-lemma-proper-flat-geom-red}\nwe see that $X \\to S$ has geometrically connected\nfibres in a neighbourhood of $s$. Thus\nwe may assume the fibres of $X \\to S$ are geometrically connected.\nThen $f_*\\mathcal{O}_X = \\mathcal{O}_S$ by\nDerived Categories of Schemes, Lemma\n\\ref{perfect-lemma-proper-flat-geom-red-connected}\nwhich finishes the proof.\n\\end{proof}\n\n\\begin{proposition}\n\\label{proposition-first-homotopy-sequence}\nLet $f : X \\to S$ be a flat proper morphism of finite presentation whose\ngeometric fibres are connected and reduced. Assume $S$ is connected and\nlet $\\overline{s}$ be a geometric point of $S$. Then there is an exact\nsequence\n$$\n\\pi_1(X_{\\overline{s}}) \\to \\pi_1(X) \\to \\pi_1(S) \\to 1\n$$\nof fundamental groups.\n\\end{proposition}\n\n\\begin{proof}\nLet $Y \\to X$ be a finite \\'etale morphism. Consider the Stein factorization\n$$\n\\xymatrix{\nY \\ar[d] \\ar[r] & X \\ar[d] \\\\\nT \\ar[r] & S\n}\n$$\nof $Y \\to S$. By Lemma \\ref{lemma-stein-factorization-etale}\nthe morphism $T \\to S$ is finite \\'etale. In this way we obtain\na functor $\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_S$.\nFor any finite \\'etale morphism $U \\to S$ a morphism\n$Y \\to U \\times_S X$ over $X$ is the same thing as a morphism\n$Y \\to U$ over $S$ and such a morphism factors uniquely through\nthe Stein factorization, i.e., corresponds to a unique\nmorphism $T \\to U$\n(by the construction of the Stein factorization as a relative\nnormalization in More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-stein-universally-closed}\nand factorization by\nMorphisms, Lemma \\ref{morphisms-lemma-characterize-normalization}).\nThus we see that the functors\n$\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_S$ and\n$\\textit{F\\'Et}_S \\to \\textit{F\\'Et}_X$ are adjoints.\nNote that the Stein factorization of $U \\times_S X \\to S$ is\n$U$, because the fibres of $U \\times_S X \\to U$ are geometrically connected.\n\n\\medskip\\noindent\nBy the discussion above and\nCategories, Lemma \\ref{categories-lemma-adjoint-fully-faithful}\nwe conclude that\n$\\textit{F\\'Et}_S \\to \\textit{F\\'Et}_X$\nis fully faithful, i.e., $\\pi_1(X) \\to \\pi_1(S)$ is surjective\n(Lemma \\ref{lemma-functoriality-galois-surjective}).\n\n\\medskip\\noindent\nIt is immediate that the composition\n$\\textit{F\\'Et}_S \\to \\textit{F\\'Et}_X \\to \\textit{F\\'Et}_{X_{\\overline{s}}}$\nsends any $U$ to a disjoint union of copies of $X_{\\overline{s}}$.\nHence $\\pi_1(X_{\\overline{s}}) \\to \\pi_1(X) \\to \\pi_1(S)$ is trivial\nby Lemma \\ref{lemma-composition-trivial}.\n\n\\medskip\\noindent\nLet $Y \\to X$ be a finite \\'etale morphism with $Y$ connected such that\n$Y \\times_X X_{\\overline{s}}$ contains a connected component $Z$\nisomorphic to $X_{\\overline{s}}$. Consider the Stein factorization $T$\nas above. Let $\\overline{t} \\in T_{\\overline{s}}$ be the point corresponding\nto the fibre $Z$. Observe that $T$ is connected (as the image of a connected\nscheme) and by the surjectivity above $T \\times_S X$ is connected.\nNow consider the factorization\n$$\n\\pi : Y \\longrightarrow T \\times_S X\n$$\nLet $\\overline{x} \\in X_{\\overline{s}}$ be any closed point. Note that\n$\\kappa(\\overline{t}) = \\kappa(\\overline{s}) = \\kappa(\\overline{x})$\nis an algebraically closed field.\nThen the fibre of $\\pi$ over $(\\overline{t}, \\overline{x})$ consists\nof a unique point, namely the unique point $\\overline{z} \\in Z$\ncorresponding to $\\overline{x} \\in X_{\\overline{s}}$ via the\nisomorphism $Z \\to X_{\\overline{s}}$. We conclude that the finite\n\\'etale morphism $\\pi$ has degree $1$ in a neighbourhood of\n$(\\overline{t}, \\overline{x})$. Since $T \\times_S X$ is connected\nit has degree $1$ everywhere and we find tat $Y \\cong T \\times_S X$.\nThus $Y \\times_X X_{\\overline{s}}$ splits completely.\nCombining all of the above we see that\nLemmas \\ref{lemma-functoriality-galois-ses} and\n\\ref{lemma-functoriality-galois-normal}\nboth apply and the proof is complete.\n\\end{proof}\n\n\n\n\n\\section{Specialization maps}\n\\label{section-specialization-map}\n\n\\noindent\nIn this section we construct specialization maps.\nLet $f : X \\to S$ be a proper morphism of schemes\nwith geometrically connected fibres.\nLet $s' \\leadsto s$ be a specialization of points in $S$.\nLet $\\overline{s}$ and $\\overline{s}'$ be geometric points\nlying over $s$ and $s'$. Then there is a specialization map\n$$\nsp : \\pi_1(X_{\\overline{s}'}) \\longrightarrow \\pi_1(X_{\\overline{s}})\n$$\nThe construction of this map is as follows. Let $A$ be the\nstrict henselization of $\\mathcal{O}_{S, s}$ with respect to\n$\\kappa(s) \\subset \\kappa(s)^{sep} \\subset \\kappa(\\overline{s})$, see\nAlgebra, Definition \\ref{algebra-definition-henselization}.\nSince $s' \\leadsto s$ the point $s'$ corresponds to a point of\n$\\Spec(\\mathcal{O}_{S, s})$ and hence there is at least one point\n(and potentially many points)\nof $\\Spec(A)$ over $s'$ whose residue field is a separable algebraic\nextension of $\\kappa(s')$.\nSince $\\kappa(\\overline{s}')$ is algebraically closed we can choose\na morphism $\\varphi : \\overline{s}' \\to \\Spec(A)$ giving rise to a commutative\ndiagram\n$$\n\\xymatrix{\n\\overline{s}' \\ar[r]_-\\varphi \\ar[rd] &\n\\Spec(A) \\ar[d] &\n\\overline{s} \\ar[l] \\ar[ld] \\\\\n& S\n}\n$$\nThe specialization map is the composition\n$$\n\\pi_1(X_{\\overline{s}'}) \\longrightarrow\n\\pi_1(X_A) =\n\\pi_1(X_{\\kappa(s)^{sep}}) =\n\\pi_1(X_{\\overline{s}})\n$$\nwhere the first equality is\nLemma \\ref{lemma-finite-etale-on-proper-over-henselian}\nand the second follows from\nLemmas \\ref{lemma-perfection} and\n\\ref{lemma-finite-etale-invariant-over-proper}.\nBy construction the specialization map fits into a commutative\ndiagram\n$$\n\\xymatrix{\n\\pi_1(X_{\\overline{s}'}) \\ar[rr]_{sp} \\ar[rd] & &\n\\pi_1(X_{\\overline{s}}) \\ar[ld] \\\\\n& \\pi_1(X)\n}\n$$\nprovided that $X$ is connected. The specialization map depends on the\nchoice of $\\varphi : \\overline{s}' \\to \\Spec(A)$ above and we will\nwrite $sp_\\varphi$ if we want to indicate this.\n\n\\begin{lemma}\n\\label{lemma-specialization-map-base-change}\nConsider a commutative diagram\n$$\n\\xymatrix{\nY \\ar[d]_g \\ar[r] & X \\ar[d]^f \\\\\nT \\ar[r] & S\n}\n$$\nof schemes where $f$ and $g$ are proper with geometrically connected\nfibres. Let $t' \\leadsto t$ be a specialization of points in $T$\nand consider a specialization map\n$sp : \\pi_1(Y_{\\overline{t}'}) \\to \\pi_1(Y_{\\overline{t}})$ as above.\nThen there is a commutative diagram\n$$\n\\xymatrix{\n\\pi_1(Y_{\\overline{t}'}) \\ar[r]_{sp} \\ar[d] & \\pi_1(Y_{\\overline{t}}) \\ar[d] \\\\\n\\pi_1(X_{\\overline{s}'}) \\ar[r]^{sp} & \\pi_1(X_{\\overline{s}})\n}\n$$\nof specialization maps where $\\overline{s}$ and $\\overline{s}'$\nare the images of $\\overline{t}$ and $\\overline{t}'$.\n\\end{lemma}\n\n\\begin{proof}\nLet $B$ be the strict henselization of $\\mathcal{O}_{T, t}$ with respect to\n$\\kappa(t) \\subset \\kappa(t)^{sep} \\subset \\kappa(\\overline{t})$.\nPick $\\psi : \\overline{t}' \\to \\Spec(B)$ lifting $\\overline{t}' \\to T$\nas in the construction of the specialization map.\nLet $s$ and $s'$ denote the images of $t$ and $t'$ in $S$.\nLet $A$ be the strict henselization of $\\mathcal{O}_{S, s}$\nwith respect to\n$\\kappa(s) \\subset \\kappa(s)^{sep} \\subset \\kappa(\\overline{s})$.\nSince $\\kappa(\\overline{s}) = \\kappa(\\overline{t})$,\nby the functoriality of strict henselization\n(Algebra, Lemma \\ref{algebra-lemma-strictly-henselian-functorial})\nwe obtain a ring map $A \\to B$ fitting into the commutative diagram\n$$\n\\xymatrix{\n\\overline{t}' \\ar[r]_-\\psi \\ar[d] & \\Spec(B) \\ar[d] \\ar[r] & T \\ar[d] \\\\\n\\overline{s}' \\ar[r]^-\\varphi & \\Spec(A) \\ar[r] & S\n}\n$$\nHere the morphism $\\varphi : \\overline{s}' \\to \\Spec(A)$ is simply taken\nto be the composition $\\overline{t}' \\to \\Spec(B) \\to \\Spec(A)$.\nApplying base change we obtain a commutative diagram\n$$\n\\xymatrix{\nY_{\\overline{t}'} \\ar[r] \\ar[d] & Y_B \\ar[d] \\\\\nX_{\\overline{s}'} \\ar[r] & X_A\n}\n$$\nand from the construction of the specialization map the commutativity\nof this diagram implies the commutativity of the diagram of the lemma.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-specialization-map-composition}\nLet $f : X \\to S$ be a proper morphism with geometrically connected fibres.\nLet $s'' \\leadsto s' \\leadsto s$ be specializations of points of $S$.\nA composition of specialization maps\n$\\pi_1(X_{\\overline{s}''}) \\to \\pi_1(X_{\\overline{s}'}) \\to\n\\pi_1(X_{\\overline{s}})$ is a specialization map\n$\\pi_1(X_{\\overline{s}''}) \\to \\pi_1(X_{\\overline{s}})$.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{O}_{S, s} \\to A$ be the strict henselization\nconstructed using $\\kappa(s) \\to \\kappa(\\overline{s})$.\nLet $A \\to \\kappa(\\overline{s}')$ be the map used to construct\nthe first specialization map. Let $\\mathcal{O}_{S, s'} \\to A'$\nbe the strict henselization constructed using\n$\\kappa(s') \\subset \\kappa(\\overline{s}')$.\nBy functoriality of strict henselization, there is a map\n$A \\to A'$ such that the composition with $A' \\to \\kappa(\\overline{s}')$\nis the given map\n(Algebra, Lemma \\ref{algebra-lemma-map-into-henselian-colimit}).\nNext, let $A' \\to \\kappa(\\overline{s}'')$ be the map used to\nconstruct the second specialization map. Then it is clear that\nthe composition of the first and second specialization maps\nis the specialization map\n$\\pi_1(X_{\\overline{s}''}) \\to \\pi_1(X_{\\overline{s}})$\nconstructed using $A \\to A' \\to \\kappa(\\overline{s}'')$.\n\\end{proof}\n\n\\noindent\nLet $X \\to S$ be a proper morphism with geometrically connected fibres.\nLet $R$ be a strictly henselian valuation ring with algebraically\nclosed fraction field and let $\\Spec(R) \\to S$\nbe a morphism. Let $\\eta, s \\in \\Spec(R)$ be the generic and closed point.\nThen we can consider the specialization map\n$$\nsp_R : \\pi_1(X_\\eta) \\to \\pi_1(X_s)\n$$\nfor the base change $X_R/\\Spec(R)$. Note that this makes sense as both\n$\\eta$ and $s$ have algebraically closed residue fields.\n\n\\begin{lemma}\n\\label{lemma-specialization-map-valuation-ring}\nLet $f : X \\to S$ be a proper morphism with geometrically connected fibres.\nLet $s' \\leadsto s$ be a specialization of points of $S$ and let\n$sp : \\pi_1(X_{\\overline{s}'}) \\to \\pi_1(X_{\\overline{s}})$\nbe a specialization map. Then there exists a strictly henselian\nvaluation ring $R$ over $S$ with algebraically closed fraction field\nsuch that $sp$ is isomorphic to $sp_R$ defined above.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{O}_{S, s} \\to A$ be the strict henselization\nconstructed using $\\kappa(s) \\to \\kappa(\\overline{s})$.\nLet $A \\to \\kappa(\\overline{s}')$ be the map used to construct $sp$.\nLet $R \\subset \\kappa(\\overline{s}')$ be a valuation ring with\nfraction field $\\kappa(\\overline{s}')$ dominating the image of $A$.\nSee Algebra, Lemma \\ref{algebra-lemma-dominate}.\nObserve that $R$ is strictly henselian for example by\nLemma \\ref{lemma-normal-local-domain-separablly-closed-fraction-field}\nand Algebra, Lemma \\ref{algebra-lemma-valuation-ring-normal}.\nThen the lemma is clear.\n\\end{proof}\n\n\\noindent\nLet $X \\to S$ be a proper morphism with geometrically connected fibres.\nLet $R$ be a strictly henselian discrete valuation ring and let\n$\\Spec(R) \\to S$ be a morphism. Let $\\eta, s \\in \\Spec(R)$ be the\ngeneric and closed point. Then we can consider the specialization map\n$$\nsp_R : \\pi_1(X_{\\overline{\\eta}}) \\to \\pi_1(X_s)\n$$\nfor the base change $X_R/\\Spec(R)$. Note that this makes sense as $s$\nhas algebraically closed residue field.\n\n\\begin{lemma}\n\\label{lemma-specialization-map-discrete-valuation-ring}\nLet $f : X \\to S$ be a proper morphism with geometrically connected fibres.\nLet $s' \\leadsto s$ be a specialization of points of $S$ and let\n$sp : \\pi_1(X_{\\overline{s}'}) \\to \\pi_1(X_{\\overline{s}})$\nbe a specialization map. If $S$ is Noetherian, then\nthere exists a strictly henselian\ndiscrete valuation ring $R$ over $S$ such that $sp$ is isomorphic to $sp_R$\ndefined above.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{O}_{S, s} \\to A$ be the strict henselization\nconstructed using $\\kappa(s) \\to \\kappa(\\overline{s})$.\nLet $A \\to \\kappa(\\overline{s}')$ be the map used to construct $sp$.\nLet $R \\subset \\kappa(\\overline{s}')$ be a discrete valuation ring\ndominating the image of $A$, see Algebra, Lemma \\ref{algebra-lemma-exists-dvr}.\nChoose a diagram of fields\n$$\n\\xymatrix{\n\\kappa(\\overline{s}) \\ar[r] & k \\\\\nA/\\mathfrak m_A \\ar[r] \\ar[u] & R/\\mathfrak m_R \\ar[u]\n}\n$$\nwith $k$ algebraically closed. Let $R^{sh}$ be the strict\nhenselization of $R$ constructed using $R \\to k$. Then\n$R^{sh}$ is a discrete valuation ring by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-henselization-dvr}.\nDenote $\\eta, o$ the generic and closed point of $\\Spec(R^{sh})$.\nSince the diagram of schemes\n$$\n\\xymatrix{\n\\overline{\\eta} \\ar[d] \\ar[r] & \\Spec(R^{sh}) \\ar[d] &\n\\Spec(k) \\ar[d] \\ar[l] \\\\\n\\overline{s}' \\ar[r] & \\Spec(A) & \\overline{s} \\ar[l]\n}\n$$\ncommutes, we obtain a commutative diagram\n$$\n\\xymatrix{\n\\pi_1(X_{\\overline{\\eta}}) \\ar[d] \\ar[r]_{sp_{R^{sh}}} & \\pi_1(X_o) \\ar[d] \\\\\n\\pi_1(X_{\\overline{s}'}) \\ar[r]^{sp} & X_{\\overline{s}}\n}\n$$\nof specialization maps by the construction of these maps.\nSince the vertical arrows are isomorphisms\n(Lemma \\ref{lemma-finite-etale-invariant-over-proper}), this proves the lemma.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\\section{Finite \\'etale covers of punctured spectra, I}\n\\label{section-pi1-punctured-spec}\n\n\\noindent\nWe first prove some results \\'a la Lefschetz.\n\n\\begin{situation}\n\\label{situation-local-lefschetz}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring and $f \\in \\mathfrak m$.\nWe set $X = \\Spec(A)$ and $X_0 = \\Spec(A/fA)$ and we\nlet $U = X \\setminus \\{\\mathfrak m\\}$ and\n$U_0 = X_0 \\setminus \\{\\mathfrak m\\}$ be the punctured spectrum of\n$A$ and $A/fA$.\n\\end{situation}\n\n\\noindent\nRecall that for a scheme $X$ the category of schemes finite\n\\'etale over $X$ is denoted $\\textit{F\\'Et}_X$, see\nSection \\ref{section-finite-etale}.\nIn Situation \\ref{situation-local-lefschetz}\nwe will study the base change functors\n$$\n\\xymatrix{\n\\textit{F\\'Et}_X \\ar[d] \\ar[r] & \\textit{F\\'Et}_U \\ar[d] \\\\\n\\textit{F\\'Et}_{X_0} \\ar[r] & \\textit{F\\'Et}_{U_0}\n}\n$$\nIn many case the right vertical arrow is faithful.\n\n\\begin{lemma}\n\\label{lemma-faithful}\nIn Situation \\ref{situation-local-lefschetz}.\nAssume one of the following holds\n\\begin{enumerate}\n\\item $\\dim(A/\\mathfrak p) \\geq 2$ for every minimal prime\n$\\mathfrak p \\subset A$ with $f \\not \\in \\mathfrak p$, or\n\\item every connected component of $U$ meets $U_0$.\n\\end{enumerate}\nThen\n$$\n\\textit{F\\'Et}_U \\longrightarrow \\textit{F\\'Et}_{U_0},\\quad\nV \\longmapsto V_0 = V \\times_U U_0\n$$\nis a faithful functor.\n\\end{lemma}\n\n\\begin{proof}\nLet $a, b : V \\to W$ be two morphisms of schemes finite \\'etale over $U$\nwhose restriction to $U_0$ are the same. Assumption (1)\nmeans that every irreducible component of $U$ meets $U_0$, see\nAlgebra, Lemma \\ref{algebra-lemma-one-equation}.\nThe image of any irreducible component of $V$ is an\nirreducible component of $U$ and hence meets $U_0$.\nHence $V_0$ meets every connected component of $V$ and\nwe conclude that $a = b$ by \\'Etale Morphisms, Proposition\n\\ref{etale-proposition-equality}.\nIn case (2) the argument is the same using that the image\nof a connected component of $V$ is a connected component of $U$.\n\\end{proof}\n\n\\noindent\nBefore we prove something more interesting, we need a couple of lemmas.\n\n\\begin{lemma}\n\\label{lemma-fill-in-missing}\nIn Situation \\ref{situation-local-lefschetz}. Let $V \\to U$ be a finite\nmorphism. Let $A^\\wedge$ be the $\\mathfrak m$-adic completion of $A$,\nlet $X' = \\Spec(A^\\wedge)$ and let $U'$ and $V'$ be the base changes of\n$U$ and $V$ to $X'$. If $Y' \\to X'$ is a finite morphism such that\n$V' = Y' \\times_{X'} U'$, then there exists a finite morphism $Y \\to X$\nsuch that $V = Y \\times_X U$ and $Y' = Y \\times_X X'$.\n\\end{lemma}\n\n\\begin{proof}\nThis is a straightforward application of\nMore on Algebra, Proposition \\ref{more-algebra-proposition-equivalence}.\nNamely, choose generators $f_1, \\ldots, f_t$ of $\\mathfrak m$.\nFor each $i$ write $V \\times_U D(f_i) = \\Spec(B_i)$.\nFor $1 \\leq i, j \\leq n$ we obtain an isomorphism\n$\\alpha_{ij} : (B_i)_{f_j} \\to (B_j)_{f_i}$ of $A_{f_if_j}$-algebras\nbecause the spectrum of both represent $V \\times_U D(f_if_j)$.\nWrite $Y' = \\Spec(B')$. Since $V \\times_U U' = Y \\times_{X'} U'$\nwe get isomorphisms $\\alpha_i : B'_{f_i} \\to B_i \\otimes_A A^\\wedge$.\nA straightforward argument shows that $(B', B_i, \\alpha_i, \\alpha_{ij})$\nis an object of $\\text{Glue}(A \\to A^\\wedge, f_1, \\ldots, f_t)$, see\nMore on Algebra, Remark \\ref{more-algebra-remark-glueing-data}.\nApplying the proposition cited above (and using\nMore on Algebra, Remark \\ref{more-algebra-remark-formal-glueing-algebras}\nto obtain the algebra structure) we find an $A$-algebra $B$ such that\n$\\text{Can}(B)$ is isomorphic to $(B', B_i, \\alpha_i, \\alpha_{ij})$.\nSetting $Y = \\Spec(B)$ we see that $Y \\to X$ is a morphism\nwhich comes equipped with compatible isomorphisms\n$V \\cong Y \\times_X U$ and $Y' = Y \\times_X X'$ as desired.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-fully-faithful-henselian-completion}\nIn Situation \\ref{situation-local-lefschetz} assume $A$ is henselian\nor more generally that $(A, (f))$ is a henselian pair.\nLet $A^\\wedge$ be the $\\mathfrak m$-adic completion of $A$,\nlet $X' = \\Spec(A^\\wedge)$ and let $U'$ and $U'_0$ be the base changes of\n$U$ and $U_0$ to $X'$. If $\\textit{F\\'Et}_{U'} \\to \\textit{F\\'Et}_{U'_0}$\nis fully faithful, then $\\textit{F\\'Et}_U \\to \\textit{F\\'Et}_{U_0}$\nis fully faithful.\n\\end{lemma}\n\n\\begin{proof}\nAssume $\\textit{F\\'Et}_{U'} \\longrightarrow \\textit{F\\'Et}_{U'_0}$\nis a fully faithful. Since $X' \\to X$ is faithfully flat, it is\nimmediate that the functor $V \\to V_0 = V \\times_U U_0$ is faithful.\nSince the category of finite \\'etale coverings has an internal hom\n(Lemma \\ref{lemma-internal-hom-finite-etale})\nit suffices to prove the following: Given $V$ finite \\'etale over $U$\nwe have\n$$\n\\Mor_U(U, V) = \\Mor_{U_0}(U_0, V_0)\n$$\nThe we assume we have a morphism $s_0 : U_0 \\to V_0$ over $U_0$ and we will\nproduce a morphism $s : U \\to V$ over $U$.\n\n\\medskip\\noindent\nBy our assumption there does exist a morphism $s' : U' \\to V'$\nwhose restriction to $V'_0$ is the base change $s'_0$ of $s_0$.\nSince $V' \\to U'$ is finite \\'etale this means that $V' = s'(U') \\amalg W'$\nfor some $W' \\to U'$ finite and \\'etale.\nChoose a finite morphism $Z' \\to X'$ such that $W' = Z' \\times_{X'} U'$.\nThis is possible by Zariski's main theorem in the form stated in\nMore on Morphisms, Lemma\n\\ref{more-morphisms-lemma-quasi-finite-separated-pass-through-finite}\n(small detail omitted).\nThen\n$$\nV' = s'(U') \\amalg W' \\longrightarrow X' \\amalg Z' = Y'\n$$\nis an open immersion such that $V' = Y' \\times_{X'} U'$.\nBy Lemma \\ref{lemma-fill-in-missing} we can find $Y \\to X$ finite\nsuch that $V = Y \\times_X U$ and $Y' = Y \\times_X X'$.\nWrite $Y = \\Spec(B)$ so that $Y' = \\Spec(B \\otimes_A A^\\wedge)$.\nThen $B \\otimes_A A^\\wedge$ has an idempotent $e'$\ncorresponding to the open and closed subscheme $X'$ of $Y' = X' \\amalg Z'$.\n\n\\medskip\\noindent\nThe case $A$ is henselian (slightly easier). The image $\\overline{e}$\nof $e'$ in $B \\otimes_A \\kappa(\\mathfrak m) = B/\\mathfrak mB$ lifts to an\nidempotent $e$ of $B$ as $A$ is henselian (because $B$ is a product of\nlocal rings by Algebra, Lemma \\ref{algebra-lemma-characterize-henselian}).\nThen we see that $e$ maps to $e'$ by uniqueness of lifts of idempotents\n(using that $B \\otimes_A A^\\wedge$ is a product of local rings).\nLet $Y_1 \\subset Y$ be the open and closed subscheme corresponding to $e$.\nThen $Y_1 \\times_X X' = s'(X')$ which implies that $Y_1 \\to X$ is\nan isomorphism (by faithfully flat descent) and gives the desired section.\n\n\\medskip\\noindent\nThe case where $(A, (f))$ is a henselian pair. Here we use that $s'$ is\na lift of $s'_0$. Namely, let $Y_{0, 1} \\subset Y_0 = Y \\times_X X_0$\nbe the closure of $s_0(U_0) \\subset V_0 = Y_0 \\times_{X_0} U_0$.\nAs $X' \\to X$ is flat, the base change $Y'_{0, 1} \\subset Y'_0$\nis the closure of $s'_0(U'_0)$ which is equal to $X'_0 \\subset Y'_0$\n(see Morphisms, Lemma\n\\ref{morphisms-lemma-flat-base-change-scheme-theoretic-image}).\nSince $Y'_0 \\to Y_0$ is submersive\n(Morphisms, Lemma \\ref{morphisms-lemma-fpqc-quotient-topology})\nwe conclude that $Y_{0, 1}$ is open and closed in $Y_0$.\nLet $e_0 \\in B/fB$ be the corresponding idempotent.\nBy More on Algebra, Lemma\n\\ref{more-algebra-lemma-characterize-henselian-pair}\nwe can lift $e_0$ to an idempotent $e \\in B$.\nThen we conclude as before.\n\\end{proof}\n\n\\noindent\nThe following lemma will be superseded by\nLemma \\ref{lemma-fully-faithful-minimal} below.\n\n\\begin{lemma}\n\\label{lemma-fully-faithful}\nIn Situation \\ref{situation-local-lefschetz}.\nAssume $f$ is a nonzerodivisor, that $A$ has depth $\\geq 3$, and that\n$A$ is henselian or more generally $(A, (f))$ is a henselian pair. Then\n$$\n\\textit{F\\'Et}_U \\longrightarrow \\textit{F\\'Et}_{U_0},\\quad\nV \\longmapsto V_0 = V \\times_U U_0\n$$\nis a fully faithful functor.\n\\end{lemma}\n\n\\begin{proof}\nBy Lemma \\ref{lemma-fully-faithful-henselian-completion} we may assume $A$\nis a complete local Noetherian ring. The functor is faithful by\nLemma \\ref{lemma-faithful} (to see the assumption of that lemma holds, apply\nAlgebra, Lemma \\ref{algebra-lemma-depth-dim-associated-primes}).\nSince the category of finite \\'etale coverings has an internal hom\n(Lemma \\ref{lemma-internal-hom-finite-etale})\nit suffices to prove the following: Given $V$ finite \\'etale over $U$ we have\n$$\n\\Mor_U(U, V) = \\Mor_{U_0}(U_0, V_0)\n$$\nIf we have a morphism $U_0 \\to V_0$ over $U_0$, then we obtain an\ndecomposition $V_0 = U_0 \\amalg V'_0$ into open and closed subschemes.\nWe will show that this implies the same thing for $V$ thereby\nfinishing the proof.\n\n\\medskip\\noindent\nFor $n \\geq 1$ let $U_n$ be the punctured spectrum of $A/f^{n + 1}A$\nand let $V_n \\to U_n$ be the base change of $V \\to U$. By\n\\'Etale Morphisms, Theorem \\ref{etale-theorem-remarkable-equivalence}\nwe conclude that there is a unique decomposition\n$V_n = U_n \\amalg V'_n$\ninto open and closed subschemes whose base change to $U_0$ recovers\nthe given decomposition.\n\n\\medskip\\noindent\nSince $A$ has depth $\\geq 3$ and $f$ is a nonzerodivisor, we see\nthat $A/fA$ has depth $\\geq 2$\n(Algebra, Lemma \\ref{algebra-lemma-depth-drops-by-one}).\nThis implies the\nvanishing of $H^0_\\mathfrak m(A/fA)$ and $H^1_\\mathfrak m(A/fA)$, see\nDualizing Complexes, Lemma \\ref{dualizing-lemma-depth}.\nThis in turn\ntells us that $A/fA \\to \\Gamma(U_0, \\mathcal{O}_{U_0})$ is an isomorphism, see\nLocal Cohomology, Lemma\n\\ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local}.\nAs $f$ is a nonzerodivisor we obtain short exact sequences\n$$\n0 \\to A/fA \\xrightarrow{f^n} A/f^{n + 1}A \\to A/f^n A \\to 0\n$$\nInduction on $n$ shows that\n$H^0_\\mathfrak m(A/f^{n + 1}A) = H^1_\\mathfrak m(A/f^{n + 1}A) = 0$\nfor all $n$. Hence the same reasoning shows that\n$A/f^{n + 1}A \\to \\Gamma(U_n, \\mathcal{O}_{U_n})$\nis an isomorphism.\nCombined with the decompositions above this determines a map\n$$\n\\Gamma(V, \\mathcal{O}_V) \\to\n\\lim \\Gamma(V_n, \\mathcal{O}_{V_n}) \\to\n\\lim \\Gamma(U_n, \\mathcal{O}_{U_n}) = A\n$$\nSince $V \\to U$ is affine, this $A$-algebra map corresponds to\na section $U \\to V$ as desired.\n\\end{proof}\n\n\\noindent\nIn the following lemma we prove fully faithfulness under very weak assumptions.\nNote that the assumptions do not imply that $U$ is a connected scheme, but\nthe conclusion guarantees that $U$ and $U_0$ have the same number of\nconnected components.\n\n\\begin{lemma}\n\\label{lemma-fully-faithful-minimal}\n\\begin{reference}\n\\cite[Corollary 1.11]{Bhatt-local}\n\\end{reference}\nIn Situation \\ref{situation-local-lefschetz}. Assume\n\\begin{enumerate}\n\\item $f$ is a nonzerodivisor,\n\\item $H^1_\\mathfrak m(A)$ is finite,\n\\item $H^2_\\mathfrak m(A)$ is annihilated by a power of $f$, and\n\\item $A$ is henselian or more generally $(A, (f))$ is a henselian pair.\n\\end{enumerate}\nThen\n$$\n\\textit{F\\'Et}_U \\longrightarrow \\textit{F\\'Et}_{U_0},\\quad\nV \\longmapsto V_0 = V \\times_U U_0\n$$\nis a fully faithful functor.\n\\end{lemma}\n\n\\begin{proof}\nBy Lemma \\ref{lemma-fully-faithful-henselian-completion}\nwe may assume that $A$ is a Noetherian complete local ring.\n(The assumptions carry over; use\nDualizing Complexes, Lemma \\ref{dualizing-lemma-torsion-change-rings}.)\n\n\\medskip\\noindent\nAssume $A$ is complete in addition to the other conditions.\nWe will show that given $\\pi : V \\to U$ finite \\'etale, the set\nof connected components of $V$ agrees with the set of connected\ncomponents of $V_0$. This will prove the lemma because the\ncategory of finite \\'etale covers has internal hom\n(Lemma \\ref{lemma-internal-hom-finite-etale})\nand images of sections are connected components\n(\\'Etale Morphisms, Proposition \\ref{etale-proposition-properties-sections}).\nSome details omitted.\n\n\\medskip\\noindent\nSet $\\mathcal{B} = \\pi_*\\mathcal{O}_V$. This is a finite locally free\n$\\mathcal{O}_U$-algebra. Thus\n$\\text{Ass}(\\mathcal{B}) = \\text{Ass}(\\mathcal{O}_U)$.\nAssumption (2) means that $H^0(U, \\mathcal{O}_U)$ is a finite\n$A$-module and equivalently that $j_*\\mathcal{O}_U$ is coherent\n(Local Cohomology, Lemma\n\\ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local}).\nBy Local Cohomology, Proposition \\ref{local-cohomology-proposition-kollar}\nand the agreement of $\\text{Ass}$\nwe see that the same holds for $\\mathcal{B}$ and we conclude\nthat $B = \\Gamma(U, \\mathcal{B}) = \\Gamma(V, \\mathcal{O}_V)$\nis a finite $A$-algebra.\n\n\\medskip\\noindent\nNext, using that $H^2_\\mathfrak m(A) = H^1(U, \\mathcal{O}_U)$\nis annihilated by $f^n$ for some $n$ we see that\n$H^1(U, \\mathcal{B}) = H^1(V, \\mathcal{O}_V)$\nis annihilated by $f^m$ for some $m$, see\nLocal Cohomology, Lemma \\ref{local-cohomology-lemma-annihilate-Hp}.\n\n\\medskip\\noindent\nAt this point we apply Local Cohomology, Lemma\n\\ref{local-cohomology-lemma-formal-functions-principal} to\nthe scheme $V$ over $\\Spec(A)$ and the sheaf $\\mathcal{O}_V$\nwith $p = 0$. Since $f$ is a nonzerodivisor in $A$ the $f$-power torsion\nsubsheaf of $\\mathcal{O}_V$ is zero. The first short exact sequence\nof the lemma collapses to become\n$$\nH^0 = \\lim H^0(V, \\mathcal{O}_V/f^n\\mathcal{O}_V) =\n\\lim H^0(V_n, \\mathcal{O}_{V_n})\n$$\nwhere $V_n \\subset V$ is the closed subscheme cut out by $f^{n + 1}$.\nSince $H^1(V, \\mathcal{O}_V)$ is annihilated by a power\nof $f$ we see that the Tate module $T_f(H^1(V, \\mathcal{O}_V))$ is zero.\nOn the other hand, since $A$ is complete and\n$B = H^0(V, \\mathcal{O}_V)$ is a finite $A$-module\nit is complete (Algebra, Lemma \\ref{algebra-lemma-completion-tensor})\nhence derived complete\n(More on Algebra,\nProposition \\ref{more-algebra-proposition-derived-complete-modules})\nand hence equal to its derived $f$-adic completion.\nThus we see that $H^0 = B$.\nSince\n$$\nV_0 \\subset V_1 \\subset V_2 \\subset \\ldots\n$$\nare nilpotent thickenings the connected components of these schemes\nagree. Correspondingly the maps\n$$\n\\ldots \\to\nH^0(V_2, \\mathcal{O}_{V_2}) \\to\nH^0(V_1, \\mathcal{O}_{V_1}) \\to\nH^0(V_0, \\mathcal{O}_{V_0})\n$$\ninduce bijections between idempotents. Hence the map\n$B \\to H^0(V_0, \\mathcal{O}_{V_0})$ induces a bijection between\nidempotents and we conclude.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\\section{Purity in local case, I}\n\\label{section-local-purity}\n\n\\noindent\nLet $(A, \\mathfrak m)$ be a Noetherian local ring. Set $X = \\Spec(A)$\nand let $U = X \\setminus \\{\\mathfrak m\\}$ be the punctured spectrum.\nWe say {\\it purity holds for $(A, \\mathfrak m)$} if the restriction functor\n$$\n\\textit{F\\'Et}_X \\longrightarrow \\textit{F\\'Et}_U\n$$\nis essentially surjective. In this section we try to understand how the\nquestion changes when one passes from $X$ to a hypersurface $X_0$ in $X$,\nin other words, we study a kind of local Lefschetz property for the\nfundamental groups of punctured spectra.\nThese results will be useful to proceed by induction on dimension\nin the proofs of our main results on local purity, namely,\nLemma \\ref{lemma-local-purity} and\nProposition \\ref{proposition-purity-complete-intersection}.\n\n\\begin{lemma}\n\\label{lemma-sections-over-punctured-spec}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring. Set $X = \\Spec(A)$\nand let $U = X \\setminus \\{\\mathfrak m\\}$.\nLet $\\pi : Y \\to X$ be a finite morphism such that\n$\\text{depth}(\\mathcal{O}_{Y, y}) \\geq 2$ for all closed points\n$y \\in Y$.\nThen $Y$ is the spectrum of $B = \\mathcal{O}_Y(\\pi^{-1}(U))$.\n\\end{lemma}\n\n\\begin{proof}\nSet $V = \\pi^{-1}(U)$ and denote $\\pi' : V \\to U$ the restriction of $\\pi$.\nConsider the $\\mathcal{O}_X$-module map\n$$\n\\pi_*\\mathcal{O}_Y \\longrightarrow j_*\\pi'_*\\mathcal{O}_V\n$$\nwhere $j : U \\to X$ is the inclusion morphism. We claim\nDivisors, Lemma \\ref{divisors-lemma-check-isomorphism-via-depth-and-ass}\napplies to this map. If so, then $B = \\Gamma(Y, \\mathcal{O}_Y)$\nand we see that the lemma holds. Let $x \\in X$.\nIf $x \\in U$, then the map is an\nisomorphism on stalks as $V = Y \\times_X U$.\nIf $x$ is the closed point, then\n$x \\not \\in \\text{Ass}(j_*\\pi_*\\mathcal{O}_V)$\n(Divisors, Lemmas \\ref{divisors-lemma-weakass-pushforward} and\n\\ref{divisors-lemma-weakly-ass-support}).\nThus it suffices to show that\n$\\text{depth}((\\pi_*\\mathcal{O}_Y)_x) \\geq 2$.\nLet $y_1, \\ldots, y_n \\in Y$ be the points mapping to $x$.\nBy Algebra, Lemma \\ref{algebra-lemma-depth-goes-down-finite}\nit suffices to show that\n$\\text{depth}(\\mathcal{O}_{Y, y_i}) \\geq 2$ for $i = 1, \\ldots, n$.\nSince this is the assumption of the lemma the proof is complete.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-reformulate-purity}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring. Set $X = \\Spec(A)$\nand let $U = X \\setminus \\{\\mathfrak m\\}$.\nLet $V$ be finite \\'etale\nover $U$. Assume $A$ has depth $\\geq 2$. The following are equivalent\n\\begin{enumerate}\n\\item $V = Y \\times_X U$ for some $Y \\to X$ finite \\'etale,\n\\item $B = \\Gamma(V, \\mathcal{O}_V)$ is finite \\'etale over $A$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nDenote $\\pi : V \\to U$ the given finite \\'etale morphism.\nAssume $Y$ as in (1) exists. Let $x \\in X$ be the point\ncorresponding to $\\mathfrak m$.\nLet $y \\in Y$ be a point mapping to $x$. We claim that\n$\\text{depth}(\\mathcal{O}_{Y, y}) \\geq 2$.\nThis is true because $Y \\to X$ is \\'etale and hence\n$A = \\mathcal{O}_{X, x}$ and $\\mathcal{O}_{Y, y}$ have\nthe same depth (Algebra, Lemma \\ref{algebra-lemma-apply-grothendieck}).\nHence Lemma \\ref{lemma-sections-over-punctured-spec}\napplies and $Y = \\Spec(B)$.\n\n\\medskip\\noindent\nThe implication (2) $\\Rightarrow$ (1) is easier and the\ndetails are omitted.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-reformulate-purity-normal}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring. Set $X = \\Spec(A)$\nand let $U = X \\setminus \\{\\mathfrak m\\}$. Assume $A$ is normal\nof dimension $\\geq 2$. The functor\n$$\n\\textit{F\\'Et}_U \\longrightarrow\n\\left\\{\n\\begin{matrix}\n\\text{finite normal }A\\text{-algebras }B\\text{ such} \\\\\n\\text{that }\\Spec(B) \\to X\\text{ is \\'etale over }U\n\\end{matrix}\n\\right\\},\n\\quad\nV \\longmapsto \\Gamma(V, \\mathcal{O}_V)\n$$\nis an equivalence. Moreover, $V = Y \\times_X U$ for some $Y \\to X$\nfinite \\'etale if and only if $B = \\Gamma(V, \\mathcal{O}_V)$\nis finite \\'etale over $A$.\n\\end{lemma}\n\n\\begin{proof}\nObserve that $\\text{depth}(A) \\geq 2$ because $A$ is normal\n(Serre's criterion for normality, Algebra, Lemma\n\\ref{algebra-lemma-criterion-normal}).\nThus the final statement follows from Lemma \\ref{lemma-reformulate-purity}.\nGiven $\\pi : V \\to U$ finite \\'etale, set $B = \\Gamma(V, \\mathcal{O}_V)$.\nIf we can show that $B$ is normal and finite over $A$, then\nwe obtain the displayed functor. Since there is an obvious\nquasi-inverse functor, this is also all that we have to show.\n\n\\medskip\\noindent\nSince $A$ is normal, the scheme $V$ is normal\n(Descent, Lemma \\ref{descent-lemma-normal-local-smooth}).\nHence $V$ is a finite disjoint union of integral schemes\n(Properties, Lemma \\ref{properties-lemma-normal-Noetherian}).\nThus we may assume $V$ is integral.\nIn this case the function field $L$ of $V$\n(Morphisms, Section \\ref{morphisms-section-rational-maps})\nis a finite separable extension of $f.f.(A)$\n(because we get it by looking at the generic fibre\nof $V \\to U$ and using Morphisms, Lemma\n\\ref{morphisms-lemma-etale-over-field}).\nBy Algebra, Lemma\n\\ref{algebra-lemma-Noetherian-normal-domain-finite-separable-extension}\nthe integral closure $B' \\subset L$ of $A$ in $L$ is finite over $A$.\nBy More on Algebra, Lemma \\ref{more-algebra-lemma-integral-closure-reflexive}\nwe see that $B'$ is a reflexive $A$-module, which in turn implies\nthat $\\text{depth}_A(B') \\geq 2$ by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-reflexive-over-normal}.\n\n\\medskip\\noindent\nLet $f \\in \\mathfrak m$. Then $B_f = \\Gamma(V \\times_U D(f), \\mathcal{O}_V)$\n(Properties, Lemma \\ref{properties-lemma-invert-f-sections}).\nHence $B'_f = B_f$ because $B_f$ is normal (see above),\nfinite over $A_f$ with fraction field $L$.\nIt follows that $V = \\Spec(B') \\times_X U$.\nThen we conclude that $B = B'$ from\nLemma \\ref{lemma-sections-over-punctured-spec}\napplied to $\\Spec(B') \\to X$.\nThis lemma applies because the localizations $B'_{\\mathfrak m'}$\nof $B'$ at maximal ideals $\\mathfrak m' \\subset B'$ lying over\n$\\mathfrak m$ have depth $\\geq 2$ by\nAlgebra, Lemma \\ref{algebra-lemma-depth-goes-down-finite}\nand the remark on depth in the preceding paragraph.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-purity-and-completion}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring. Set $X = \\Spec(A)$\nand let $U = X \\setminus \\{\\mathfrak m\\}$.\nLet $V$ be finite \\'etale over $U$.\nLet $A^\\wedge$ be the $\\mathfrak m$-adic completion of $A$,\nlet $X' = \\Spec(A^\\wedge)$ and let $U'$ and $V'$ be the base changes of\n$U$ and $V$ to $X'$. The following are equivalent\n\\begin{enumerate}\n\\item $V = Y \\times_X U$ for some $Y \\to X$ finite \\'etale, and\n\\item $V' = Y' \\times_{X'} U'$ for some $Y' \\to X'$ finite \\'etale.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe implication (1) $\\Rightarrow$ (2) follows from taking the base change\nof a solution $Y \\to X$. Let $Y' \\to X'$ be as in (2).\nBy Lemma \\ref{lemma-fill-in-missing} we can find $Y \\to X$ finite\nsuch that $V = Y \\times_X U$ and $Y' = Y \\times_X X'$.\nBy descent we see that $Y \\to X$ is finite \\'etale\n(Algebra, Lemmas \\ref{algebra-lemma-descend-properties-modules} and\n\\ref{algebra-lemma-etale}). This finishes the proof.\n\\end{proof}\n\n\\noindent\nThe following lemma will be superseded by\nLemma \\ref{lemma-lift-purity-general}.\n\n\\begin{lemma}\n\\label{lemma-lift-purity}\nIn Situation \\ref{situation-local-lefschetz}.\nLet $V$ be finite \\'etale over $U$. Assume\n\\begin{enumerate}\n\\item $f$ is a nonzerodivisor,\n\\item $A$ has depth $\\geq 3$,\n\\item $V_0 = V \\times_U U_0$ is equal to $Y_0 \\times_{X_0} U_0$\nfor some $Y_0 \\to X_0$ finite \\'etale.\n\\end{enumerate}\nThen $V = Y \\times_X U$ for some $Y \\to X$ finite \\'etale.\n\\end{lemma}\n\n\\begin{proof}\nWe reduce to the complete case by Lemma \\ref{lemma-purity-and-completion}.\nAlternatively you can use Lemma \\ref{lemma-reformulate-purity},\ncohomology and base change\n(Cohomology of Schemes, Lemma\n\\ref{coherent-lemma-flat-base-change-cohomology}), and descent\n(Algebra, Lemmas \\ref{algebra-lemma-descend-properties-modules} and\n\\ref{algebra-lemma-etale}).\n\n\\medskip\\noindent\nIn the complete case we can lift $Y_0 \\to X_0$ to a finite\n\\'etale morphism $Y \\to X$ by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-finite-etale-equivalence};\nobserve that $(A, fA)$ is a henselian pair by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-complete-henselian}.\nThen we can use Lemma \\ref{lemma-fully-faithful}\nto see that $V$ is isomorphic to $Y \\times_X U$ and\nthe proof is complete.\n\\end{proof}\n\n\\noindent\nThe point of the following lemma is that the assumptions do not force\n$A$ to have depth $\\geq 3$. For example if $A$ is a complete normal\nlocal domain of dimension $\\geq 3$ and $f \\in \\mathfrak m$ is nonzero,\nthen the assumptions are satisfied.\n\n\\begin{lemma}\n\\label{lemma-lift-purity-general}\nIn Situation \\ref{situation-local-lefschetz}.\nLet $V$ be finite \\'etale over $U$. Assume\n\\begin{enumerate}\n\\item $f$ is a nonzerodivisor,\n\\item $H^1_\\mathfrak m(A)$ is a finite $A$-module,\n\\item a power of $f$ annihilates $H^2_\\mathfrak m(A)$,\n\\item $V_0 = V \\times_U U_0$ is equal to $Y_0 \\times_{X_0} U_0$\nfor some $Y_0 \\to X_0$ finite \\'etale.\n\\end{enumerate}\nThen $V = Y \\times_X U$ for some $Y \\to X$ finite \\'etale.\n\\end{lemma}\n\n\\begin{proof}\nWe reduce to the complete case using Lemma \\ref{lemma-purity-and-completion}.\n(The assumptions carry over; use Dualizing Complexes, Lemma\n\\ref{dualizing-lemma-torsion-change-rings}.)\n\n\\medskip\\noindent\nIn the complete case we can lift $Y_0 \\to X_0$ to a finite \\'etale\nmorphism $Y \\to X$ by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-finite-etale-equivalence};\nobserve that $(A, fA)$ is a henselian pair by\nMore on Algebra, Lemma \\ref{more-algebra-lemma-complete-henselian}.\nThen we can use Lemma \\ref{lemma-fully-faithful-minimal}\nto see that $V$ is isomorphic to $Y \\times_X U$ and\nthe proof is complete.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\\section{Purity of branch locus}\n\\label{section-purity}\n\n\\noindent\nWe will use the discriminant of a finite locally free morphism. See\nDiscriminants, Section \\ref{discriminant-section-discriminant}.\n\n\\begin{lemma}\n\\label{lemma-find-point-codim-1}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring with $\\dim(A) \\geq 1$.\nLet $f \\in \\mathfrak m$. Then there exist a $\\mathfrak p \\in V(f)$ with\n$\\dim(A_\\mathfrak p) = 1$.\n\\end{lemma}\n\n\\begin{proof}\nBy induction on $\\dim(A)$. If $\\dim(A) = 1$, then $\\mathfrak p = \\mathfrak m$\nworks. If $\\dim(A) > 1$, then let $Z \\subset \\Spec(A)$ be an irreducible\ncomponent of dimension $> 1$. Then $V(f) \\cap Z$ has dimension $> 0$\n(Algebra, Lemma \\ref{algebra-lemma-one-equation}). Pick a prime\n$\\mathfrak q \\in V(f) \\cap Z$, $\\mathfrak q \\not = \\mathfrak m$\ncorresponding to a closed point of the punctured spectrum of $A$;\nthis is possible by\nProperties, Lemma \\ref{properties-lemma-complement-closed-point-Jacobson}.\nThen $\\mathfrak q$ is not the generic point of $Z$. Hence\n$0 < \\dim(A_\\mathfrak q) < \\dim(A)$ and $f \\in \\mathfrak q A_\\mathfrak q$.\nBy induction on the dimension we can find\n$f \\in \\mathfrak p \\subset A_\\mathfrak q$ with\n$\\dim((A_\\mathfrak q)_\\mathfrak p) = 1$.\nThen $\\mathfrak p \\cap A$ works.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-ramification-quasi-finite-flat}\nLet $f : X \\to Y$ be a morphism of locally Noetherian schemes.\nLet $x \\in X$. Assume\n\\begin{enumerate}\n\\item $f$ is flat,\n\\item $f$ is quasi-finite at $x$,\n\\item $x$ is not a generic point of an irreducible component of $X$,\n\\item for specializations $x' \\leadsto x$ with\n$\\dim(\\mathcal{O}_{X, x'}) = 1$ our $f$ is unramified at $x'$.\n\\end{enumerate}\nThen $f$ is \\'etale at $x$.\n\\end{lemma}\n\n\\begin{proof}\nObserve that the set of points where $f$ is unramified is the same as\nthe set of points where $f$ is \\'etale and that this set is open.\nSee Morphisms, Definitions \\ref{morphisms-definition-unramified}\nand \\ref{morphisms-definition-etale} and\nLemma \\ref{morphisms-lemma-flat-unramified-etale}.\nTo check $f$ is \\'etale at $x$ we may work \\'etale\nlocally on the base and on the\ntarget (Descent, Lemmas \\ref{descent-lemma-descending-property-etale} and\n\\ref{descent-lemma-etale-etale-local-source}).\nThus we can apply More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-etale-makes-quasi-finite-finite-at-point}\nand assume that $f : X \\to Y$ is finite and that $x$ is the unique\npoint of $X$ lying over $y = f(x)$.\nThen it follows that $f$ is finite locally free\n(Morphisms, Lemma \\ref{morphisms-lemma-finite-flat}).\n\n\\medskip\\noindent\nAssume $f$ is finite locally free and that $x$ is the unique point of\n$X$ lying over $y = f(x)$. By\nDiscriminants, Lemma \\ref{discriminant-lemma-discriminant}\nwe find a locally principal closed subscheme $D_\\pi \\subset Y$\nsuch that $y' \\in D_\\pi$ if and only if there exists an $x' \\in X$\nwith $f(x') = y'$ and $f$ ramified at $x'$. Thus we have to prove\nthat $y \\not \\in D_\\pi$. Assume $y \\in D_\\pi$ to get a contradiction.\n\n\\medskip\\noindent\nBy condition (3) we have $\\dim(\\mathcal{O}_{X, x}) \\geq 1$.\nWe have $\\dim(\\mathcal{O}_{X, x}) = \\dim(\\mathcal{O}_{Y, y})$ by\nAlgebra, Lemma \\ref{algebra-lemma-dimension-base-fibre-equals-total}.\nBy Lemma \\ref{lemma-find-point-codim-1}\nwe can find $y' \\in D_\\pi$ specializing to $y$\nwith $\\dim(\\mathcal{O}_{Y, y'}) = 1$.\nChoose $x' \\in X$ with $f(x') = y'$ where $f$ is ramified. Since $f$\nis finite it is closed, and hence $x' \\leadsto x$.\nWe have $\\dim(\\mathcal{O}_{X, x'}) = \\dim(\\mathcal{O}_{Y, y'}) = 1$\nas before. This contradicts property (4).\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-local-purity}\nLet $(A, \\mathfrak m)$ be a regular local ring of dimension $d \\geq 2$.\nSet $X = \\Spec(A)$ and $U = X \\setminus \\{\\mathfrak m\\}$. Then\n\\begin{enumerate}\n\\item the functor $\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_U$\nis essentially surjective,\n\\item any finite $A \\to B$ with $B$ normal which\ninduces a finite \\'etale morphism on punctured spectra is \\'etale.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nRecall that a regular local ring is normal by\nAlgebra, Lemma \\ref{algebra-lemma-regular-normal}.\nHence (1) and (2) are equivalent by\nLemma \\ref{lemma-reformulate-purity-normal}.\nWe prove the lemma by induction on $d$.\n\n\\medskip\\noindent\nThe case $d = 2$. In this case $A \\to B$ is flat.\nNamely, we have going down for $A \\to B$ by\nAlgebra, Proposition \\ref{algebra-proposition-going-down-normal-integral}.\nThen $\\dim(B_{\\mathfrak m'}) = 2$ for all maximal ideals\n$\\mathfrak m' \\subset B$ by\nAlgebra, Lemma \\ref{algebra-lemma-dimension-base-fibre-equals-total}.\nThen $B_{\\mathfrak m'}$ is Cohen-Macaulay by\nAlgebra, Lemma \\ref{algebra-lemma-criterion-normal}.\nHence and this is the important step\nAlgebra, Lemma \\ref{algebra-lemma-CM-over-regular-flat}\napplies to show $A \\to B_{\\mathfrak m'}$ is flat.\nThen Algebra, Lemma \\ref{algebra-lemma-flat-localization}\nshows $A \\to B$ is flat. Thus we can apply\nLemma \\ref{lemma-ramification-quasi-finite-flat}\n(or you can directly argue using the easier\nDiscriminants, Lemma \\ref{discriminant-lemma-discriminant})\nto see that $A \\to B$ is \\'etale.\n\n\\medskip\\noindent\nThe case $d \\geq 3$. Let $V \\to U$ be finite \\'etale.\nLet $f \\in \\mathfrak m_A$, $f \\not \\in \\mathfrak m_A^2$.\nThen $A/fA$ is a regular local ring of dimension $d - 1 \\geq 2$, see\nAlgebra, Lemma \\ref{algebra-lemma-regular-ring-CM}.\nLet $U_0$ be the punctured spectrum of $A/fA$ and let\n$V_0 = V \\times_U U_0$.\nBy Lemma \\ref{lemma-lift-purity} (or the more general\nLemma \\ref{lemma-lift-purity-general})\nit suffices to show that $V_0$ is in the essential\nimage of $\\textit{F\\'Et}_{\\Spec(A/fA)} \\to \\textit{F\\'Et}_{U_0}$.\nThis follows from the induction hypothesis.\n\\end{proof}\n\n\\begin{lemma}[Purity of branch locus]\n\\label{lemma-purity}\n\\begin{reference}\n\\cite{Nagata-Purity} and \\cite[Exp. X, Thm. 3.1]{SGA1}\n\\end{reference}\n\\begin{history}\nThis result was first stated and proved by Zariski in\ngeometric form in \\cite{Zariski-Purity}.\nThe generalization to nonperfect ground fields by Nagata\nwas published as the next article in the same volume of the\nProceedings of the National Academy of Sciences of the United States of America\nin \\cite{Nagata-Remarks-Purity}. In the following year Nagata\nproved the result for Noetherian local rings in \\cite{Nagata-Purity}.\nHis proof uses a result of Chow which is a Bertini theorem for\ncomplete local domains, see \\cite{Chow-Bertini};\nthe history of Bertini's theorems is discussed in\nKleiman's historical article \\cite{Kleiman-Bertini}.\nA few years later a completely different proof was found by\nAuslander, see \\cite{Auslander-Purity}.\n\\end{history}\nLet $f : X \\to Y$ be a morphism of locally Noetherian schemes.\nLet $x \\in X$ and set $y = f(x)$. Assume\n\\begin{enumerate}\n\\item $\\mathcal{O}_{X, x}$ is normal,\n\\item $\\mathcal{O}_{Y, y}$ is regular,\n\\item $f$ is quasi-finite at $x$,\n\\item $\\dim(\\mathcal{O}_{X, x}) = \\dim(\\mathcal{O}_{Y, y}) \\geq 1$\n\\item for specializations $x' \\leadsto x$ with\n$\\dim(\\mathcal{O}_{X, x'}) = 1$ our $f$ is unramified at $x'$.\n\\end{enumerate}\nThen $f$ is \\'etale at $x$.\n\\end{lemma}\n\n\\begin{proof}\nWe will prove the lemma by induction on\n$d = \\dim(\\mathcal{O}_{X, x}) = \\dim(\\mathcal{O}_{Y, y})$.\n\n\\medskip\\noindent\nAn uninteresting case is when $d = 1$.\nIn that case we are assuming that $f$ is unramified at $x$\nand that $\\mathcal{O}_{Y, y}$ is a discrete valuation ring\n(Algebra, Lemma \\ref{algebra-lemma-characterize-dvr}).\nThen $\\mathcal{O}_{X, x}$ is flat over $\\mathcal{O}_{Y, y}$\n(otherwise the map would not be quasi-finite at $x$)\nand we see that $f$ is flat at $x$. Since flat $+$\nunramified is \\'etale we conclude (some details omitted).\n\n\\medskip\\noindent\nThe case $d \\geq 2$. We will use induction on $d$ to reduce\nto the case discussed in Lemma \\ref{lemma-local-purity}.\nTo check $f$ is \\'etale at $x$ we may work \\'etale locally\non the base and on the target\n(Descent, Lemmas \\ref{descent-lemma-descending-property-etale} and\n\\ref{descent-lemma-etale-etale-local-source}).\nThus we can apply More on Morphisms, Lemma\n\\ref{more-morphisms-lemma-etale-makes-quasi-finite-finite-at-point}\nand assume that $f : X \\to Y$ is finite and that $x$ is the unique\npoint of $X$ lying over $y$. Here we use that \\'etale extensions of\nlocal rings do not change dimension, normality, and regularity, see\nMore on Algebra, Section \\ref{more-algebra-section-permanence-etale}\nand\n\\'Etale Morphisms, Section \\ref{etale-section-properties-permanence}.\n\n\\medskip\\noindent\nNext, we can base change by $\\Spec(\\mathcal{O}_{Y, y})$\nand assume that $Y$ is the spectrum of a regular local ring.\nIt follows that $X = \\Spec(\\mathcal{O}_{X, x})$ as\nevery point of $X$ necessarily specializes to $x$.\n\n\\medskip\\noindent\nThe ring map $\\mathcal{O}_{Y, y} \\to \\mathcal{O}_{X, x}$ is\nfinite and necessarily injective (by equality of dimensions).\nWe conclude we have going down for\n$\\mathcal{O}_{Y, y} \\to \\mathcal{O}_{X, x}$ by\nAlgebra, Proposition \\ref{algebra-proposition-going-down-normal-integral}\n(and the fact that a regular ring is a normal ring by\nAlgebra, Lemma \\ref{algebra-lemma-regular-normal}).\nPick $x' \\in X$, $x' \\not = x$ with image $y' = f(x')$.\nThen $\\mathcal{O}_{X, x'}$ is normal as a localization\nof a normal domain. Similarly, $\\mathcal{O}_{Y, y'}$ is\nregular (see Algebra, Lemma\n\\ref{algebra-lemma-localization-of-regular-local-is-regular}).\nWe have $\\dim(\\mathcal{O}_{X, x'}) = \\dim(\\mathcal{O}_{Y, y'})$ by\nAlgebra, Lemma \\ref{algebra-lemma-dimension-base-fibre-equals-total}\n(we checked going down above).\nOf course these dimensions are strictly less than $d$ as $x' \\not = x$\nand by induction on $d$ we conclude that $f$ is \\'etale at $x'$.\n\n\\medskip\\noindent\nThus we arrive at the following situation: We have a finite\nlocal homomorphism $A \\to B$ of Noetherian local rings\nof dimension $d \\geq 2$, with $A$ regular, $B$ normal, which\ninduces a finite \\'etale morphism $V \\to U$ on punctured spectra.\nOur goal is to show that $A \\to B$ is \\'etale.\nThis follows from Lemma \\ref{lemma-local-purity}\nand the proof is complete.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\\section{Finite \\'etale covers of punctured spectra, II}\n\\label{section-pi1-punctured-spec-II}\n\n\\noindent\nIn this section we prove some variants of the material discussed\nin Section \\ref{section-pi1-punctured-spec}. Suppose\nwe have a Noetherian local ring $(A, \\mathfrak m)$ and $f \\in \\mathfrak m$.\nWe set $X = \\Spec(A)$ and $X_0 = \\Spec(A/fA)$ and we\nlet $U = X \\setminus \\{\\mathfrak m\\}$ and\n$U_0 = X_0 \\setminus \\{\\mathfrak m\\}$ be the punctured spectrum of\n$A$ and $A/fA$. All of this is exactly as in\nSituation \\ref{situation-local-lefschetz}.\nThe difference is that we will consider the functor\n$$\n\\colim_{U_0 \\subset U' \\subset U} \\textit{F\\'Et}_{U'}\n\\longrightarrow \\textit{F\\'Et}_{U_0},\\quad\nV' \\longmapsto V_0 = V' \\times_{U'} U_0\n$$\nIn other words, we will not try to lift finite \\'etale coverings\nof $U_0$ to all of $U$, but just to some open neighbourhood\n$U'$ of $U_0$ in $U$.\n\n\\begin{lemma}\n\\label{lemma-faithful-general}\nIn Situation \\ref{situation-local-lefschetz}.\nLet $U' \\subset U$ be open and contain $U_0$.\nAssume $\\dim(A/\\mathfrak p) \\geq 2$ for every minimal prime\n$\\mathfrak p \\subset A$ corresponding to a point of $U'$. Then\n$$\n\\textit{F\\'Et}_{U'} \\longrightarrow \\textit{F\\'Et}_{U_0},\\quad\nV' \\longmapsto V_0 = V' \\times_{U'} U_0\n$$\nis a faithful functor. Moreover, there exists a $U'$ satisfying\nthese assumptions.\n\\end{lemma}\n\n\\begin{proof}\nLet $a, b : V' \\to W'$ be two morphisms of schemes finite \\'etale\nover $U'$ whose restriction to $U_0$ are the same. By\nAlgebra, Lemma \\ref{algebra-lemma-one-equation}\nwe see that $V(\\mathfrak p)$ meets $U_0$ for\nevery prime $\\mathfrak p$ of $A$ with $\\dim(A/\\mathfrak p) \\geq 2$.\nThe assumption therefore implies that every\nirreducible component of $U'$ meets $U_0$.\nThe image of any irreducible component of $V'$ is an\nirreducible component of $U'$ and hence meets $U_0$.\nHence $V_0$ meets every connected component of $V'$ and\nwe conclude that $a = b$ by \\'Etale Morphisms, Proposition\n\\ref{etale-proposition-equality}.\nTo see the existence of such a $U'$ note that if\n$\\mathfrak p \\subset A$ is a prime with $\\dim(A/\\mathfrak p) = 1$\nthen $\\mathfrak p$ corresponds to a closed point of $U$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-fully-faithful-general-better}\nIn Situation \\ref{situation-local-lefschetz} assume\n\\begin{enumerate}\n\\item $A$ has a dualizing complex and is $f$-adically complete,\n\\item $f$ is a nonzerodivisor,\n\\item for $x \\in X \\setminus X_0$ whose closure $\\overline{\\{x\\}}$\nin $X$ meets $U_0$ we have $\\text{depth}(\\mathcal{O}_{X, x}) \\geq 1$\nor $\\text{depth}(\\mathcal{O}_{X, x}) + \\dim(\\overline{\\{x\\}}) > 2$.\n\\end{enumerate}\nLet $V'$, $W'$ be finite \\'etale over an open $U' \\subset U$\nwhich contains $U_0$. Let\n$\\varphi_0 : V' \\times_{U'} U_0 \\to W' \\times_{U'} U_0$\nbe a morphism over $U_0$.\nThen there exists an open $U'' \\subset U'$\ncontaining $U_0$ and a morphism\n$\\varphi : V' \\times_{U'} U'' \\to W' \\times_{U'} U''$\nlifting $\\varphi_0$.\n\\end{lemma}\n\n\\begin{proof}\nSince the category of finite \\'etale coverings has an internal hom\n(Lemma \\ref{lemma-internal-hom-finite-etale})\nit suffices to prove the following: Given $V'$ finite \\'etale over $U'$\nany section $U_0 \\to V' \\times_{U'} U_0$ extends to a section of $V'$\nover some open $U'' \\subset U'$ containing $U_0$.\nGiven our section we obtain a decomposition\n$V' \\times_{U'} U_0 = U_0 \\amalg R_0$ into open and closed subschemes.\nWe will show that this implies the same thing for $V' \\times_{U'} U''$\nfor some $U'' \\subset U'$ open containing $U_0$ thereby\nfinishing the proof.\n\n\\medskip\\noindent\nFor $n \\geq 1$ let $U_n$ be the punctured spectrum of $A/f^{n + 1}A$. By\n\\'Etale Morphisms, Theorem \\ref{etale-theorem-remarkable-equivalence}\nwe conclude that there is a unique decomposition\n$V' \\times_{U'} U_n = U_n \\amalg R_n$\ninto open and closed subschemes whose base change to $U_0$ recovers\nthe given decomposition.\n\n\\medskip\\noindent\nVia the inclusions $U_n \\to V' \\times_{U'} U_n \\to V'$\nwe obtain an $A$-algebra map\n$$\n\\Gamma(V', \\mathcal{O}_{V'}) \\to B = \\lim H^0(U_n, \\mathcal{O}_{U_n})\n$$\nBy Local Cohomology, Theorem\n\\ref{local-cohomology-theorem-algebraization-formal-sections}\napplied with $s = 1$ and $\\mathcal{F} = \\mathcal{O}_U$ we see that\n$B = H^0(U'', \\mathcal{O}_{U''})$ for some open $U'' \\subset U$\ncontaining $U_0$. Since $V \\to U$ is affine, this $A$-algebra map\ncorresponds to a morphism $U'' \\to V'$ over $U'$ as desired.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-fully-faithful-general}\nIn Situation \\ref{situation-local-lefschetz} assume\n\\begin{enumerate}\n\\item $A$ is $f$-adically complete,\n\\item $f$ is a nonzerodivisor, and\n\\item $H^1_\\mathfrak m(A/fA)$ is a finite $A$-module.\n\\end{enumerate}\nLet $V'$, $W'$ be finite \\'etale over an open $U' \\subset U$\nwhich contains $U_0$. Let\n$\\varphi_0 : V' \\times_{U'} U_0 \\to W' \\times_{U'} U_0$\nbe a morphism over $U_0$.\nThen there exists an open $U'' \\subset U'$\ncontaining $U_0$ and a morphism\n$\\varphi : V' \\times_{U'} U'' \\to W' \\times_{U'} U''$\nlifting $\\varphi_0$.\n\\end{lemma}\n\n\\begin{proof}\nThis lemma is a variant of\nLemma \\ref{lemma-fully-faithful-general-better}\nand if $A$ is a complete local ring, then it follows from that lemma.\nWe suggest the reader skip the proof.\n\n\\medskip\\noindent\nSince the category of finite \\'etale coverings has an internal hom\n(Lemma \\ref{lemma-internal-hom-finite-etale})\nit suffices to prove the following: Given $V'$ finite \\'etale over $U'$\nany section $U_0 \\to V' \\times_{U'} U_0$ extends to a section of $V'$\nover some open $U'' \\subset U'$ containing $U_0$.\nGiven our section we obtain a decomposition\n$V' \\times_{U'} U_0 = U_0 \\amalg R_0$ into open and closed subschemes.\nWe will show that this implies the same thing for $V' \\times_{U'} U''$\nfor some $U'' \\subset U'$ open containing $U_0$ thereby\nfinishing the proof.\n\n\\medskip\\noindent\nFor $n \\geq 1$ let $U_n$ be the punctured spectrum of $A/f^{n + 1}A$. By\n\\'Etale Morphisms, Theorem \\ref{etale-theorem-remarkable-equivalence}\nwe conclude that there is a unique decomposition\n$V' \\times_{U'} U_n = U_n \\amalg R_n$\ninto open and closed subschemes whose base change to $U_0$ recovers\nthe given decomposition.\n\n\\medskip\\noindent\nThe finiteness of $H^1_\\mathfrak m(A/fA)$ tells us that\n$B_0 = \\Gamma(U_0, \\mathcal{O}_{U_0})$ is a finite $A$-module, see\nLocal Cohomology, Lemma\n\\ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local}.\nSet $B_n = \\Gamma(U_n, \\mathcal{O}_{U_n})$.\nAs $f$ is a nonzerodivisor we have exact sequences\n$$\n0 \\to A/f^nA \\xrightarrow{f} A/f^{n + 1}A \\to A/fA \\to 0\n$$\nand hence short exact sequences $0 \\to \\mathcal{O}_{U_n} \\to\n\\mathcal{O}_{U_{n + 1}} \\to \\mathcal{O}_{U_0} \\to 0$.\nThus we may apply Local Cohomology, Lemma\n\\ref{local-cohomology-lemma-limit-finite}\nto the inverse system $\\mathcal{O}_{U_n}$ on $U$.\nWe find that $B = \\lim B_n$ is a finite $A$-algebra, such that\n$f$ is a nonzerodivisor on $B$,\nand such that $B/fB \\subset B_0$.\nVia the inclusions $U_n \\to V' \\times_{U'} U_n \\to V'$\nwe obtain an $A$-algebra map $\\Gamma(V', \\mathcal{O}_{V'}) \\to B$.\nSince $V \\to U$ is affine, this $A$-algebra map corresponds to\na morphism\n$$\n\\Spec(B) \\times_{\\Spec(A)} U' \\longrightarrow V'\n$$\nover $U'$.\n\n\\medskip\\noindent\nLet $\\mathfrak q \\in U_0$ be a prime. The kernel and cokernel of\n$A/fA \\to B_0$ have support contained in $\\{\\mathfrak m\\}$ (see above).\nHence the same is true for the map $A/fA \\to B/fB$.\nThen $A_\\mathfrak q \\to B_\\mathfrak q$ is finite and\ninduces an isomorphism $(A/fA)_\\mathfrak q \\to (B/fB)_\\mathfrak q$.\nSince $f$ is a nonzerodivisor on $B$ it follows that\n$A_\\mathfrak q \\to B_\\mathfrak q$ is an isomorphism.\nUsing finiteness again we find $g \\in A$, $g \\not \\in \\mathfrak q$\nsuch that $A_g \\to B_g$ is an isomorphism.\nIt follows that $\\Spec(B) \\to \\Spec(A)$ is an\nisomorphism over an open $U'' \\subset U'$ which produces\nthe desired section by the above.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-essentially-surjective-general-better}\nIn Situation \\ref{situation-local-lefschetz} assume\n\\begin{enumerate}\n\\item $A$ has a dualizing complex and is $f$-adically complete,\n\\item $f$ is a nonzerodivisor,\n\\item $A$ is $f$-adically complete,\n\\item if $\\mathfrak p \\in V(f) \\setminus \\{\\mathfrak m\\}$, then\n$\\text{depth}((A/f)_\\mathfrak p) + \\dim(A/\\mathfrak p) > 1$, and\n\\item if $\\mathfrak p \\not \\in V(f)$ and\n$V(\\mathfrak p) \\cap V(f) \\not = \\{\\mathfrak m\\}$, then\n$\\text{depth}(A_\\mathfrak p) + \\dim(A/\\mathfrak p) > 3$.\n\\end{enumerate}\nFor any finite \\'etale morphism $V_0 \\to U_0$ there exists an open\n$U' \\subset U$ containing $U_0$ and a finite \\'etale morphism\n$V' \\to U'$ whose base change to $U_0$ is $V_0 \\to U_0$.\n\\end{lemma}\n\n\\begin{proof}\nFor $n \\geq 1$ let $U_n$ be the punctured spectrum of $A/f^{n + 1}A$.\nBy \\'Etale Morphisms, Theorem \\ref{etale-theorem-remarkable-equivalence}\nwe conclude that there is a unique finite \\'etale morphism\n$\\pi_n : V_n \\to U_n$ whose base change to $U_0$ recovers $V_0 \\to U_0$.\nConsider the sheaves $\\mathcal{F}_n = \\pi_{n, *}\\mathcal{O}_{V_n}$.\nWe may and do view $\\mathcal{F}_n$ as an $\\mathcal{O}_U$-module on $U$\nwich is locally isomorphic to\n$(\\mathcal{O}_U/f^{n + 1}\\mathcal{O}_U)^{\\oplus r}$. By\nLocal Cohomology, Lemma \\ref{local-cohomology-lemma-algebraization-principal}\nthere exists a coherent $\\mathcal{O}_U$-module $\\mathcal{F}$\nand a compatible system of isomorphisms\n$$\n\\mathcal{F}/f^{n + 1}\\mathcal{F} \\to \\mathcal{F}_n\n$$\nof $\\mathcal{O}_U$-modules. If $x \\in U_0$, then the $f$-adic\ncompletion of the stalk $\\mathcal{F}_x$ is isomorphic to\na finite free module over the $f$-adic completion of $\\mathcal{O}_{U, u}$.\nHence $\\mathcal{F}$ is finite locally free in an open neighbourhood\n$U'$ of $U_0$.\n\n\\medskip\\noindent\nTo construct an algebra structure on $\\mathcal{F}$ consider the coherent\n$\\mathcal{O}_U$-module\n$$\n\\mathcal{H} = \\SheafHom_{\\mathcal{O}_U}(\n\\mathcal{F}\\otimes_{\\mathcal{O}_U} \\mathcal{F}, \\mathcal{F})\n$$\nObserve that $\\mathcal{H}|_{U'}$ is finite locally free. The multiplication\nmaps\n$\\mathcal{F}_n \\otimes_{\\mathcal{O}_U} \\mathcal{F}_n \\to \\mathcal{F}_n$\ncoming from the fact that $\\mathcal{F}_n = \\pi_{n, *}\\mathcal{O}_{V_n}$\nare sheaves of algebras defines an an element in\n$$\n\\lim \\Gamma(U, \\mathcal{H}/f^{n + 1}\\mathcal{H})\n$$\nBy Local Cohomology, Theorem\n\\ref{local-cohomology-theorem-algebraization-formal-sections}\nthis comes from a section $\\mu \\in \\Gamma(U', \\mathcal{F})$\nafter possibly shrinking $U'$. After possibly shrinking furter\nwe may assume $\\mu$ defines a commutative $\\mathcal{O}_{U'}$-algebra\nstructure on $\\mathcal{F}$ compatible with the given algebra\nstructures on $\\mathcal{F}_n$.\nSetting\n$$\nV' = \\underline{\\Spec}_{U'}((\\mathcal{F}|_{U'}, \\mu))\n$$\nwe obtain a finite locally free scheme over $U'$ whose restriction\nto $U_n$ is isomorphic to $V_n$. It follows that $V' \\to U'$\nis \\'etale at all points lying over $U_0$, see\nMore on Morphisms, Lemma\n\\ref{more-morphisms-lemma-check-smoothness-on-infinitesimal-nbhds}.\nThis finishes the proof.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-essentially-surjective-general}\nIn Situation \\ref{situation-local-lefschetz} assume\n\\begin{enumerate}\n\\item $A$ is $f$-adically complete,\n\\item $f$ is a nonzerodivisor,\n\\item $H^1_\\mathfrak m(A/fA)$ and $H^2_\\mathfrak m(A/fA)$\nare finite $A$-modules.\n\\end{enumerate}\nFor any finite \\'etale morphism $V_0 \\to U_0$ there exists an open\n$U' \\subset U$ containing $U_0$ and a finite \\'etale morphism\n$V' \\to U'$ whose base change to $U_0$ is $V_0 \\to U_0$.\n\\end{lemma}\n\n\\begin{proof}\nThis lemma is a variant of\nLemma \\ref{lemma-essentially-surjective-general-better}\nand if $A$ is a complete local ring, then it follows from that lemma.\nWe suggest the reader skip the proof.\n\n\\medskip\\noindent\nFor $n \\geq 1$ let $U_n$ be the punctured spectrum of $A/f^{n + 1}A$.\nBy \\'Etale Morphisms, Theorem \\ref{etale-theorem-remarkable-equivalence}\nwe conclude that there is a unique finite \\'etale morphism\n$\\pi_n : V_n \\to U_n$ whose base change to $U_0$ recovers $V_0 \\to U_0$.\nConsider the sheaves $\\mathcal{F}_n = \\pi_{n, *}\\mathcal{O}_{V_n}$.\nWe may view $\\mathcal{F}_n$ as an $\\mathcal{O}_U$-module on $U$.\nAs $f$ is a nonzerodivisor we obtain short exact sequences\n$$\n0 \\to A/f^nA \\xrightarrow{f} A/f^{n + 1}A \\to A/fA \\to 0\n$$\nand because $V_n \\to U_n$ is finite locally free we have corresponding\nshort exact sequences\n$0 \\to \\mathcal{F}_n \\to \\mathcal{F}_{n + 1} \\to \\mathcal{F}_0 \\to 0$.\n\n\\medskip\\noindent\nWe will use Local Cohomology, Lemma\n\\ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local}\nwithout further mention.\nOur assumptions imply that $H^0(U, \\mathcal{O}_{U_0})$ and\n$H^1(U, \\mathcal{O}_{U_0})$ are finite $A$-modules.\nHence the same thing is true for $\\mathcal{F}_0$, see\nLocal Cohomology, Lemma\n\\ref{local-cohomology-lemma-finiteness-for-finite-locally-free}.\nThus $H^0(U, \\mathcal{F}_0)$ is a finite $A$-module\nand $H^1(U, \\mathcal{F}_0)$ has finite length\n(as a finite $A$-module which is $\\mathfrak m$-power torsion).\nThus Local Cohomology, Lemmas \\ref{local-cohomology-lemma-limit-finite} and\n\\ref{local-cohomology-lemma-ML} apply to the system above. Set\n$$\nB_n = \\Gamma(V_n, \\mathcal{O}_{V_n}) = \\Gamma(U, \\mathcal{F}_n)\n$$\nWe conclude that the system $(B_n)$ satisfies the Mittag-Leffler condition,\nthat $B = \\lim B_n$ is a finite $A$-algebra, that $f$ is a nonzerodivisor\non $B$ and that $B/fB \\subset B_0$. To finish the proof,\nwe will show that the finite morphism\n$\\Spec(B) \\to \\Spec(A)$ (a) becomes isomorphic to $V_0 \\to U_0$\nafter base change to $U_0$ and (b) is \\'etale at all points lying\nover $U_0$.\n\n\\medskip\\noindent\nLet $\\mathfrak q \\in U_0$ be a prime. By the Mittag-Leffler\ncondition, we know that $B/fB \\subset B_0$ is the image of\n$B_{n + 1} \\to B_0$ for some $n$. Since the cokernel of $B_{n + 1} \\to B_0$\nis contained in $H^1(U, \\mathcal{F}_n)$ which is $\\mathfrak m$-power\ntorsion, we conclude that $B/fB \\to B_0$ becomes an isomorphism\nafter localizing at $\\mathfrak q$. This proves (a).\nThus $A_\\mathfrak q \\to B_\\mathfrak q$\nis finite and $(A/fA)_\\mathfrak q \\to (B/fB)_\\mathfrak q$ is \\'etale.\nSince $f$ is a nonzerodivisor on $B$ it follows that\n$A_\\mathfrak q \\to B_\\mathfrak q$ is flat\n(Algebra, Lemma \\ref{algebra-lemma-variant-local-criterion-flatness}).\nThus $A \\to B$ is \\'etale at all primes lying over $\\mathfrak q$\n(for example by Algebra, Lemma \\ref{algebra-lemma-characterize-etale})\nwhich proves (b).\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-combine}\nLet $(A, \\mathfrak m)$ be a complete local ring and $f \\in \\mathfrak m$\na nonzerodivisor. Let $U$, resp.\\ $U_0$ be the punctured spectrum of\n$A$, resp.\\ $A/fA$. Assume\n\\begin{enumerate}\n\\item if $\\mathfrak p \\in V(f) \\setminus \\{\\mathfrak m\\}$, then\n$\\text{depth}((A/f)_\\mathfrak p) + \\dim(A/\\mathfrak p) > 1$, and\n\\item if $\\mathfrak p \\not \\in V(f)$ and\n$V(\\mathfrak p) \\cap V(f) \\not = \\{\\mathfrak m\\}$, then\n$\\text{depth}(A_\\mathfrak p) + \\dim(A/\\mathfrak p) > 3$.\n\\end{enumerate}\nCombining Lemmas \\ref{lemma-faithful-general},\n\\ref{lemma-fully-faithful-general-better}, and\n\\ref{lemma-essentially-surjective-general-better}\nwe see that the category\n$$\n\\colim\\nolimits_{U' \\subset U\\text{ open, }U_0 \\subset U}\n\\text{ category of schemes finite \\'etale over }U'\n$$\nis equivalent to the category of schemes finite \\'etale over $U_0$.\nFor example it suffices if every irreducible component of $\\Spec(A)$\nhas dimension $\\geq 4$ and $A$ is $(S_2)$.\nFor example, if $A$ is a normal domain of dimension $\\geq 4$!\n\\end{remark}\n\n\n\n\n\n\n\n\\section{Purity in local case, II}\n\\label{section-local-purity-II}\n\n\\noindent\nThis section is the continuation of Section \\ref{section-local-purity}.\nIn the next lemma we say {\\it purity holds} for a Noetherian local ring\n$(A, \\mathfrak m)$ if the restriction functor\n$\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_U$ is essentially\nsurjective where $X = \\Spec(A)$ and $U = X \\setminus \\{\\mathfrak m\\}$\nis the punctured spectrum.\n\n\\begin{lemma}\n\\label{lemma-purity-inherited-by-hypersurface-better}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring.\nLet $f \\in \\mathfrak m$. Assume\n\\begin{enumerate}\n\\item $A$ has a dualizing complex and is $f$-adically complete,\n\\item $f$ is a nonzerodivisor,\n\\item if $\\mathfrak p \\in V(f) \\setminus \\{\\mathfrak m\\}$, then\n$\\text{depth}((A/f)_\\mathfrak p) + \\dim(A/\\mathfrak p) > 1$, and\n\\item if $\\mathfrak p \\not \\in V(f)$ and\n$V(\\mathfrak p) \\cap V(f) \\not = \\{\\mathfrak m\\}$, then\n$\\text{depth}(A_\\mathfrak p) + \\dim(A/\\mathfrak p) > 3$,\n\\item for every maximal ideal $\\mathfrak p \\subset A_f$\npurity holds for $(A_f)_\\mathfrak p$, and\n\\item purity holds for $A$.\n\\end{enumerate}\nThen purity holds for $A/fA$.\n\\end{lemma}\n\n\\begin{proof}\nDenote $X = \\Spec(A)$ and $U = X \\setminus \\{\\mathfrak m\\}$\nthe punctured spectrum. Similarly we have $X_0 = \\Spec(A/fA)$\nand $U_0 = X_0 \\setminus \\{\\mathfrak m\\}$.\nLet $V_0 \\to U_0$ be a finite \\'etale morphism. By\nLemma \\ref{lemma-essentially-surjective-general-better}\nthere exists an open $U' \\subset U$ containing $U_0$ and\na finite \\'etale morphism $V' \\to U$ whose base change to $U_0$\nis isomorphic to $V_0 \\to U_0$. Since $U' \\supset U_0$\nwe see that $U \\setminus U'$ consists of points corresponding\nto prime ideals $\\mathfrak p_1, \\ldots, \\mathfrak p_n$ as in (4).\nBy assumption we can find finite \\'etale morphisms\n$V'_i \\to \\Spec(A_{\\mathfrak p_i})$ agreeing with\n$V' \\to U'$ over $U' \\times_U \\Spec(A_{\\mathfrak p_i})$.\nBy Limits, Lemma \\ref{limits-lemma-glueing-near-closed-point}\napplied $n$ times we see that $V' \\to U'$ extends to a finite \\'etale\nmorphism $V \\to U$. By assumption (5) we find that $V \\to U$ extends\nto a finite \\'etale morphism $Y \\to X$. Then the restriction of\n$Y$ to $X_0$ is the desired extension of $V_0 \\to U_0$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-purity-inherited-by-hypersurface}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring.\nLet $f \\in \\mathfrak m$. Assume\n\\begin{enumerate}\n\\item $A$ is $f$-adically complete,\n\\item $f$ is a nonzerodivisor,\n\\item $H^1_\\mathfrak m(A/fA)$ and $H^2_\\mathfrak m(A/fA)$ are finite\n$A$-modules,\n\\item for every maximal ideal $\\mathfrak p \\subset A_f$\npurity holds for $(A_f)_\\mathfrak p$,\n\\item purity holds for $A$.\n\\end{enumerate}\nThen purity holds for $A/fA$.\n\\end{lemma}\n\n\\begin{proof}\nThe proof is identical to the proof of\nLemma \\ref{lemma-purity-inherited-by-hypersurface-better}\nusing\nLemma \\ref{lemma-essentially-surjective-general}\nin stead of\nLemma \\ref{lemma-essentially-surjective-general-better}.\n\\end{proof}\n\n\\noindent\nNow we can bootstrap the earlier results to prove that\npurity holds for complete intersections of dimension $\\geq 3$.\nRecall that a Noetherian local ring is called a complete\nintersection if its completion is the quotient of a\nregular local ring by the ideal generated by a regular sequence.\nSee the discussion in Divided Power Algebra, Section \\ref{dpa-section-lci}.\n\n\\begin{proposition}\n\\label{proposition-purity-complete-intersection}\nLet $(A, \\mathfrak m)$ be a Noetherian local ring. If $A$ is a\ncomplete intersection of dimension $\\geq 3$, then purity\nholds for $A$ in the sense that any finite \\'etale cover of\nthe punctured spectrum extends.\n\\end{proposition}\n\n\\begin{proof}\nBy Lemma \\ref{lemma-purity-and-completion} we may assume that $A$ is\na complete local ring. By assumption we can write\n$A = B/(f_1, \\ldots, f_r)$ where $B$ is a complete regular local\nring and $f_1, \\ldots, f_r$ is a regular sequence.\nWe will finish the proof by induction on $r$.\nThe base case is $r = 0$ which follows from\nLemma \\ref{lemma-local-purity} which applies to\nregular rings of dimension $\\geq 2$.\n\n\\medskip\\noindent\nAssume that $A = B/(f_1, \\ldots, f_r)$ and that the proposition\nholds for $r - 1$. Set $A' = B/(f_1, \\ldots, f_{r - 1})$ and apply\nLemma \\ref{lemma-purity-inherited-by-hypersurface} to $f_r \\in A'$.\nThis is permissible:\ncondition (1) holds as $f_1, \\ldots, f_r$ is a regular sequence,\ncondition (2) holds as $B$ and hence $A'$ is complete,\ncondition (3) holds as $A = A'/f_r A'$ is Cohen-Macaulay of dimension\n$\\dim(A) \\geq 3$, see Dualizing Complexes, Lemma \\ref{dualizing-lemma-depth},\ncondition (4) holds by induction hypothesis as\n$\\dim((A'_{f_r})_\\mathfrak p) \\geq 3$ for a maximal\nprime $\\mathfrak p$ of $A'_{f_r}$ and as\n$(A'_{f_r})_\\mathfrak p = B_\\mathfrak q/(f_1, \\ldots, f_{r - 1})$\nfor some $\\mathfrak q \\subset B$,\ncondition (5) holds by induction hypothesis.\n\\end{proof}\n\n\n\n\n\n\n\\section{Specialization maps in the smooth proper case}\n\\label{section-specialization-smooth-proper}\n\n\\noindent\nIn this section we discuss the following result.\nLet $f : X \\to S$ be a proper smooth morphism of schemes.\nLet $s \\leadsto s'$ be a specialization of points in $S$.\nThen the specialization map\n$$\nsp : \\pi_1(X_{\\overline{s}}) \\longrightarrow \\pi_1(X_{\\overline{s}'})\n$$\nof Section \\ref{section-specialization-map}\nis surjective and\n\\begin{enumerate}\n\\item if the characteristic of $\\kappa(s')$ is zero, then it is\nan isomorphism, or\n\\item if the characteristic of $\\kappa(s')$ is $p > 0$, then it\ninduces an isomorphism on maximal prime-to-$p$ quotients.\n\\end{enumerate}\n\n\\begin{lemma}\n\\label{lemma-specialization-map-surjective}\nLet $f : X \\to S$ be a flat proper morphism with geometrically\nconnected fibres. Let $s' \\leadsto s$ be a specialization.\nIf $X_s$ is geometrically reduced, then the specialization\nmap $sp : \\pi_1(X_{\\overline{s}'}) \\to \\pi_1(X_{\\overline{s}})$\nis surjective.\n\\end{lemma}\n\n\\begin{proof}\nSince $X_s$ is geometrically reduced, we may assume all\nfibres are geometrically reduced after possibly shrinking $S$, see\nMore on Morphisms, Lemma \\ref{more-morphisms-lemma-geometrically-reduced-open}.\nLet $\\mathcal{O}_{S, s} \\to A \\to \\kappa(\\overline{s}')$ be as\nin the construction of the specialization map, see\nSection \\ref{section-specialization-map}.\nThus it suffices to show that\n$$\n\\pi_1(X_{\\overline{s}'}) \\to \\pi_1(X_A)\n$$\nis surjective. This follows from\nProposition \\ref{proposition-first-homotopy-sequence}\nand $\\pi_1(\\Spec(A)) = \\{1\\}$.\n\\end{proof}\n\n\\begin{proposition}\n\\label{proposition-specialization-map-isomorphism}\nLet $f : X \\to S$ be a smooth proper morphism with geometrically\nconnected fibres. Let $s' \\leadsto s$ be a specialization.\nIf the characteristic to $\\kappa(s)$ is zero, then the specialization\nmap\n$$\nsp : \\pi_1(X_{\\overline{s}'}) \\to \\pi_1(X_{\\overline{s}})\n$$\nis an isomorphism.\n\\end{proposition}\n\n\\begin{proof}\nThe map is surjective by\nLemma \\ref{lemma-specialization-map-surjective}.\nThus we have to show it is injective.\n\n\\medskip\\noindent\nWe may assume $S$ is affine. Then $S$ is a cofiltered limit of affine\nschemes of finite type over $\\mathbf{Z}$.\nHence we can assume $X \\to S$ is the\nbase change of $X_0 \\to S_0$ where $S_0$ is the spectrum of a finite\ntype $\\mathbf{Z}$-algebra and $X_0 \\to S_0$ is smooth and proper.\nSee Limits, Lemma \\ref{limits-lemma-descend-finite-presentation},\n\\ref{limits-lemma-descend-smooth}, and\n\\ref{limits-lemma-eventually-proper}. By\nLemma \\ref{lemma-specialization-map-base-change}\nwe reduce to the case where the base is Noetherian.\n\n\\medskip\\noindent\nApplying Lemma \\ref{lemma-specialization-map-discrete-valuation-ring}\nwe reduce to the case where the base $S$ is the spectrum of a\nstrictly henselian discrete valuation ring $A$ and we are\nlooking at the specialization map over $A$.\nLet $K$ be the fraction field of $A$.\nChoose an algebraic closure $\\overline{K}$ which\ncorresponds to a geometric generic point $\\overline{\\eta}$ of $\\Spec(A)$.\nFor $\\overline{K}/L/K$ finite separable, let $B \\subset L$ be the\nintegral closure of $A$ in $L$. This is a discrete\nvaluation ring by\nMore on Algebra, Remark \\ref{more-algebra-remark-finite-separable-extension}.\n\n\\medskip\\noindent\nLet $X \\to \\Spec(A)$ be as in the previous paragraph.\nTo show injectivity of the specialization map\nit suffices to prove that every finite\n\\'etale cover $V$ of $X_{\\overline{\\eta}}$ is the base\nchange of a finite \\'etale cover $Y \\to X$.\nNamely, then $\\pi_1(X_{\\overline{\\eta}}) \\to \\pi_1(X) = \\pi_1(X_s)$\nis injective by Lemma \\ref{lemma-functoriality-galois-injective}.\n\n\\medskip\\noindent\nGiven $V$ we can first descend $V$ to $V' \\to X_{K^{sep}}$ by\nLemma \\ref{lemma-perfection} and then to\n$V'' \\to X_L$ by Lemma \\ref{lemma-limit}.\nLet $Z \\to X_B$ be the normalization of $X_B$ in $V''$.\nObserve that $Z$ is normal and that $Z_L = V''$ as schemes\nover $X_L$. Hence $Z \\to X_B$ is finite \\'etale over\nthe generic fibre. The problem is that we do not know that\n$Z \\to X_B$ is everywhere \\'etale. Since $X \\to \\Spec(A)$\nhas geometrically connected smooth fibres, we see that\nthe special fibre $X_s$ is geometrically irreducible.\nHence the special fibre of $X_B \\to \\Spec(B)$ is irreducible;\nlet $\\xi_B$ be its generic point. Let\n$\\xi_1, \\ldots, \\xi_r$ be the points of $Z$ mapping to\n$\\xi_B$. Our first (and it will turn out only) problem\nis now that the extensions\n$$\n\\mathcal{O}_{X_B, \\xi_B} \\subset \\mathcal{O}_{Z, \\xi_i}\n$$\nof discrete valuation rings may be ramified. Let $e_i$ be\nthe ramification index of this extension. Note that since the\ncharacteristic of $\\kappa(s)$ is zero, the ramification is tame!\n\n\\medskip\\noindent\nTo get rid of the ramification we are going to choose a further finite\nseparable extension $K^{sep}/L'/L/K$ such that the ramification\nindex $e$ of the induced extensions $B'/B$ is divisible by $e_i$.\nConsider the normalized base change $Z'$ of $Z$ with respect to\n$\\Spec(B') \\to \\Spec(B)$, see discussion in\nMore on Morphisms, Section \\ref{more-morphisms-section-reduced-fibre-theorem}.\nLet $\\xi_{i, j}$ be the points of $Z'$ mapping to $\\xi_{B'}$\nand to $\\xi_i$ in $Z$. Then the local rings\n$$\n\\mathcal{O}_{Z', \\xi_{i, j}}\n$$\nare the localizations of the integral closure of $\\mathcal{O}_{Z, \\xi_i}$ in\n$L' \\otimes_L f.f.(\\mathcal{O}_{Z, \\xi_i})$. Hence Abhyankar's lemma\n(More on Algebra, Lemma \\ref{more-algebra-lemma-abhyankar})\ntells us that\n$$\n\\mathcal{O}_{X_{B'}, \\xi_{B'}} \\subset \\mathcal{O}_{Z', \\xi_{i, j}}\n$$\nis unramified. We conclude that the morphism $Z' \\to X_{B'}$\nis \\'etale away from codimension $1$. Hence by purity of\nbranch locus (Lemma \\ref{lemma-purity})\nwe see that $Z' \\to X_{B'}$ is finite \\'etale!\n\n\\medskip\\noindent\nHowever, since the residue field extension induced by $A \\to B'$\nis trivial (as the residue field of $A$ is algebraically closed\nbeing separably closed of characteristic zero)\nwe conclude that $Z'$ is the base change of a finite \\'etale\ncover $Y \\to X$ by applying\nLemma \\ref{lemma-finite-etale-on-proper-over-henselian}\ntwice (first to get $Y$ over $A$, then to prove that\nthe pullback to $B$ is isomorphic to $Z'$).\nThis finishes the proof.\n\\end{proof}\n\n\\noindent\nLet $G$ be a profinite group. Let $p$ be a prime number.\nThe {\\it maximal prime-to-$p$ quotient} is by definition\n$$\nG' = \\lim_{U \\subset G\\text{ open, normal, index prime to }p} G/U\n$$\nIf $X$ is a connected scheme and $p$ is given, then the maximal\nprime-to-$p$ quotient of $\\pi_1(X)$ is denoted $\\pi'_1(X)$.\n\n\\begin{theorem}\n\\label{theorem-specialization-map-isomorphism-prime-to-p}\nLet $f : X \\to S$ be a smooth proper morphism with geometrically\nconnected fibres. Let $s' \\leadsto s$ be a specialization.\nIf the characteristic of $\\kappa(s)$ is $p$, then the specialization\nmap\n$$\nsp : \\pi_1(X_{\\overline{s}'}) \\to \\pi_1(X_{\\overline{s}})\n$$\nis surjective and induces an isomorphism\n$$\n\\pi'_1(X_{\\overline{s}'}) \\cong \\pi'_1(X_{\\overline{s}})\n$$\nof the maximal prime-to-p quotients\n\\end{theorem}\n\n\\begin{proof}\nThis is proved in exactly the same manner as\nProposition \\ref{proposition-specialization-map-isomorphism}\nwith the following differences\n\\begin{enumerate}\n\\item Given $X/A$ we no longer show that the functor\n$\\textit{F\\'Et}_X \\to \\textit{F\\'Et}_{X_{\\overline{\\eta}}}$\nis essentially surjective. We show only that Galois objects\nwhose Galois group has order prime to $p$ are in the essential\nimage. This will be enough to conclude the injectivity of\n$\\pi'_1(X_{\\overline{s}'}) \\to \\pi'_1(X_{\\overline{s}})$ by\nexactly the same argument.\n\\item The extensions\n$\\mathcal{O}_{X_B, \\xi_B} \\subset \\mathcal{O}_{Z, \\xi_i}$\nare tamely ramified as the associated extension of fraction\nfields is Galois with group of order prime to $p$. See\nMore on Algebra, Lemma \\ref{more-algebra-lemma-galois-conclusion}.\n\\item The extension $\\kappa_A \\subset \\kappa_B$ is no longer\nnecessarily trivial, but it is purely inseparable.\nHence the morphism $X_{\\kappa_B} \\to X_{\\kappa_A}$\nis a universal homeomorphism and induces an isomorphism\nof fundamental groups by Proposition \\ref{proposition-universal-homeomorphism}.\n\\end{enumerate}\n\\end{proof}\n\n\n\n\n\n\n\n\\section{Tame ramification}\n\\label{section-tame}\n\n\\noindent\nLet $X \\to Y$ be a finite \\'etale morphism of schemes of finite type\nover $\\mathbf{Z}$. There are many ways to define what it means for $f$\nto be tamely ramified at $\\infty$. The article \\cite{Kerz-Schmidt}\ndiscusses to what extent these notions agree.\n\n\\medskip\\noindent\nIn this section we discuss a different more elementary question which\nprecedes the notion of tameness at infinity. Namely, given a scheme\n$X$ and a dense open $U \\subset X$ when is a finite morphism $f : Y \\to X$\ntamely ramified relative to $D = X \\setminus U$? We will use the definition\nas given in \\cite{Grothendieck-Murre} but only in the case that $D$ is\na divisor with normal crossings.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\\input{chapters}\n\n\\bibliography{my}\n\\bibliographystyle{amsalpha}\n\n\\end{document}\n", [(795, 796, 'VAR'), (803, 814, 'TYPE'), (1864, 1865, 'VAR'), (1872, 1878, 'TYPE'), (5202, 5213, 'VAR'), (5220, 5228, 'TYPE'), (6343, 6344, 'VAR'), (6351, 6362, 'TYPE'), (6799, 6800, 'VAR'), (6807, 6818, 'TYPE'), (7326, 7327, 'VAR'), (7334, 7345, 'TYPE'), (9888, 9889, 'VAR'), (9896, 9907, 'TYPE'), (10125, 10126, 'VAR'), (10133, 10141, 'TYPE'), (10337, 10348, 'VAR'), (10356, 10361, 'TYPE'), (12245, 12256, 'VAR'), (12263, 12271, 'TYPE'), (13294, 13305, 'VAR'), (13312, 13320, 'TYPE'), (14678, 14694, 'VAR'), (14701, 14707, 'TYPE'), (18043, 18059, 'VAR'), (18066, 18072, 'TYPE'), (19686, 19702, 'VAR'), (19709, 19715, 'TYPE'), (20091, 20094, 'VAR'), (20101, 20115, 'TYPE'), (23151, 23167, 'VAR'), (23174, 23180, 'TYPE'), (28595, 28596, 'VAR'), (28603, 28612, 'TYPE'), (35655, 35656, 'VAR'), (35663, 35670, 'TYPE'), (36514, 36515, 'VAR'), (36523, 36536, 'TYPE'), (36978, 36979, 'VAR'), (36986, 36993, 'TYPE'), (39969, 39970, 'VAR'), (39977, 39984, 'TYPE'), (41341, 41342, 'VAR'), (41349, 41356, 'TYPE'), (42564, 42565, 'VAR'), (42572, 42579, 'TYPE'), (43873, 43874, 'VAR'), (43881, 43890, 'TYPE'), (43904, 43916, 'VAR'), (43923, 43932, 'TYPE'), (45800, 45807, 'VAR'), (45814, 45822, 'TYPE'), (46630, 46631, 'VAR'), (46638, 46647, 'TYPE'), (46661, 46673, 'VAR'), (46680, 46689, 'TYPE'), (47220, 47221, 'VAR'), (47228, 47237, 'TYPE'), (47251, 47263, 'VAR'), (47270, 47279, 'TYPE'), (49041, 49042, 'VAR'), (49049, 49058, 'TYPE'), (50343, 50344, 'VAR'), (50351, 50356, 'TYPE'), (55687, 55693, 'VAR'), (55700, 55709, 'TYPE'), (56310, 56322, 'VAR'), (56329, 56339, 'TYPE'), (56631, 56640, 'VAR'), (56648, 56655, 'TYPE'), (57182, 57199, 'VAR'), (57207, 57213, 'TYPE'), (61147, 61148, 'VAR'), (61155, 61164, 'TYPE'), (61182, 61183, 'VAR'), (61190, 61196, 'TYPE'), (63826, 63837, 'VAR'), (63844, 63850, 'TYPE'), (65468, 65484, 'VAR'), (65491, 65500, 'TYPE'), (67021, 67033, 'VAR'), (67041, 67050, 'TYPE'), (67088, 67089, 'VAR'), (67096, 67102, 'TYPE'), (67362, 67375, 'VAR'), (67382, 67388, 'TYPE'), (70448, 70464, 'VAR'), (70471, 70476, 'TYPE'), (72731, 72732, 'VAR'), (72739, 72749, 'TYPE'), (73619, 73620, 'VAR'), (73627, 73634, 'TYPE'), (73640, 73651, 'VAR'), (73658, 73663, 'TYPE'), (75129, 75130, 'VAR'), (75137, 75144, 'TYPE'), (75150, 75161, 'VAR'), (75168, 75173, 'TYPE'), (76753, 76754, 'VAR'), (76761, 76768, 'TYPE'), (76774, 76785, 'VAR'), (76792, 76797, 'TYPE'), (79488, 79504, 'VAR'), (79511, 79516, 'TYPE'), (80132, 80139, 'VAR'), (80146, 80152, 'TYPE'), (83459, 83460, 'VAR'), (83468, 83479, 'TYPE'), (83943, 83944, 'VAR'), (83952, 83964, 'TYPE'), (85710, 85711, 'VAR'), (85718, 85725, 'TYPE'), (87660, 87661, 'VAR'), (87669, 87678, 'TYPE'), (88177, 88178, 'VAR'), (88186, 88194, 'TYPE'), (88239, 88250, 'VAR'), (88257, 88263, 'TYPE'), (90978, 90979, 'VAR'), (90986, 90992, 'TYPE'), (91039, 91046, 'VAR'), (91053, 91059, 'TYPE'), (92268, 92269, 'VAR'), (92276, 92282, 'TYPE'), (94817, 94833, 'VAR'), (94840, 94846, 'TYPE'), (95445, 95452, 'VAR'), (95459, 95465, 'TYPE'), (97320, 97321, 'VAR'), (97328, 97334, 'TYPE'), (97403, 97424, 'VAR'), (97431, 97438, 'TYPE'), (98995, 99009, 'VAR'), (99016, 99020, 'TYPE'), (99652, 99653, 'VAR'), (99660, 99666, 'TYPE'), (99700, 99709, 'VAR'), (99716, 99720, 'TYPE'), (100656, 100657, 'VAR'), (100664, 100670, 'TYPE'), (101107, 101116, 'VAR'), (101124, 101131, 'TYPE'), (105792, 105793, 'VAR'), (105800, 105806, 'TYPE'), (105844, 105847, 'VAR'), (105854, 105863, 'TYPE'), (106893, 106917, 'VAR'), (106924, 106930, 'TYPE'), (111666, 111688, 'VAR'), (111695, 111701, 'TYPE'), (112924, 112925, 'VAR'), (112932, 112938, 'TYPE'), (112985, 112992, 'VAR'), (112999, 113008, 'TYPE'), (113420, 113443, 'VAR'), (113450, 113456, 'TYPE'), (113653, 113654, 'VAR'), (113661, 113667, 'TYPE'), (115909, 115910, 'VAR'), (115917, 115923, 'TYPE'), (116802, 116803, 'VAR'), (116811, 116819, 'TYPE'), (116864, 116867, 'VAR'), (116874, 116880, 'TYPE'), (122396, 122397, 'VAR'), (122404, 122412, 'TYPE'), (122458, 122461, 'VAR'), (122468, 122477, 'TYPE'), (122558, 122569, 'VAR'), (122576, 122583, 'TYPE'), (129124, 129125, 'VAR'), (129132, 129140, 'TYPE'), (129186, 129193, 'VAR'), (129200, 129209, 'TYPE'), (129290, 129307, 'VAR'), (129314, 129321, 'TYPE'), (131336, 131345, 'VAR'), (131352, 131363, 'TYPE'), (132324, 132325, 'VAR'), (132332, 132340, 'TYPE'), (133147, 133148, 'VAR'), (133155, 133160, 'TYPE'), (133194, 133195, 'VAR'), (133202, 133211, 'TYPE'), (133675, 133676, 'VAR'), (133683, 133688, 'TYPE'), (133733, 133734, 'VAR'), (133741, 133754, 'TYPE'), (135030, 135037, 'VAR'), (135044, 135050, 'TYPE'), (136310, 136332, 'VAR'), (136339, 136345, 'TYPE'), (140555, 140567, 'VAR'), (140574, 140583, 'TYPE'), (140753, 140760, 'VAR'), (140767, 140773, 'TYPE'), (142447, 142454, 'VAR'), (142461, 142467, 'TYPE'), (144027, 144040, 'VAR'), (144047, 144061, 'TYPE'), (146006, 146019, 'VAR'), (146026, 146040, 'TYPE'), (149118, 149125, 'VAR'), (149132, 149138, 'TYPE'), (149190, 149191, 'VAR'), (149198, 149206, 'TYPE'), (149731, 149744, 'VAR'), (149751, 149765, 'TYPE'), (150254, 150285, 'VAR'), (150292, 150301, 'TYPE'), (150669, 150676, 'VAR'), (150683, 150689, 'TYPE'), (150741, 150742, 'VAR'), (150749, 150757, 'TYPE'), (151254, 151267, 'VAR'), (151274, 151288, 'TYPE'), (151767, 151798, 'VAR'), (151805, 151813, 'TYPE'), (153117, 153133, 'VAR'), (153140, 153150, 'TYPE'), (155089, 155096, 'VAR'), (155103, 155109, 'TYPE'), (166931, 166947, 'VAR'), (166954, 166964, 'TYPE'), (167735, 167751, 'VAR'), (167758, 167768, 'TYPE'), (169162, 169178, 'VAR'), (169185, 169195, 'TYPE'), (169703, 169710, 'VAR'), (169717, 169722, 'TYPE'), (170224, 170240, 'VAR'), (170247, 170257, 'TYPE'), (173013, 173029, 'VAR'), (173036, 173046, 'TYPE'), (176898, 176914, 'VAR'), (176921, 176931, 'TYPE'), (177205, 177223, 'VAR'), (177231, 177242, 'TYPE'), (180259, 180275, 'VAR'), (180282, 180289, 'TYPE'), (193893, 193912, 'VAR'), (193919, 193925, 'TYPE'), (200249, 200268, 'VAR'), (200275, 200281, 'TYPE'), (201109, 201125, 'VAR'), (201132, 201140, 'TYPE'), (202629, 202645, 'VAR'), (202652, 202662, 'TYPE'), (203472, 203483, 'VAR'), (203490, 203496, 'TYPE'), (204436, 204452, 'VAR'), (204459, 204469, 'TYPE'), (205563, 205579, 'VAR'), (205586, 205596, 'TYPE'), (207247, 207260, 'VAR'), (207267, 207281, 'TYPE'), (207850, 207863, 'VAR'), (207870, 207885, 'TYPE'), (208776, 208789, 'VAR'), (208796, 208811, 'TYPE'), (213260, 213261, 'VAR'), (213268, 213277, 'TYPE'), (213290, 213291, 'VAR'), (213298, 213303, 'TYPE'), (213728, 213741, 'VAR'), (213748, 213763, 'TYPE'), (215266, 215273, 'VAR'), (215280, 215286, 'TYPE')])
In [7]:
random.shuffle(annotated_data)
train_data = annotated_data[:-1]
test_data = annotated_data[-1:] #we hold out one tex file for testing
In [8]:
def train_ner(nlp, train_data, entity_types):
# Add new words to vocab.
for raw_text, _ in train_data:
doc = nlp.make_doc(raw_text)
for word in doc:
_ = nlp.vocab[word.orth]
# Train NER.
ner = EntityRecognizer(nlp.vocab, entity_types=entity_types)
for itn in range(5):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
ner.update(doc, gold)
return ner
In [9]:
ner = train_ner(nlp, train_data, ['VAR', 'TYPE'])
In [10]:
#first test on a simple sentence
doc = nlp.make_doc('Let $S$ be a scheme.')
nlp.tagger(doc)
ner(doc)
for word in doc:
print(word.text, word.ent_type_)
Let
$
S$
be
a
scheme TYPE
. TYPE
In [11]:
#then test on the hold out tex file; there are no 'VAR' tags detected, maybe something to do with dollar sign tokenization...
doc = nlp.make_doc(test_data[0][0])
nlp.tagger(doc)
ner(doc)
for word in doc
print(word.text, "\t" + word.ent_type_)
\input{preamble
}
%
OK
,
start
here
.
%
\begin{document
}
\title{Simplicial
Spaces
}
\maketitle
\phantomsection
\label{section
-
phantom
}
\tableofcontents
\section{Introduction
}
\label{section
-
introduction
}
\noindent
This
chapter
develops
some
theory
concerning
simplicial
topological
spaces
,
simplicial
ringed
spaces
,
simplicial
schemes
,
and
simplicial
algebraic
spaces
.
The
theory
of
simplicial
spaces
sometimes
allows
one
to
prove
local
to
global
principles
which
appear
difficult
to
prove
in
other
ways
.
Some
example
applications
can
be
found
in
the
papers
\cite{faltings_finiteness
}
,
\cite{Kiehl
}
,
and
\cite{HodgeIII}.
\medskip\noindent
We
assume
throughout
that
the
reader
is
familiar
with
the
basic
concepts
and
results
of
the
chapter
Simplicial
Methods
,
see
Simplicial
,
Section
\ref{simplicial
-
section
-
introduction}.
In
particular
,
we
continue
to
write
$
X$
and
not
$
X_\bullet$
for
a
simplicial
object
.
\section{Simplicial
topological
spaces
}
\label{section
-
simplicial
-
top
}
\noindent
A
{
\it
simplicial
space
}
is
a
simplicial
object
in
the
category
of
topological
spaces
where
morphisms
are
continuous
maps
of
topological
spaces
.
(
We
will
use
``
simplicial
algebraic
space
''
to
refer
to
simplicial
objects
in
the
category
of
algebraic
spaces
.
)
We
may
picture
a
simplicial
space
$
X$
as
follows
$
$
\xymatrix
{
X_2
\ar@<2ex>[r
]
\ar@<0ex>[r
]
\ar@<-2ex>[r
]
&
X_1
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
\ar@<1ex>[l
]
\ar@<-1ex>[l
]
&
X_0
\ar@<0ex>[l
]
}
$
$
Here
there
are
two
morphisms
$
d^1_0
,
d^1_1
:
X_1
\to
X_0
$
and
a
single
morphism
$
s^0_0
:
X_0
\to
X_1
$
,
etc
.
It
is
important
to
keep
in
mind
that
$
d^n_i
:
X_n
\to
X_{n
-
1}$
should
be
thought
of
as
a
``
projection
forgetting
the
$
i$th
coordinate
''
and
$
s^n_j
:
X_n
\to
X_{n
+
1}$
as
the
diagonal
map
repeating
the
$
j$th
coordinate
.
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
space
.
We
associate
a
site
$
X_{Zar}$\footnote{This
notation
is
similar
to
the
notation
in
Sites
,
Example
\ref{sites
-
example
-
site
-
topological
}
and
Topologies
,
Definition
\ref{topologies
-
definition
-
big
-
small
-
Zariski}.
}
to
$
X$
as
follows
.
\begin{enumerate
}
\item
An
object
of
$
X_{Zar}$
is
an
open
$
U$
of
$
X_n$
for
some
$
n$
,
\item
a
morphism
$
U
\to
V$
of
$
X_{Zar}$
is
given
by
a
$
\varphi
:
[
m
]
\to
[
n]$
where
$
n
,
m$
are
such
that
$
U
\subset
X_n$
,
$
V
\subset
X_m$
and
$
\varphi$
is
such
that
$
X(\varphi)(U
)
\subset
V$
,
and
\item
a
covering
$
\{U_i
\to
U\}$
in
$
X_{Zar}$
means
that
$
U
,
U_i
\subset
X_n$
are
open
,
the
maps
$
U_i
\to
U$
are
given
by
$
\text{id
}
:
[
n
]
\to
[
n]$
,
and
$
U
=
\bigcup
U_i$.
\end{enumerate
}
Note
that
in
particular
,
if
$
U
\to
V$
is
a
morphism
of
$
X_{Zar}$
given
by
$
\varphi$
,
then
$
X(\varphi
)
:
X_n
\to
X_m$
does
in
fact
induce
a
continuous
map
$
U
\to
V$
of
topological
spaces
.
\noindent
It
is
clear
that
the
above
is
a
special
case
of
a
construction
that
associates
to
any
diagram
of
topological
spaces
a
site
.
We
formulate
the
obligatory
lemma
.
\begin{lemma
}
\label{lemma
-
simplicial
-
site
}
Let
$
X$
be
a
simplicial TYPE
space
.
Then
$
X_{Zar}$
as
defined
above
is
a
site
.
\end{lemma
}
\begin{proof
}
Omitted
.
\end{proof
}
\noindent
Let
$
X$
be
a
simplicial TYPE
space
.
Let
$
\mathcal{F}$
be
a
sheaf TYPE
on
$
X_{Zar}$.
It
is
clear
from
the
definition
of
coverings
,
that
the
restriction
of
$
\mathcal{F}$
to
the
opens
of
$
X_n$
defines
a
sheaf
$
\mathcal{F}_n$
on
the
topological
space
$
X_n$.
For
every
$
\varphi
:
[
m
]
\to
[
n]$
the
restriction
maps
of
$
\mathcal{F}$
for
pairs
$
U
\subset
X_n$
,
$
V
\subset
X_m$
with
$
X(\varphi)(U
)
\subset
V$
,
define
an
$
X(\varphi)$-map
$
\mathcal{F}(\varphi
)
:
\mathcal{F}_m
\to
\mathcal{F}_n$
,
see
Sheaves
,
Definition
\ref{sheaves
-
definition
-
f
-
map}.
Moreover
,
given
$
\varphi
:
[
m
]
\to
[
n]$
and
$
\psi
:
[
l
]
\to
[
m]$
we
have
$
$
\mathcal{F}(\varphi
)
\circ
\mathcal{F}(\psi
)
=
\mathcal{F}(\varphi
\circ
\psi
)
$
$
(
LHS
uses
composition
of
$
f$-maps
,
see
Sheaves
,
Definition
\ref{sheaves
-
definition
-
composition
-
f
-
maps
}
)
.
Clearly
,
the
converse
is
true
as
well
:
if
we
have
a
system
$
(
\{\mathcal{F}_n\}_{n
\geq
0
}
,
\{\mathcal{F}(\varphi)\}_{\varphi
\in
\text{Arrows}(\Delta)})$
as
above
,
satisfying
the
displayed
equalities
,
then
we
obtain
a
sheaf
on
$
X_{Zar}$.
\begin{lemma
}
\label{lemma
-
describe
-
sheaves
-
simplicial
-
site
}
Let
$
X$
be
a
simplicial TYPE
space
.
There
is
an
equivalence
of
categories
between
\begin{enumerate
}
\item
$
\Sh(X_{Zar})$
,
and
\item
category
of
systems
$
(
\mathcal{F}_n
,
\mathcal{F}(\varphi))$
described
above
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
See
discussion
above
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
simplicial
-
space
-
site
-
functorial
}
Let
$
f
:
Y
\to
X$
be
a
morphism
of
simplicial
spaces
.
Then
the
functor
$
u
:
X_{Zar
}
\to
Y_{Zar}$
which
associates
to
the
open
$
U
\subset
X_n$
the
open
$
f_n^{-1}(U
)
\subset
Y_n$
defines
a
morphism
of
sites
$
f_{Zar
}
:
Y_{Zar
}
\to
X_{Zar}$.
\end{lemma
}
\begin{proof
}
It
is
clear
that
$
u$
is
a
continuous
functor
.
Hence
we
obtain
functors
$
f_{Zar
,
*
}
=
u^s$
and
$
f_{Zar}^{-1
}
=
u_s$
,
see
Sites
,
Section
\ref{sites
-
section
-
morphism
-
sites}.
To
see
that
we
obtain
a
morphism
of
sites
we
have
to
show
that
$
u_s$
is
exact
.
We
will
use
Sites
,
Lemma
\ref{sites
-
lemma
-
directed
-
morphism
}
to
see
this
.
Let
$
V
\subset
Y_n$
be
an
open TYPE
subset
.
The
category
$
\mathcal{I}_V^u$
(
see
Sites
,
Section
\ref{sites
-
section
-
functoriality
-
PSh
}
)
consists
of
pairs
$
(
U
,
\varphi)$
where
$
\varphi
:
[
m
]
\to
[
n]$
and
$
U
\subset
X_m$
open
such
that
$
Y(\varphi)(V
)
\subset
f_m^{-1}(U)$.
Moreover
,
a
morphism
$
(
U
,
\varphi
)
\to
(
U
'
,
\varphi')$
is
given
by
a
$
\psi
:
[
m
'
]
\to
[
m]$
such
that
$
X(\psi)(U
)
\subset
U'$
and
$
\varphi
\circ
\psi
=
\varphi'$.
It
is
our
task
to
show
that
$
\mathcal{I}_V^u$
is
cofiltered
.
\medskip\noindent
We
verify
the
conditions
of
Categories
,
Definition
\ref{categories
-
definition
-
codirected}.
Condition
(
1
)
holds
because
$
(
X_n
,
\text{id}_{[n]})$
is
an
object
.
Let
$
(
U
,
\varphi)$
be
an
object
.
The
condition
$
Y(\varphi)(V
)
\subset
f_m^{-1}(U)$
is
equivalent
to
$
V
\subset
f_n^{-1}(X(\varphi)^{-1}(U))$.
Hence
we
obtain
a
morphism
$
(
X(\varphi)^{-1}(U
)
,
\text{id}_{[n
]
}
)
\to
(
U
,
\varphi)$
given
by
setting
$
\psi
=
\varphi$.
Moreover
,
given
a
pair
of
objects
of
the
form
$
(
U
,
\text{id}_{[n]})$
and
$
(
U
'
,
\text{id}_{[n]})$
we
see
there
exists
an
object
,
namely
$
(
U
\cap
U
'
,
\text{id}_{[n]})$
,
which
maps
to
both
of
them
.
Thus
condition
(
2
)
holds
.
To
verify
condition
(
3
)
suppose
given
two
morphisms
$
a
,
a
'
:
(
U
,
\varphi
)
\to
(
U
'
,
\varphi')$
given
by
$
\psi
,
\psi
'
:
[
m
'
]
\to
[
m]$.
Then
precomposing
with
the
morphism
$
(
X(\varphi)^{-1}(U
)
,
\text{id}_{[n
]
}
)
\to
(
U
,
\varphi)$
given
by
$
\varphi$
equalizes
$
a
,
a'$
because
$
\varphi
\circ
\psi
=
\varphi
'
=
\varphi
\circ
\psi'$.
This
finishes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
describe
-
functoriality
}
Let
$
f
:
Y
\to
X$
be
a
morphism
of
simplicial
spaces
.
In
terms
of
the
description
of
sheaves
in
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
}
the
morphism
$
f_{Zar}$
of
Lemma
\ref{lemma
-
simplicial
-
space
-
site
-
functorial
}
can
be
described
as
follows
.
\begin{enumerate
}
\item
If
$
\mathcal{G}$
is
a
sheaf
on
$
Y$
,
then
$
(
f_{Zar
,
*
}
\mathcal{G})_n
=
f_{n
,
*
}
\mathcal{G}_n$.
\item
If
$
\mathcal{F}$
is
a
sheaf
on
$
X$
,
then
$
(
f_{Zar}^{-1}\mathcal{F})_n
=
f_n^{-1}\mathcal{F}_n$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
The
first
part
is
immediate
from
the
definitions
.
For
the
second
part
,
note
that
in
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
space
-
site
-
functorial
}
we
have
shown
that
for
a
$
V
\subset
Y_n$
open
the
category
$
(
\mathcal{I}_V^u)^{opp}$
contains
as
a
cofinal
subcategory
the
category
of
opens
$
U
\subset
X_n$
with
$
f_n^{-1}(U
)
\supset
V$
and
morphisms
given
by
inclusions
.
Hence
we
see
that
the
restriction
of
$
u_p\mathcal{F}$
to
opens
of
$
Y_n$
is
the
presheaf
$
f_{n
,
p}\mathcal{F}_n$
as
defined
in
Sheaves
,
Lemma
\ref{sheaves
-
lemma
-
pullback
-
presheaves}.
Since
$
f_{Zar}^{-1}\mathcal{F
}
=
u_s\mathcal{F}$
is
the
sheafification
of
$
u_p\mathcal{F}$
and
since
sheafification
uses
only
coverings
and
since
coverings
in
$
Y_{Zar}$
use
only
inclusions
between
opens
on
the
same
$
Y_n$
,
the
result
follows
from
the
fact
that
$
f_n^{-1}\mathcal{F}_n$
is
(
correspondingly
)
the
sheafification
of
$
f_{n
,
p}\mathcal{F}_n$
,
see
Sheaves
,
Section
\ref{sheaves
-
section
-
presheaves
-
functorial}.
\end{proof
}
\noindent
Let
$
X$
be
a
topological TYPE
space
.
In
Sites
,
Example
\ref{sites
-
example
-
site
-
topological
}
we
denoted
$
X_{Zar}$
the
site
consisting
of
opens
of
$
X$
with
inclusions
as
morphisms
and
coverings
given
by
open
coverings
.
We
identify
the
topos
$
\Sh(X_{Zar})$
with
the
category
of
sheaves
on
$
X$.
\begin{lemma
}
\label{lemma
-
restriction
-
to
-
components
}
Let
$
X$
be
a
simplicial TYPE
space
.
The
functor
$
X_{n
,
Zar
}
\to
X_{Zar}$
,
$
U
\mapsto
U$
is
continuous
and
cocontinuous
.
The
associated
morphism
of
topoi
$
g_n
:
\Sh(X_n
)
\to
\Sh(X_{Zar})$
satisfies
\begin{enumerate
}
\item
$
g_n^{-1}$
associates
to
the
sheaf
$
\mathcal{F}$
on
$
X$
the
sheaf
$
\mathcal{F}_n$
on
$
X_n$
,
\item
$
g_n^{-1
}
:
\Sh(X_{Zar
}
)
\to
\Sh(X_n)$
has
a
left
adjoint
$
g^{Sh}_{n!}$
,
\item
$
g^{Sh}_{n!}$
commutes
with
finite
connected
limits
,
\item
$
g_n^{-1
}
:
\textit{Ab}(X_{Zar
}
)
\to
\textit{Ab}(X_n)$
has
a
left
adjoint
$
g_{n!}$
,
and
\item
$
g_{n!}$
is
exact
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Besides
the
properties
of
our
functor
mentioned
in
the
statement
,
the
category
$
X_{n
,
Zar}$
has
fibre
products
and
equalizers
and
the
functor
commutes
with
them
(
beware
that
$
X_{Zar}$
does
not
have
all
fibre
products
)
.
Hence
the
lemma
follows
from
the
discussion
in
Sites
,
Sections
\ref{sites
-
section
-
cocontinuous
-
functors
}
and
\ref{sites
-
section
-
cocontinuous
-
morphism
-
topoi
}
and
Modules
on
Sites
,
Section
\ref{sites
-
modules
-
section
-
exactness
-
lower
-
shriek}.
More
precisely
,
Sites
,
Lemmas
\ref{sites
-
lemma
-
cocontinuous
-
morphism
-
topoi
}
,
\ref{sites
-
lemma
-
when
-
shriek
}
,
and
\ref{sites
-
lemma
-
preserve
-
equalizers
}
and
Modules
on
Sites
,
Lemmas
\ref{sites
-
modules
-
lemma
-
g
-
shriek
-
adjoint
}
and
\ref{sites
-
modules
-
lemma
-
exactness
-
lower
-
shriek}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
restriction
-
injective
-
to
-
component
}
Let
$
X$
be
a
simplicial TYPE
space
.
If
$
\mathcal{I}$
is
an
injective
abelian
sheaf
on
$
X_{Zar}$
,
then
$
\mathcal{I}_n$
is
an
injective
abelian
sheaf
on
$
X_n$.
\end{lemma
}
\begin{proof
}
This
follows
from
Homology
,
Lemma
\ref{homology
-
lemma
-
adjoint
-
preserve
-
injectives
}
and
Lemma
\ref{lemma
-
restriction
-
to
-
components}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
restriction
-
to
-
components
-
functorial
}
Let
$
f
:
Y
\to
X$
be
a
morphism
of
simplicial
spaces
.
Then
$
$
\xymatrix
{
\Sh(Y_n
)
\ar[d
]
\ar[r]_{f_n
}
&
\Sh(X_n
)
\ar[d
]
\\
\Sh(Y_{Zar
}
)
\ar[r]^{f_{Zar
}
}
&
\Sh(X_{Zar
}
)
}
$
$
is
a
commutative
diagram
of
topoi
.
\end{lemma
}
\begin{proof
}
Direct
from
the
description
of
pullback
functors
in
Lemmas
\ref{lemma
-
describe
-
functoriality
}
and
\ref{lemma
-
restriction
-
to
-
components}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
}
Let
$
Y$
be
a
simplicial TYPE
space
and
let
$
a
:
Y
\to
X$
be
an
augmentation TYPE
(
Simplicial
,
Definition
\ref{simplicial
-
definition
-
augmentation
}
)
.
Let
$
a_n
:
Y_n
\to
X$
be
the
corresponding
morphisms
of
topological
spaces
.
There
is
a
canonical
morphism
of
topoi
$
$
a
:
\Sh(Y_{Zar
}
)
\to
\Sh(X
)
$
$
with
the
following
properties
:
\begin{enumerate
}
\item
$
a^{-1}\mathcal{F}$
is
the
sheaf
restricting
to
$
a_n^{-1}\mathcal{F}$
on
$
Y_n$
,
\item
$
a_m
\circ
Y(\varphi
)
=
a_n$
for
all
$
\varphi
:
[
m
]
\to
[
n]$
,
\item
$
a
\circ
g_n
=
a_n$
as
morphisms
of
topoi
with
$
g_n$
as
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
}
,
\item
$
a_*\mathcal{G}$
for
$
\mathcal{G
}
\in
\Sh(Y_{Zar})$
is
the
equalizer
of
the
two
maps
$
a_{0
,
*
}
\mathcal{G}_0
\to
a_{1
,
*
}
\mathcal{G}_1$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Part
(
2
)
holds
for
augmentations
of
simplicial
objects
in
any
category
.
Thus
$
Y(\varphi)^{-1
}
a_m^{-1
}
\mathcal{F
}
=
a_n^{-1}\mathcal{F}$
which
defines
an
$
Y(\varphi)$-map
from
$
a_m^{-1}\mathcal{F}$
to
$
a_n^{-1}\mathcal{F}$.
Thus
we
can
use
(
1
)
as
the
definition
of
$
a^{-1}\mathcal{F}$
(
using
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
}
)
and
(
4
)
as
the
definition
of
$
a_*$.
If
this
defines
a
morphism
of
topoi
then
part
(
3
)
follows
because
we
'll
have
$
g_n^{-1
}
\circ
a^{-1
}
=
a_n^{-1}$
by
construction
.
To
check
$
a$
is
a
morphism
of
topoi
we
have
to
show
that
$
a^{-1}$
is
left
adjoint
to
$
a_*$
and
we
have
to
show
that
$
a^{-1}$
is
exact
.
The
last
fact
is
immediate
from
the
exactness
of
the
functors
$
a_n^{-1}$.
\medskip\noindent
Let
$
\mathcal{F}$
be
an
object TYPE
of
$
\Sh(X)$
and
let
$
\mathcal{G}$
be
an
object
of
$
\Sh(Y_{Zar})$.
Given
$
\beta
:
a^{-1}\mathcal{F
}
\to
\mathcal{G}$
we
can
look
at
the
components
$
\beta_n
:
a_n^{-1}\mathcal{F
}
\to
\mathcal{G}_n$.
These
maps
are
adjoint
to
maps
$
\beta_n
:
\mathcal{F
}
\to
a_{n
,
*
}
\mathcal{G}_n$.
Compatibility
with
the
simplicial
structure
shows
that
$
\beta_0
$
maps
into
$
a_*\mathcal{G}$.
Conversely
,
suppose
given
a
map
$
\alpha
:
\mathcal{F
}
\to
a_*\mathcal{G}$.
For
any
$
n$
choose
a
$
\varphi
:
[
0
]
\to
[
n]$.
Then
we
can
look
at
the
composition
$
$
\mathcal{F
}
\xrightarrow{\alpha
}
a_*\mathcal{G
}
\to
a_{0
,
*
}
\mathcal{G}_0
\xrightarrow{\mathcal{G}(\varphi
)
}
a_{n
,
*
}
\mathcal{G}_n
$
$
These
are
adjoint
to
maps
$
a_n^{-1}\mathcal{F
}
\to
\mathcal{G}_n$
which
define
a
morphism
of
sheaves
$
a^{-1}\mathcal{F
}
\to
\mathcal{G}$.
We
omit
the
proof
that
the
constructions
given
above
define
mutually
inverse
bijections
$
$
\Mor_{\Sh(Y_{Zar})}(a^{-1}\mathcal{F
}
,
\mathcal{G
}
)
=
\Mor_{\Sh(X)}(\mathcal{F
}
,
a_*\mathcal{G
}
)
$
$
This
finishes
the
proof
.
An
interesting
observation
is
here
that
this
morphism
of
topoi
does
not
correspond
to
any
obvious
geometric
functor
between
the
sites
defining
the
topoi
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
simplicial
-
resolution
-
Z
}
Let
$
X$
be
a
simplicial TYPE
topological
space
.
The
complex
of
abelian
presheaves
on
$
X_{Zar}$
$
$
\ldots
\to
\mathbf{Z}_{X_2
}
\to
\mathbf{Z}_{X_1
}
\to
\mathbf{Z}_{X_0
}
$
$
with
boundary
$
\sum
(
-1)^i
d^n_i$
is
a
resolution
of
the
constant
presheaf
$
\mathbf{Z}$.
\end{lemma
}
\begin{proof
}
Let
$
U
\subset
X_m$
be
an
object TYPE
of
$
X_{Zar}$.
Then
the
value
of
the
complex
above
on
$
U$
is
the
complex
of
abelian
groups
$
$
\ldots
\to
\mathbf{Z}[\Mor_\Delta([2
]
,
[
m
]
)
]
\to
\mathbf{Z}[\Mor_\Delta([1
]
,
[
m
]
)
]
\to
\mathbf{Z}[\Mor_\Delta([0
]
,
[
m
]
)
]
$
$
In
other
words
,
this
is
the
complex
associated
to
the
free
abelian
group
on
the
simplicial
set
$
\Delta[m]$
,
see
Simplicial
,
Example
\ref{simplicial
-
example
-
simplex
-
simplicial
-
set}.
Since
$
\Delta[m]$
is
homotopy
equivalent
to
$
\Delta[0]$
,
see
Simplicial
,
Example
\ref{simplicial
-
example
-
simplex
-
contractible
}
,
and
since
``
taking
free
abelian
groups
''
is
a
functor
,
we
see
that
the
complex
above
is
homotopy
equivalent
to
the
free
abelian
group
on
$
\Delta[0]$
(
Simplicial
,
Remark
\ref{simplicial
-
remark
-
homotopy
-
better
}
and
Lemma
\ref{simplicial
-
lemma
-
homotopy
-
equivalence
-
s
-
N
}
)
.
This
complex
is
acyclic
in
positive
degrees
and
equal
to
$
\mathbf{Z}$
in
degree
$
0$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
simplicial
-
sheaf
-
cohomology
}
Let
$
X$
be
a
simplicial TYPE
topological
space
.
Let
$
\mathcal{F}$
be
an
abelian TYPE
sheaf
on
$
X$.
There
is
a
spectral
sequence
$
(
E_r
,
d_r)_{r
\geq
0}$
with
$
$
E_1^{p
,
q
}
=
H^q(X_p
,
\mathcal{F}_p
)
$
$
converging
to
$
H^{p
+
q}(X_{Zar
}
,
\mathcal{F})$.
This
spectral
sequence
is
functorial
in
$
\mathcal{F}$.
\end{lemma
}
\begin{proof
}
Let
$
\mathcal{F
}
\to
\mathcal{I}^\bullet$
be
an
injective TYPE
resolution
.
Consider
the
double
complex
with
terms
$
$
A^{p
,
q
}
=
\mathcal{I}^q(X_p
)
$
$
and
first
differential
given
by
the
alternating
sum
along
the
maps
$
d^{p
+
1}_i$-maps
$
\mathcal{I}_p^q
\to
\mathcal{I}_{p
+
1}^q$
,
see
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site}.
Note
that
$
$
A^{p
,
q
}
=
\Gamma(X_p
,
\mathcal{I}_p^q
)
=
\Mor_{\textit{PSh}}(h_{X_p
}
,
\mathcal{I}^q
)
=
\Mor_{\textit{PAb}}(\mathbf{Z}_{X_p
}
,
\mathcal{I}^q
)
$
$
Hence
it
follows
from
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
}
and
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
injective
-
abelian
-
sheaf
-
injective
-
presheaf
}
that
the
rows
of
the
double
complex
are
exact
in
positive
degrees
and
evaluate
to
$
\Gamma(X_{Zar
}
,
\mathcal{I}^q)$
in
degree
$
0$.
On
the
other
hand
,
since
restriction
is
exact
(
Lemma
\ref{lemma
-
restriction
-
to
-
components
}
)
the
map
$
$
\mathcal{F}_p
\to
\mathcal{I}_p^\bullet
$
$
is
a
resolution
.
The
sheaves
$
\mathcal{I}_p^q$
are
injective
abelian
sheaves
on
$
X_p$
(
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
}
)
.
Hence
the
cohomology
of
the
columns
computes
the
groups
$
H^q(X_p
,
\mathcal{F}_p)$.
We
conclude
by
applying
Homology
,
Lemmas
\ref{homology
-
lemma
-
first
-
quadrant
-
ss
}
and
\ref{homology
-
lemma
-
double
-
complex
-
gives
-
resolution}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
-
pushforward
-
higher
-
direct
-
image
}
Let
$
X$
be
a
simplicial TYPE
space
and
let
$
a
:
X
\to
Y$
be
an
augmentation TYPE
.
Let
$
\mathcal{F}$
be
an
abelian TYPE
sheaf
on
$
X_{Zar}$.
Then
$
R^na_*\mathcal{F}$
is
the
sheaf
associated
to
the
presheaf
$
$
V
\longmapsto
H^n((X
\times_Y
V)_{Zar
}
,
\mathcal{F}|_{(X
\times_Y
V)_{Zar
}
}
)
$
$
\end{lemma
}
\begin{proof
}
This
is
the
analogue
of
Cohomology
,
Lemma
\ref{cohomology
-
lemma
-
describe
-
higher
-
direct
-
images
}
or
of
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
higher
-
direct
-
images
}
and
we
strongly
encourge
the
reader
to
skip
the
proof
.
Choosing
an
injective
resolution
of
$
\mathcal{F}$
on
$
X_{Zar}$
and
using
the
definitions
we
see
that
it
suffices
to
show
:
(
1
)
the
restriction
of
an
injective
abelian
sheaf
on
$
X_{Zar}$
to
$
(
X
\times_Y
V)_{Zar}$
is
an
injective
abelian
sheaf
and
(
2
)
$
a_*\mathcal{F}$
is
equal
to
the
rule
$
$
V
\longmapsto
H^0((X
\times_Y
V)_{Zar
}
,
\mathcal{F}|_{(X
\times_Y
V)_{Zar
}
}
)
$
$
Part
(
2
)
follows
from
the
following
facts
\begin{enumerate
}
\item[(2a
)
]
$
a_*\mathcal{F}$
is
the
equalizer
of
the
two
maps
$
a_{0
,
*
}
\mathcal{F}_0
\to
a_{1
,
*
}
\mathcal{F}_1
$
by
Lemma
\ref{lemma
-
augmentation
}
,
\item[(2b
)
]
$
a_{0
,
*
}
\mathcal{F}_0(V
)
=
H^0(a_0^{-1}(V
)
,
\mathcal{F}_0)$
and
$
a_{1
,
*
}
\mathcal{F}_1(V
)
=
H^0(a_1^{-1}(V
)
,
\mathcal{F}_1)$
,
\item[(2c
)
]
$
X_0
\times_Y
V
=
a_0^{-1}(V)$
and
$
X_1
\times_Y
V
=
a_1^{-1}(V)$
,
\item[(2d
)
]
$
H^0((X
\times_Y
V)_{Zar
}
,
\mathcal{F}|_{(X
\times_Y
V)_{Zar}})$
is
the
equalizer
of
the
two
maps
$
H^0(X_0
\times_Y
V
,
\mathcal{F}_0
)
\to
H^0(X_1
\times_Y
V
,
\mathcal{F}_1)$
for
example
by
Lemma
\ref{lemma
-
simplicial
-
sheaf
-
cohomology}.
\end{enumerate
}
Part
(
1
)
follows
after
one
defines
an
exact
left
adjoint
$
j
_
!
:
\textit{Ab}((X
\times_Y
V)_{Zar
}
)
\to
\textit{Ab}(X_{Zar})$
(
extension
by
zero
)
to
restriction
$
\textit{Ab}(X_{Zar
}
)
\to
\textit{Ab}((X
\times_Y
V)_{Zar})$
and
using
Homology
,
Lemma
\ref{homology
-
lemma
-
adjoint
-
preserve
-
injectives}.
\end{proof
}
\noindent
Let
$
X$
be
a
topological TYPE
space
.
Denote
$
X_\bullet$
the
constant
simplicial
topological
space
with
value
$
X$.
By
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
}
a
sheaf
on
$
X_{\bullet
,
Zar}$
is
the
same
thing
as
a
cosimplicial
object
in
the
category
of
sheaves
on
$
X$.
\begin{lemma
}
\label{lemma
-
constant
-
simplicial
-
space
}
Let
$
X$
be
a
topological TYPE
space
.
Let
$
X_\bullet$
be
the
constant
simplicial
topological
space
with
value
$
X$.
The
functor
$
$
X_{\bullet
,
Zar
}
\longrightarrow
X_{Zar},\quad
U
\longmapsto
U
$
$
is
continuous
and
cocontinuous
and
defines
a
morphism
of
topoi
$
g
:
\Sh(X_{\bullet
,
Zar
}
)
\to
\Sh(X)$
as
well
as
a
left
adjoint
$
g_!$
to
$
g^{-1}$.
We
have
\begin{enumerate
}
\item
$
g^{-1}$
associates
to
a
sheaf
on
$
X$
the
constant
cosimplicial
sheaf
on
$
X$
,
\item
$
g_!$
associates
to
a
sheaf
$
\mathcal{F}$
on
$
X_{\bullet
,
Zar}$
the
sheaf
$
\mathcal{F}_0
$
,
and
\item
$
g_*$
associates
to
a
sheaf
$
\mathcal{F}$
on
$
X_{\bullet
,
Zar}$
the
equalizer
of
the
two
maps
$
\mathcal{F}_0
\to
\mathcal{F}_1$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
The
statements
about
the
functor
are
straightforward
to
verify
.
The
existence
of
$
g$
and
$
g_!$
follow
from
Sites
,
Lemmas
\ref{sites
-
lemma
-
cocontinuous
-
morphism
-
topoi
}
and
\ref{sites
-
lemma
-
when
-
shriek}.
The
description
of
$
g^{-1}$
is
immediate
from
Sites
,
Lemma
\ref{sites
-
lemma
-
when
-
shriek}.
The
description
of
$
g_*$
and
$
g_!$
follows
as
the
functors
given
are
right
and
left
adjoint
to
$
g^{-1}$.
\end{proof
}
\section{Simplicial
sites
and
topoi
}
\label{section
-
simplicial
-
sites
}
\noindent
It
seems
natural
to
define
a
{
\it
simplicial
site
}
as
a
simplicial
object
in
the
(
big
)
category
whose
objects
are
sites
and
whose
morphisms
are
morphisms
of
sites
.
See
Sites
,
Definitions
\ref{sites
-
definition
-
site
}
and
\ref{sites
-
definition
-
morphism
-
sites
}
with
composition
of
morphisms
as
in
Sites
,
Lemma
\ref{sites
-
lemma
-
composition
-
morphisms
-
sites}.
But
here
are
some
variants
one
might
want
to
consider
:
(
a
)
we
could
work
with
cocontinuous
functors
(
see
Sites
,
Sections
\ref{sites
-
section
-
cocontinuous
-
functors
}
and
\ref{sites
-
section
-
cocontinuous
-
morphism
-
topoi
}
)
between
sites
instead
,
(
b
)
we
could
work
in
a
suitable
$
2$-category
of
sites
where
one
introduces
the
notion
of
a
$
2$-morphism
between
morphisms
of
sites
,
(
c
)
we
could
work
in
a
$
2$-category
constructed
out
of
cocontinuous
functors
.
Instead
of
picking
one
of
these
variants
as
a
definition
we
will
simply
develop
theory
as
needed
.
\medskip\noindent
Certainly
a
{
\it
simplicial
topos
}
should
probably
be
defined
as
a
pseudo
-
functor
from
$
\Delta^{opp}$
into
the
$
2$-category
of
topoi
.
See
Categories
,
Definition
\ref{categories
-
definition
-
functor
-
into-2-category
}
and
Sites
,
Section
\ref{sites
-
section
-
topoi
}
and
\ref{sites
-
section-2-category}.
We
will
try
to
avoid
working
with
such
a
beast
if
possible
.
\medskip\noindent
{
\bf
Case
A.
}
Let
$
\mathcal{C}$
be
a
simplicial TYPE
object
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
morphisms
of
sites
.
This
means
that
for
every
morphism
$
\varphi
:
[
m
]
\to
[
n]$
of
$
\Delta$
we
have
a
morphism
of
sites
$
f_\varphi
:
\mathcal{C}_n
\to
\mathcal{C}_m$.
This
morphism
is
given
by
a
continuous
functor
in
the
opposite
direction
which
we
will
denote
$
u_\varphi
:
\mathcal{C}_m
\to
\mathcal{C}_n$.
\begin{lemma
}
\label{lemma
-
simplicial
-
site
-
site
}
Let
$
\mathcal{C}$
be
a
simplicial TYPE
object
in
the
category
of
sites
.
With
notation
as
above
we
construct
a
site
$
\mathcal{C}_{total}$
as
follows
.
\begin{enumerate
}
\item
An
object
of
$
\mathcal{C}_{total}$
is
an
object
$
U$
of
$
\mathcal{C}_n$
for
some
$
n$
,
\item
a
morphism
$
(
\varphi
,
f
)
:
U
\to
V$
of
$
\mathcal{C}_{total}$
is
given
by
a
map
$
\varphi
:
[
m
]
\to
[
n]$
with
$
U
\in
\Ob(\mathcal{C}_n)$
,
$
V
\in
\Ob(\mathcal{C}_m)$
and
a
morphism
$
f
:
U
\to
u_\varphi(V)$
of
$
\mathcal{C}_n$
,
and
\item
a
covering
$
\{(\text{id
}
,
f_i
)
:
U_i
\to
U\}$
in
$
\mathcal{C}_{total}$
is
given
by
an
$
n$
and
a
covering
$
\{f_i
:
U_i
\to
U\}$
of
$
\mathcal{C}_n$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Composition
of
$
(
\varphi
,
f
)
:
U
\to
V$
with
$
(
\psi
,
g
)
:
V
\to
W$
is
given
by
$
(
\varphi
\circ
\psi
,
u_\varphi(g
)
\circ
f)$.
This
uses
that
$
u_\varphi
\circ
u_\psi
=
u_{\varphi
\circ
\psi}$.
\medskip\noindent
Let
$
\{(\text{id
}
,
f_i
)
:
U_i
\to
U\}$
be
a
covering TYPE
as
in
(
3
)
and
let
$
(
\varphi
,
g
)
:
W
\to
U$
be
a
morphism TYPE
with
$
W
\in
\Ob(\mathcal{C}_m)$.
We
claim
that
$
$
W
\times_{(\varphi
,
g
)
,
U
,
(
\text{id
}
,
f_i
)
}
U_i
=
W
\times_{g
,
u_\varphi(U
)
,
u_\varphi(f_i
)
}
u_\varphi(U_i
)
$
$
in
the
category
$
\mathcal{C}_{total}$.
This
makes
sense
as
by
our
definition
of
morphisms
of
sites
,
the
required
fibre
products
in
$
\mathcal{C}_m$
exist
since
$
u_\varphi$
transforms
coverings
into
coverings
.
The
same
reasoning
implies
the
claim
(
details
omitted
)
.
Thus
we
see
that
the
collection
of
coverings
is
stable
under
base
change
.
The
other
axioms
of
a
site
are
immediate
.
\end{proof
}
\noindent
{
\bf
Case
B.
}
Let
$
\mathcal{C}$
be
a
simplicial TYPE
object
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
cocontinuous
functors
.
This
means
that
for
every
morphism
$
\varphi
:
[
m
]
\to
[
n]$
of
$
\Delta$
we
have
a
cocontinuous
functor
denoted
$
u_\varphi
:
\mathcal{C}_n
\to
\mathcal{C}_m$.
The
associated
morphism
of
topoi
is
denoted
$
f_\varphi
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_m)$.
\begin{lemma
}
\label{lemma
-
simplicial
-
cocontinuous
-
site
}
Let
$
\mathcal{C}$
be
a
simplicial TYPE
object
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
cocontinuous
functors
.
With
notation
as
above
,
assume
the
functors
$
u_\varphi
:
\mathcal{C}_n
\to
\mathcal{C}_m$
have
property
$
P$
of
Sites
,
Remark
\ref{sites
-
remark
-
cartesian
-
cocontinuous}.
Then
we
can
construct
a
site
$
\mathcal{C}_{total}$
as
follows
.
\begin{enumerate
}
\item
An
object
of
$
\mathcal{C}_{total}$
is
an
object
$
U$
of
$
\mathcal{C}_n$
for
some
$
n$
,
\item
a
morphism
$
(
\varphi
,
f
)
:
U
\to
V$
of
$
\mathcal{C}_{total}$
is
given
by
a
map
$
\varphi
:
[
m
]
\to
[
n]$
with
$
U
\in
\Ob(\mathcal{C}_n)$
,
$
V
\in
\Ob(\mathcal{C}_m)$
and
a
morphism
$
f
:
u_\varphi(U
)
\to
V$
of
$
\mathcal{C}_m$
,
and
\item
a
covering
$
\{(\text{id
}
,
f_i
)
:
U_i
\to
U\}$
in
$
\mathcal{C}_{total}$
is
given
by
an
$
n$
and
a
covering
$
\{f_i
:
U_i
\to
U\}$
of
$
\mathcal{C}_n$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Composition
of
$
(
\varphi
,
f
)
:
U
\to
V$
with
$
(
\psi
,
g
)
:
V
\to
W$
is
given
by
$
(
\varphi
\circ
\psi
,
g
\circ
u_\psi(f))$.
This
uses
that
$
u_\psi
\circ
u_\varphi
=
u_{\varphi
\circ
\psi}$.
\medskip\noindent
Let
$
\{(\text{id
}
,
f_i
)
:
U_i
\to
U\}$
be
a
covering TYPE
as
in
(
3
)
and
let
$
(
\varphi
,
g
)
:
W
\to
U$
be
a
morphism TYPE
with
$
W
\in
\Ob(\mathcal{C}_m)$.
We
claim
that
$
$
W
\times_{(\varphi
,
g
)
,
U
,
(
\text{id
}
,
f_i
)
}
U_i
=
W
\times_{g
,
U
,
f_i
}
U_i
$
$
in
the
category
$
\mathcal{C}_{total}$
where
the
right
hand
side
is
the
object
of
$
\mathcal{C}_m$
defined
in
Sites
,
Remark
\ref{sites
-
remark
-
cartesian
-
cocontinuous
}
which
exists
by
property
$
P$.
Compatibility
of
this
type
of
fibre
product
with
compositions
of
functors
implies
the
claim
(
details
omitted
)
.
Since
the
family
$
\{W
\times_{g
,
U
,
f_i
}
U_i
\to
W\}$
is
a
covering
of
$
\mathcal{C}_m$
by
property
$
P$
we
see
that
the
collection
of
coverings
is
stable
under
base
change
.
The
other
axioms
of
a
site
are
immediate
.
\end{proof
}
\begin{situation
}
\label{situation
-
simplicial
-
site
}
Here
we
have
one
of
the
following
two
cases
:
\begin{enumerate
}
\item[(A
)
]
$
\mathcal{C}$
is
a
simplicial
object
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
morphisms
of
sites
.
For
every
morphism
$
\varphi
:
[
m
]
\to
[
n]$
of
$
\Delta$
we
have
a
morphism
of
sites
$
f_\varphi
:
\mathcal{C}_n
\to
\mathcal{C}_m$
given
by
a
continuous
functor
$
u_\varphi
:
\mathcal{C}_m
\to
\mathcal{C}_n$.
\item[(B
)
]
$
\mathcal{C}$
is
a
simplicial
object
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
cocontinuous
functors
having
property
$
P$
of
Sites
,
Remark
\ref{sites
-
remark
-
cartesian
-
cocontinuous}.
For
every
morphism
$
\varphi
:
[
m
]
\to
[
n]$
of
$
\Delta$
we
have
a
cocontinuous
functor
$
u_\varphi
:
\mathcal{C}_n
\to
\mathcal{C}_m$
which
induces
a
morphism
of
topoi
$
f_\varphi
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_m)$.
\end{enumerate
}
As
usual
we
will
denote
$
f_\varphi^{-1}$
and
$
f_{\varphi
,
*
}
$
the
pullback
and
pushforward
.
We
let
$
\mathcal{C}_{total}$
denote
the
site
defined
in
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
(
case
A
)
or
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
(
case
B
)
.
\end{situation
}
\noindent
Let
$
\mathcal{C}$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{F}$
be
a
sheaf TYPE
on
$
\mathcal{C}_{total}$.
It
is
clear
from
the
definition
of
coverings
,
that
the
restriction
of
$
\mathcal{F}$
to
the
objects
of
$
\mathcal{C}_n$
defines
a
sheaf
$
\mathcal{F}_n$
on
the
site
$
\mathcal{C}_n$.
For
every
$
\varphi
:
[
m
]
\to
[
n]$
the
restriction
maps
of
$
\mathcal{F}$
along
the
morphisms
$
(
\varphi
,
f
)
:
U
\to
V$
with
$
U
\in
\Ob(\mathcal{C}_n)$
and
$
V
\in
\Ob(\mathcal{C}_m)$
define
an
element
$
\mathcal{F}(\varphi)$
of
$
$
\Mor_{\Sh(\mathcal{C}_m)}(\mathcal{F}_m
,
f_{\varphi
,
*
}
\mathcal{F}_n
)
=
\Mor_{\Sh(\mathcal{C}_n)}(f_\varphi^{-1}\mathcal{F}_m
,
\mathcal{F}_n
)
$
$
Moreover
,
given
$
\varphi
:
[
m
]
\to
[
n]$
and
$
\psi
:
[
l
]
\to
[
m]$
the
diagrams
$
$
\vcenter
{
\xymatrix
{
\mathcal{F}_l
\ar[rr]_{\mathcal{F}(\varphi
\circ
\psi
)
}
\ar[rd]_{\mathcal{F}(\psi
)
}
&
&
f_{\varphi
\circ
\psi
,
*
}
\mathcal{F}_n
\\
&
f_{\psi
,
*
}
\mathcal{F}_m
\ar[ur]_{f_{\psi
,
*
}
\mathcal{F}(\varphi
)
}
}
}
\quad\text{and}\quad
\vcenter
{
\xymatrix
{
f_{\varphi
\circ
\psi}^{-1}\mathcal{F}_l
\ar[rr]_{\mathcal{F}(\varphi
\circ
\psi
)
}
\ar[rd]_{f_\varphi^{-1}\mathcal{F}(\psi
)
}
&
&
\mathcal{F}_n
\\
&
f_\varphi^{-1}\mathcal{F}_m
\ar[ur]_{\mathcal{F}(\varphi
)
}
}
}
$
$
commute
.
Clearly
,
the
converse
statement
is
true
as
well
:
if
we
have
a
system
$
(
\{\mathcal{F}_n\}_{n
\geq
0
}
,
\{\mathcal{F}(\varphi)\}_{\varphi
\in
\text{Arrows}(\Delta)})$
satisfying
the
commutativity
constraints
above
,
then
we
obtain
a
sheaf
on
$
\mathcal{C}_{total}$.
\begin{lemma
}
\label{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site
}
there
is
an
equivalence
of
categories
between
\begin{enumerate
}
\item
$
\Sh(\mathcal{C}_{total})$
,
and
\item
the
category
of
systems
$
(
\mathcal{F}_n
,
\mathcal{F}(\varphi))$
described
above
.
\end{enumerate
}
In
particular
,
the
topos
$
\Sh(\mathcal{C}_{total})$
only
depends
on
the
topoi
$
\Sh(\mathcal{C}_n)$
and
the
morphisms
of
topoi
$
f_\varphi$.
\end{lemma
}
\begin{proof
}
See
discussion
above
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
restriction
-
to
-
components
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site
}
the
functor
$
\mathcal{C}_n
\to
\mathcal{C}_{total}$
,
$
U
\mapsto
U$
is
continuous
and
cocontinuous
.
The
associated
morphism
of
topoi
$
g_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_{total})$
satisfies
\begin{enumerate
}
\item
$
g_n^{-1}$
associates
to
the
sheaf
$
\mathcal{F}$
on
$
\mathcal{C}_{total}$
the
sheaf
$
\mathcal{F}_n$
on
$
\mathcal{C}_n$
,
\item
$
g_n^{-1
}
:
\Sh(\mathcal{C}_{total
}
)
\to
\Sh(\mathcal{C}_n)$
has
a
left
adjoint
$
g^{Sh}_{n!}$
,
\item
for
$
\mathcal{G}$
in
$
\Sh(\mathcal{C}_n)$
the
restriction
of
$
g_{n!}^{Sh}\mathcal{G}$
to
$
\mathcal{C}_m$
is
$
\coprod\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}\mathcal{G}$
,
\item
$
g_{n!}^{Sh}$
commutes
with
finite
connected
limits
,
\item
$
g_n^{-1
}
:
\textit{Ab}(\mathcal{C}_{total
}
)
\to
\textit{Ab}(\mathcal{C}_n)$
has
a
left
adjoint
$
g_{n!}$
,
\item
for
$
\mathcal{G}$
in
$
\textit{Ab}(\mathcal{C}_n)$
the
restriction
of
$
g_{n!}\mathcal{G}$
to
$
\mathcal{C}_m$
is
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}\mathcal{G}$
,
and
\item
$
g_{n!}$
is
exact
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Case
A.
If
$
\{U_i
\to
U\}_{i
\in
I}$
is
a
covering
in
$
\mathcal{C}_n$
then
the
image
$
\{U_i
\to
U\}_{i
\in
I}$
is
a
covering
in
$
\mathcal{C}_{total}$
by
definition
(
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
)
.
For
a
morphism
$
V
\to
U$
of
$
\mathcal{C}_n$
,
the
fibre
product
$
V
\times_U
U_i$
in
$
\mathcal{C}_n$
is
also
the
the
fibre
product
in
$
\mathcal{C}_{total}$
(
by
the
claim
in
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
)
.
Therefore
our
functor
is
continuous
.
On
the
other
hand
,
our
functor
defines
a
bijection
between
coverings
of
$
U$
in
$
\mathcal{C}_n$
and
coverings
of
$
U$
in
$
\mathcal{C}_{total}$.
Therefore
it
is
certainly
the
case
that
our
functor
is
cocontinuous
.
\medskip\noindent
Case
B.
If
$
\{U_i
\to
U\}_{i
\in
I}$
is
a
covering
in
$
\mathcal{C}_n$
then
the
image
$
\{U_i
\to
U\}_{i
\in
I}$
is
a
covering
in
$
\mathcal{C}_{total}$
by
definition
(
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
)
.
For
a
morphism
$
V
\to
U$
of
$
\mathcal{C}_n$
,
the
fibre
product
$
V
\times_U
U_i$
in
$
\mathcal{C}_n$
is
also
the
the
fibre
product
in
$
\mathcal{C}_{total}$
(
by
the
claim
in
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
)
.
Therefore
our
functor
is
continuous
.
On
the
other
hand
,
our
functor
defines
a
bijection
between
coverings
of
$
U$
in
$
\mathcal{C}_n$
and
coverings
of
$
U$
in
$
\mathcal{C}_{total}$.
Therefore
it
is
certainly
the
case
that
our
functor
is
cocontinuous
.
\medskip\noindent
At
this
point
part
(
1
)
and
the
existence
of
$
g^{Sh}_{n!}$
and
$
g_{n!}$
in
cases
A
and
B
follows
from
Sites
,
Lemmas
\ref{sites
-
lemma
-
cocontinuous
-
morphism
-
topoi
}
and
\ref{sites
-
lemma
-
when
-
shriek
}
and
Modules
on
Sites
,
Lemmas
\ref{sites
-
modules
-
lemma
-
g
-
shriek
-
adjoint
}
and
\ref{sites
-
modules
-
lemma
-
back
-
and
-
forth}.
\medskip\noindent
Proof
of
(
3
)
.
Let
$
\mathcal{G}$
be
a
sheaf TYPE
on
$
\mathcal{C}_n$.
Consider
the
sheaf
$
\mathcal{H}$
on
$
\mathcal{C}_{total}$
whose
degree
$
m$
part
is
the
sheaf
$
$
\mathcal{H}_m
=
\coprod\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}\mathcal{G
}
$
$
given
in
part
(
3
)
of
the
statement
of
the
lemma
.
Given
a
map
$
\psi
:
[
m
]
\to
[
m']$
the
map
$
\mathcal{H}(\psi
)
:
f_\psi^{-1}\mathcal{H}_m
\to
\mathcal{H}_{m'}$
is
given
on
components
by
the
identifications
$
$
f_\psi^{-1
}
f_\varphi^{-1
}
\mathcal{G
}
\to
f_{\psi
\circ
\varphi}^{-1}\mathcal{G
}
$
$
Observe
that
given
a
map
$
\alpha
:
\mathcal{H
}
\to
\mathcal{F}$
of
sheaves
on
$
\mathcal{C}_{total}$
we
obtain
a
map
$
\mathcal{G
}
\to
\mathcal{F}_n$
corresponding
to
the
restriction
of
$
\alpha_n$
to
the
component
$
\mathcal{G}$
in
$
\mathcal{H}_n$.
Conversely
,
given
a
map
$
\beta
:
\mathcal{G
}
\to
\mathcal{F}_n$
of
sheaves
on
$
\mathcal{C}_n$
we
can
define
$
\alpha
:
\mathcal{H
}
\to
\mathcal{F}$
by
letting
$
\alpha_m$
be
the
map
which
on
components
$
$
f_\varphi^{-1}\mathcal{G
}
\to
\mathcal{F}_m
$
$
uses
the
maps
adjoint
to
$
\mathcal{F}(\varphi
)
\circ
f_\varphi^{-1}\beta$.
We
omit
the
arguments
showing
these
two
constructions
give
mutually
inverse
maps
$
$
\Mor_{\Sh(\mathcal{C}_n)}(\mathcal{G
}
,
\mathcal{F}_n
)
=
\Mor_{\Sh(\mathcal{C}_{total})}(\mathcal{H
}
,
\mathcal{F
}
)
$
$
Thus
$
\mathcal{H
}
=
g^{Sh}_{n!}\mathcal{G}$
as
desired
.
\medskip\noindent
Proof
of
(
4
)
.
If
$
\mathcal{G}$
is
an
abelian
sheaf
on
$
\mathcal{C}_n$
,
then
we
proceed
in
exactly
the
same
ammner
as
above
,
except
that
we
define
$
\mathcal{H}$
is
the
abelian
sheaf
on
$
\mathcal{C}_{total}$
whose
degree
$
m$
part
is
the
sheaf
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}\mathcal{G
}
$
$
with
transition
maps
defined
exactly
as
above
.
The
bijection
$
$
\Mor_{\textit{Ab}(\mathcal{C}_n)}(\mathcal{G
}
,
\mathcal{F}_n
)
=
\Mor_{\textit{Ab}(\mathcal{C}_{total})}(\mathcal{H
}
,
\mathcal{F
}
)
$
$
is
proved
exactly
as
above
.
Thus
$
\mathcal{H
}
=
g_{n!}\mathcal{G}$
as
desired
.
\medskip\noindent
The
exactness
properties
of
$
g^{Sh}_{n!}$
and
$
g_{n!}$
follow
from
formulas
given
for
these
functors
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
restriction
-
injective
-
to
-
component
-
site
}
\begin{slogan
}
An
injective
abelian
sheaf
on
a
simplicial
site
is
injective
on
each
component
\end{slogan
}
In
Situation
\ref{situation
-
simplicial
-
site}.
If
$
\mathcal{I}$
is
injective
in
$
\textit{Ab}(\mathcal{C}_{total})$
,
then
$
\mathcal{I}_n$
is
injective
in
$
\textit{Ab}(\mathcal{C}_n)$.
If
$
\mathcal{I}^\bullet$
is
a
K
-
injective
complex
in
$
\textit{Ab}(\mathcal{C}_{total})$
,
then
$
\mathcal{I}_n^\bullet$
is
K
-
injective
in
$
\textit{Ab}(\mathcal{C}_n)$.
\end{lemma
}
\begin{proof
}
The
first
statement
follows
from
Homology
,
Lemma
\ref{homology
-
lemma
-
adjoint
-
preserve
-
injectives
}
and
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
The
second
statement
from
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
adjoint
-
preserve
-
K
-
injectives
}
and
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
\end{proof
}
\section{Augmentations
of
simplicial
sites
}
\label{section
-
augmentation
-
simplicial
-
sites
}
\noindent
We
continue
in
the
fashion
described
in
Section
\ref{section
-
simplicial
-
sites
}
working
out
the
meaning
of
augmentations
in
cases
A
and
B
treated
in
that
section
.
\begin{remark
}
\label{remark
-
augmentation
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site
}
an
{
\it
augmentation
$
a_0
$
towards
a
site
$
\mathcal{D}$
}
will
mean
\begin{enumerate
}
\item[(A
)
]
$
a_0
:
\mathcal{C}_0
\to
\mathcal{D}$
is
a
morphism
of
sites
given
by
a
continuous
functor
$
u_0
:
\mathcal{D
}
\to
\mathcal{C}_0
$
such
that
for
all
$
\varphi
,
\psi
:
[
0
]
\to
[
n]$
we
have
$
u_\varphi
\circ
u_0
=
u_\psi
\circ
u_0$.
\item[(B
)
]
$
a_0
:
\Sh(\mathcal{C}_0
)
\to
\Sh(\mathcal{D})$
is
a
morphism
of
topoi
given
by
a
cocontinuous
functor
$
u_0
:
\mathcal{C}_0
\to
\mathcal{D}$
such
that
for
all
$
\varphi
,
\psi
:
[
0
]
\to
[
n]$
we
have
$
u_0
\circ
u_\varphi
=
u_0
\circ
u_\psi$.
\end{enumerate
}
\end{remark
}
\begin{lemma
}
\label{lemma
-
augmentation
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
a_0
$
be
an
TYPE
augmentation
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
Then
$
a_0
$
induces
\begin{enumerate
}
\item
a
morphism
of
topoi
$
a_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{D})$
for
all
$
n
\geq
0
$
,
\item
a
morphism
of
topoi
$
a
:
\Sh(\mathcal{C}_{total
}
)
\to
\Sh(\mathcal{D})$
\end{enumerate
}
such
that
\begin{enumerate
}
\item
for
all
$
\varphi
:
[
m
]
\to
[
n]$
we
have
$
a_m
\circ
f_\varphi
=
a_n$
,
\item
if
$
g_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_{total})$
is
as
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
,
then
$
a
\circ
g_n
=
a_n$
,
and
\item
$
a_*\mathcal{F}$
for
$
\mathcal{F
}
\in
\Sh(\mathcal{C}_{total})$
is
the
equalizer
of
the
two
maps
$
a_{0
,
*
}
\mathcal{F}_0
\to
a_{1
,
*
}
\mathcal{F}_1$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Case
A.
Let
$
u_n
:
\mathcal{D
}
\to
\mathcal{C}_n$
be
the
common
value
of
the
functors
$
u_\varphi
\circ
u_0
$
for
$
\varphi
:
[
0
]
\to
[
n]$.
Then
$
u_n$
corresponds
to
a
morphism
of
sites
$
a_n
:
\mathcal{C}_n
\to
\mathcal{D}$
,
see
Sites
,
Lemma
\ref{sites
-
lemma
-
composition
-
morphisms
-
sites}.
The
same
lemma
shows
that
for
all
$
\varphi
:
[
m
]
\to
[
n]$
we
have
$
a_m
\circ
f_\varphi
=
a_n$.
\medskip\noindent
Case
B.
Let
$
u_n
:
\mathcal{C}_n
\to
\mathcal{D}$
be
the
common
value
of
the
functors
$
u_0
\circ
u_\varphi$
for
$
\varphi
:
[
0
]
\to
[
n]$.
Then
$
u_n$
is
cocontinuous
and
hence
defines
a
morphism
of
topoi
$
a_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{D)}$
,
see
Sites
,
Lemma
\ref{sites
-
lemma
-
composition
-
cocontinuous}.
The
same
lemma
shows
that
for
all
$
\varphi
:
[
m
]
\to
[
n]$
we
have
$
a_m
\circ
f_\varphi
=
a_n$.
\medskip\noindent
Consider
the
functor
$
a^{-1
}
:
\Sh(\mathcal{D
}
)
\to
\Sh(\mathcal{C}_{total})$
which
to
a
sheaf
of
sets
$
\mathcal{G}$
associates
the
sheaf
$
\mathcal{F
}
=
a^{-1}\mathcal{G}$
whose
components
are
$
a_n^{-1}\mathcal{G}$
and
whose
transition
maps
$
\mathcal{F}(\varphi)$
are
the
identifications
$
$
f_\varphi^{-1}\mathcal{F}_m
=
f_\varphi^{-1
}
a_m^{-1}\mathcal{G
}
=
a_n^{-1}\mathcal{G
}
=
\mathcal{F}_n
$
$
for
$
\varphi
:
[
m
]
\to
[
n]$
,
see
the
description
of
$
\Sh(\mathcal{C}_{total})$
in
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site}.
Since
the
functors
$
a_n^{-1}$
are
exact
,
$
a^{-1}$
is
an
exact
functor
.
Finally
,
for
$
a
_
*
:
\Sh(\mathcal{C}_{total
}
)
\to
\Sh(\mathcal{D})$
we
take
the
functor
which
to
a
sheaf
$
\mathcal{F}$
on
$
\Sh(\mathcal{D})$
associates
$
$
\xymatrix
{
a_*\mathcal{F
}
\ar@{=}[r
]
&
\text{Equalizer}(a_{0
,
*
}
\mathcal{F}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{1
,
*
}
\mathcal{F}_1
)
}
$
$
Here
the
two
maps
come
from
the
two
maps
$
\varphi
:
[
0
]
\to
[
1]$
via
$
$
a_{0
,
*
}
\mathcal{F}_0
\to
a_{0
,
*
}
f_{\varphi
,
*
}
f_\varphi^{-1}\mathcal{F}_0
\xrightarrow{\mathcal{F}(\varphi
)
}
a_{0
,
*
}
f_{\varphi
,
*
}
\mathcal{F}_0
=
a_{1
,
*
}
\mathcal{F}_1
$
$
where
the
first
arrow
comes
from
$
1
\to
f_{\varphi
,
*
}
f_\varphi^{-1}$.
Let
$
\mathcal{G}_\bullet$
denote
the
constant
simplicial
sheaf
with
value
$
\mathcal{G}$
and
let
$
a_{\bullet
,
*
}
\mathcal{F}$
denote
the
simplicial
sheaf
having
$
a_{n
,
*
}
\mathcal{F}_n$
in
degree
$
n$.
By
the
usual
adjuntion
for
the
morphisms
of
topoi
$
a_n$
we
see
that
a
map
$
a^{-1}\mathcal{G
}
\to
\mathcal{F}$
is
the
same
thing
as
a
map
$
$
\mathcal{G}_\bullet
\longrightarrow
a_{\bullet
,
*
}
\mathcal{F
}
$
$
of
simplicial
sheaves
.
By
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
augmentation
-
howto
}
this
is
the
same
thing
as
a
map
$
\mathcal{G
}
\to
a_*\mathcal{F}$.
Thus
$
a^{-1}$
and
$
a_*$
are
adjoint
functors
and
we
obtain
our
morphism
of
topoi
$
a$\footnote{In
case
B
the
morphism
$
a$
corresponds
to
the
cocontinuous
functor
$
\mathcal{C}_{total
}
\to
\mathcal{D}$
sending
$
U$
in
$
\mathcal{C}_n$
to
$
u_n(U)$.}.
The
equalities
$
a
\circ
g_n
=
f_n$
follow
immediately
from
the
definitions
.
\end{proof
}
\section{Morphisms
of
simplicial
sites
}
\label{section
-
morphism
-
simplicial
-
sites
}
\noindent
We
continue
in
the
fashion
described
in
Section
\ref{section
-
simplicial
-
sites
}
working
out
the
meaning
of
morphisms
of
simplicial
sites
in
cases
A
and
B
treated
in
that
section
.
\begin{remark
}
\label{remark
-
morphism
-
simplicial
-
sites
}
Let
$
\mathcal{C}_n
,
f_\varphi
,
u_\varphi$
and
$
\mathcal{C}'_n
,
f'_\varphi
,
u'_\varphi$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
A
{
\it
morphism
$
h$
between
simplicial
sites
}
will
mean
\begin{enumerate
}
\item[(A
)
]
Morphisms
of
sites
$
h_n
:
\mathcal{C}_n
\to
\mathcal{C}'_n$
such
that
$
f'_\varphi
\circ
h_n
=
h_m
\circ
f_\varphi$
as
morphisms
of
sites
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\item[(B
)
]
Cocontinuous
functors
$
v_n
:
\mathcal{C}_n
\to
\mathcal{C}'_n$
inducing
morphisms
of
topoi
$
h_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}'_n)$
such
that
$
u'_\varphi
\circ
v_n
=
v_m
\circ
u_\varphi$
as
functors
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\end{enumerate
}
In
both
cases
we
have
$
f'_\varphi
\circ
h_n
=
h_m
\circ
f_\varphi$
as
morphisms
of
topoi
,
see
Sites
,
Lemma
\ref{sites
-
lemma
-
composition
-
cocontinuous
}
for
case
B
and
Sites
,
Definition
\ref{sites
-
definition
-
composition
-
morphisms
-
sites
}
for
case
A.
\end{remark
}
\begin{lemma
}
\label{lemma
-
morphism
-
simplicial
-
sites
}
Let
$
\mathcal{C}_n
,
f_\varphi
,
u_\varphi$
and
$
\mathcal{C}'_n
,
f'_\varphi
,
u'_\varphi$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
h$
be
a
morphism TYPE
between
simplicial
sites
as
in
Remark
\ref{remark
-
morphism
-
simplicial
-
sites}.
Then
we
obtain
a
morphism
of
topoi
$
$
h_{total
}
:
\Sh(\mathcal{C}_{total
}
)
\to
\Sh(\mathcal{C}'_{total
}
)
$
$
and
commutative
diagrams
$
$
\xymatrix
{
\Sh(\mathcal{C}_n
)
\ar[d]_{g_n
}
\ar[r]_{h_n
}
&
\Sh(\mathcal{C}'_n
)
\ar[d]^{g'_n
}
\\
\Sh(\mathcal{C}_{total
}
)
\ar[r]^{h_{total
}
}
&
\Sh(\mathcal{C}'_{total
}
)
}
$
$
Moreover
,
we
have
$
(
g'_n)^{-1
}
\circ
h_{total
,
*
}
=
h_{n
,
*
}
\circ
g_n^{-1}$.
\end{lemma
}
\begin{proof
}
Case
A.
Say
$
h_n$
corresponds
to
the
continuous
functor
$
v_n
:
\mathcal{C}'_n
\to
\mathcal{C}_n$.
Then
we
can
define
a
functor
$
v_{total
}
:
\mathcal{C}'_{total
}
\to
\mathcal{C}_{total}$
by
using
$
v_n$
in
degree
$
n$.
This
is
clearly
a
continuous
functor
(
see
definition
of
coverings
in
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
)
.
Let
$
h_{total}^{-1
}
=
v_{total
,
s
}
:
\Sh(\mathcal{C}'_{total
}
)
\to
\Sh(\mathcal{C}_{total})$
and
$
h_{total
,
*
}
=
v_{total}^s
=
v_{total}^p
:
\Sh(\mathcal{C}_{total
}
)
\to
\Sh(\mathcal{C}'_{total})$
be
the
adjoint
pair
of
functors
constructed
and
studied
in
Sites
,
Sections
\ref{sites
-
section
-
continuous
-
functors
}
and
\ref{sites
-
section
-
morphism
-
sites}.
To
see
that
$
h_{total}$
is
a
morphism
of
topoi
we
still
have
to
verify
that
$
h_{total}^{-1}$
is
exact
.
We
first
observe
that
$
(
g'_n)^{-1
}
\circ
h_{total
,
*
}
=
h_{n
,
*
}
\circ
g_n^{-1}$
;
this
is
immediate
by
computing
sections
over
an
object
$
U$
of
$
\mathcal{C}'_n$.
Thus
,
if
we
think
of
a
sheaf
$
\mathcal{F}$
on
$
\mathcal{C}_{total}$
as
a
system
$
(
\mathcal{F}_n
,
\mathcal{F}(\varphi))$
as
in
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site
}
,
then
$
h_{total
,
*
}
\mathcal{F}$
corresponds
to
the
system
$
(
h_{n
,
*
}
\mathcal{F}_n
,
h_{n
,
*
}
\mathcal{F}(\varphi))$.
Clearly
,
the
functor
$
(
\mathcal{F}'_n
,
\mathcal{F}'(\varphi
)
)
\to
(
h_n^{-1}\mathcal{F}'_n
,
h_n^{-1}\mathcal{F}'(\varphi))$
is
its
left
adjoint
.
By
uniqueness
of
adjoints
,
we
conclude
that
$
h_{total}^{-1}$
is
given
by
this
rule
on
systems
.
In
particular
,
$
h_{total}^{-1}$
is
exact
(
by
the
description
of
sheaves
on
$
\mathcal{C}_{total}$
given
in
the
lemma
and
the
exactness
of
the
functors
$
h_n^{-1}$
)
and
we
have
our
morphism
of
topoi
.
Finally
,
we
obtain
$
g_n^{-1
}
\circ
h_{total}^{-1
}
=
h_n^{-1
}
\circ
(
g'_n)^{-1}$
as
well
,
which
proves
that
the
displayed
diagram
of
the
lemma
commutes
.
\medskip\noindent
Case
B.
Here
we
have
a
functor
$
v_{total
}
:
\mathcal{C}_{total
}
\to
\mathcal{C}'_{total}$
by
using
$
v_n$
in
degree
$
n$.
This
is
clearly
a
cocontinuous
functor
(
see
definition
of
coverings
in
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
)
.
Let
$
h_{total}$
be
the
morphism
of
topoi
associated
to
$
v_{total}$.
The
commutativity
of
the
displayed
diagram
of
the
lemma
follows
immediately
from
Sites
,
Lemma
\ref{sites
-
lemma
-
composition
-
cocontinuous}.
Taking
left
adjoints
the
final
equality
of
the
lemma
becomes
$
$
h_{total}^{-1
}
\circ
(
g'_n)^{Sh
}
_
!
=
g^{Sh}_{n
!
}
\circ
h_n^{-1
}
$
$
This
follows
immediately
from
the
explicit
description
of
the
functors
$
(
g'_n)^{Sh}_!$
and
$
g^{Sh}_{n!}$
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
,
the
fact
that
$
h_n^{-1
}
\circ
(
f'_\varphi)^{-1
}
=
f_\varphi^{-1
}
\circ
h_m^{-1}$
for
$
\varphi
:
[
m
]
\to
[
n]$
,
and
the
fact
that
we
already
know
$
h_{total}^{-1}$
commutes
with
restrictions
to
the
degree
$
n$
parts
of
the
simplicial
sites
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites
}
With
notation
and
hypotheses
as
in
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites}.
For
$
K
\in
D(\mathcal{C}_{total})$
we
have
$
(
g'_n)^{-1}Rh_{total
,
*
}
K
=
Rh_{n
,
*
}
g_n^{-1}K$.
\end{lemma
}
\begin{proof
}
Let
$
\mathcal{I}^\bullet$
be
a
K TYPE
-
injective
complex
on
$
\mathcal{C}_{total}$
representing
$
K$.
Then
$
g_n^{-1}K$
is
represented
by
$
g_n^{-1}\mathcal{I}^\bullet
=
\mathcal{I}_n^\bullet$
which
is
K
-
injective
by
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
-
site}.
We
have
$
(
g'_n)^{-1}h_{total
,
*
}
\mathcal{I}^\bullet
=
h_{n
,
*
}
g_n^{-1}\mathcal{I}_n^\bullet$
by
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
which
gives
the
desired
equality
.
\end{proof
}
\begin{remark
}
\label{remark
-
morphism
-
augmentation
-
simplicial
-
sites
}
Let
$
\mathcal{C}_n
,
f_\varphi
,
u_\varphi$
and
$
\mathcal{C}'_n
,
f'_\varphi
,
u'_\varphi$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
a_0
$
,
resp.\
$
a'_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
,
resp.\
$
\mathcal{D}'$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
Let
$
h$
be
a
morphism TYPE
between
simplicial
sites
as
in
Remark
\ref{remark
-
morphism
-
simplicial
-
sites}.
We
say
a
morphism
of
topoi
$
h_{-1
}
:
\Sh(\mathcal{D
}
)
\to
\Sh(\mathcal{D}')$
is
{
\it
compatible
with
$
h$
,
$
a_0
$
,
$
a'_0
$
}
if
\begin{enumerate
}
\item[(A
)
]
$
h_{-1}$
comes
from
a
morphism
of
sites
$
h_{-1
}
:
\mathcal{D
}
\to
\mathcal{D}'$
such
that
$
a'_0
\circ
h_0
=
h_{-1
}
\circ
a_0
$
as
morphisms
of
sites
.
\item[(B
)
]
$
h_{-1}$
comes
from
a
cocontinuous
functor
$
v_{-1
}
:
\mathcal{D
}
\to
\mathcal{D}'$
such
that
$
u'_0
\circ
v_0
=
v_{-1
}
\circ
u_0
$
as
functors
.
\end{enumerate
}
In
both
cases
we
have
$
a'_0
\circ
h_0
=
h_{-1
}
\circ
a_0
$
as
morphisms
of
topoi
,
see
Sites
,
Lemma
\ref{sites
-
lemma
-
composition
-
cocontinuous
}
for
case
B
and
Sites
,
Definition
\ref{sites
-
definition
-
composition
-
morphisms
-
sites
}
for
case
A.
\end{remark
}
\begin{lemma
}
\label{lemma
-
morphism
-
augmentation
-
simplicial
-
sites
}
Let
$
\mathcal{C}_n
,
f_\varphi
,
u_\varphi
,
\mathcal{D
}
,
a_0
$
,
$
\mathcal{C}'_n
,
f'_\varphi
,
u'_\varphi
,
\mathcal{D
}
'
,
a'_0
$
,
and
$
h_n$
,
$
n
\geq
-1
$
be
as
in
Remark
\ref{remark
-
morphism
-
augmentation
-
simplicial
-
sites}.
Then
we
obtain
a
commutative
diagram
$
$
\xymatrix
{
\Sh(\mathcal{C}_{total
}
)
\ar[d]_a
\ar[r]_{h_{total
}
}
&
\Sh(\mathcal{C}'_{total
}
)
\ar[d]^{a
'
}
\\
\Sh(\mathcal{D
}
)
\ar[r]^{h_{-1
}
}
&
\Sh(\mathcal{D
}
'
)
}
$
$
\end{lemma
}
\begin{proof
}
The
morphism
$
h$
is
defined
in
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites}.
The
morphisms
$
a$
and
$
a'$
are
defined
in
Lemma
\ref{lemma
-
augmentation
-
site}.
Thus
the
only
thing
is
to
prove
the
commutativity
of
the
diagram
.
To
do
this
,
we
prove
that
$
a^{-1
}
\circ
h_{-1}^{-1
}
=
h_{total}^{-1
}
\circ
(
a')^{-1}$.
By
the
commutative
diagrams
of
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
and
the
description
of
$
\Sh(\mathcal{C}_{total})$
and
$
\Sh(\mathcal{C}'_{total})$
in
terms
of
components
in
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site
}
,
it
suffices
to
show
that
$
$
\xymatrix
{
\Sh(\mathcal{C}_n
)
\ar[d]_{a_n
}
\ar[r]_{h_n
}
&
\Sh(\mathcal{C}'_n
)
\ar[d]^{a'_n
}
\\
\Sh(\mathcal{D
}
)
\ar[r]^{h_{-1
}
}
&
\Sh(\mathcal{D
}
'
)
}
$
$
commutes
for
all
$
n$.
This
follows
from
the
case
for
$
n
=
0
$
(
which
is
an
assumption
in
Remark
\ref{remark
-
morphism
-
augmentation
-
simplicial
-
sites
}
)
and
for
$
n
>
0
$
we
pick
$
\varphi
:
[
0
]
\to
[
n]$
and
then
the
required
commutativity
follows
from
the
case
$
n
=
0
$
and
the
relations
$
a_n
=
a_0
\circ
f_\varphi$
and
$
a'_n
=
a'_0
\circ
f'_\varphi$
as
well
as
the
commutation
relations
$
f'_\varphi
\circ
h_n
=
h_0
\circ
f_\varphi$.
\end{proof
}
\section{Ringed
simplicial
sites
}
\label{section
-
simplicial
-
sites
-
modules
}
\noindent
Let
us
endow
our
simplicial
topos
with
a
sheaf
of
rings
.
\begin{lemma
}
\label{lemma
-
restriction
-
module
-
to
-
components
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
There
is
a
canonical
morphism
of
ringed
topoi
$
g_n
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O})$
agreeing
with
the
morphism
$
g_n$
of
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
on
underlying
topoi
.
The
functor
$
g_n^
*
:
\textit{Mod}(\mathcal{O
}
)
\to
\textit{Mod}(\mathcal{O}_n)$
has
a
left
adjoint
$
g_{n!}$.
For
$
\mathcal{G}$
in
$
\textit{Mod}(\mathcal{O}_n)$-modules
the
restriction
of
$
g_{n!}\mathcal{G}$
to
$
\mathcal{C}_m$
is
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^*\mathcal{G
}
$
$
where
$
f_\varphi
:
(
\Sh(\mathcal{C}_m
)
,
\mathcal{O}_m
)
\to
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n)$
is
the
morphism
of
ringed
topoi
agreeing
with
the
previously
defined
$
f_\varphi$
on
topoi
and
using
the
map
$
\mathcal{O}(\varphi
)
:
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
on
sheaves
of
rings
.
\end{lemma
}
\begin{proof
}
By
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
we
have
$
g_n^{-1}\mathcal{O
}
=
\mathcal{O}_n$
and
hence
we
obtain
our
morphism
of
ringed
topoi
.
By
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
lower
-
shriek
-
modules
}
we
obtain
the
adjoint
$
g_{n!}$.
To
prove
the
formula
for
$
g_{n!}$
we
first
define
a
sheaf
of
$
\mathcal{O}$-modules
$
\mathcal{H}$
on
$
\mathcal{C}_{total}$
with
degree
$
m$
component
the
$
\mathcal{O}_m$-module
$
$
\mathcal{H}_m
=
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^*\mathcal{G
}
$
$
Given
a
map
$
\psi
:
[
m
]
\to
[
m']$
the
map
$
\mathcal{H}(\psi
)
:
f_\psi^{-1}\mathcal{H}_m
\to
\mathcal{H}_{m'}$
is
given
on
components
by
$
$
f_\psi^{-1
}
f_\varphi^*\mathcal{G
}
\to
f_\psi^
*
f_\varphi^*\mathcal{G
}
\to
f_{\psi
\circ
\varphi}^*\mathcal{G
}
$
$
Since
this
map
$
f_\psi^{-1}\mathcal{H}_m
\to
\mathcal{H}_{m'}$
is
$
\mathcal{O}(\psi
)
:
f_\psi^{-1}\mathcal{O}_m
\to
\mathcal{O}_{m'}$-semi
-
linear
,
this
indeed
does
define
an
$
\mathcal{O}$-module
(
use
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site
}
)
.
Then
one
proves
directly
that
$
$
\Mor_{\mathcal{O}_n}(\mathcal{G
}
,
\mathcal{F}_n
)
=
\Mor_{\mathcal{O}}(\mathcal{H
}
,
\mathcal{F
}
)
$
$
proceeding
as
in
the
proof
of
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
Thus
$
\mathcal{H
}
=
g_{n!}\mathcal{G}$
as
desired
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
restriction
-
injective
-
to
-
component
-
limp
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
If
$
\mathcal{I}$
is
injective
in
$
\textit{Mod}(\mathcal{O})$
,
then
$
\mathcal{I}_n$
is
a
limp
sheaf
on
$
\mathcal{C}_n$.
\end{lemma
}
\begin{proof
}
This
follows
from
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
pullback
-
injective
-
limp
}
applied
to
the
inclusion
functor
$
\mathcal{C}_n
\to
\mathcal{C}_{total}$
and
its
properties
proven
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
exactness
-
g
-
shriek
-
modules
}
With
assumptions
as
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site
}
the
functor
$
g_{n
!
}
:
\textit{Mod}(\mathcal{O}_n
)
\to
\textit{Mod}(\mathcal{O})$
is
exact
if
the
maps
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
are
flat
for
all
$
\varphi
:
[
n
]
\to
[
m]$.
\end{lemma
}
\begin{proof
}
Recall
that
$
g_{n!}\mathcal{G}$
is
the
$
\mathcal{O}$-module
whose
degree
$
m$
part
is
the
$
\mathcal{O}_m$-module
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^*\mathcal{G
}
$
$
Here
the
morphism
of
ringed
topoi
$
f_\varphi
:
(
\Sh(\mathcal{C}_m
)
,
\mathcal{O}_m
)
\to
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n)$
uses
the
map
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
of
the
statement
of
the
lemma
.
If
these
maps
are
flat
,
then
$
f_\varphi^*$
is
exact
(
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
flat
-
pullback
-
exact
}
)
.
By
definition
of
the
site
$
\mathcal{C}_{total}$
we
see
that
these
functors
have
the
desired
exactness
properties
and
we
conclude
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
restriction
-
injective
-
to
-
component
-
site
-
module
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
such
that
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
is
flat
for
all
$
\varphi
:
[
n
]
\to
[
m]$.
If
$
\mathcal{I}$
is
injective
in
$
\textit{Mod}(\mathcal{O})$
,
then
$
\mathcal{I}_n$
is
injective
in
$
\textit{Mod}(\mathcal{O}_n)$.
\end{lemma
}
\begin{proof
}
This
follows
from
Homology
,
Lemma
\ref{homology
-
lemma
-
adjoint
-
preserve
-
injectives
}
and
Lemma
\ref{lemma
-
exactness
-
g
-
shriek
-
modules}.
\end{proof
}
\section{Morphisms
of
ringed
simplicial
sites
}
\label{section
-
morphism
-
simplicial
-
sites
-
modules
}
\noindent
We
continue
the
discussion
of
Section
\ref{section
-
morphism
-
simplicial
-
sites}.
\begin{remark
}
\label{remark
-
morphism
-
simplicial
-
sites
-
modules
}
Let
$
\mathcal{C}_n
,
f_\varphi
,
u_\varphi$
and
$
\mathcal{C}'_n
,
f'_\varphi
,
u'_\varphi$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{O}$
and
$
\mathcal{O}'$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
and
$
\mathcal{C}'_{total}$.
We
will
say
that
$
(
h
,
h^\sharp)$
is
a
{
\it
morphism
between
ringed
simplicial
sites
}
if
$
h$
is
a
morphism
between
simplicial
sites
as
in
Remark
\ref{remark
-
morphism
-
simplicial
-
sites
}
and
$
h^\sharp
:
h_{total}^{-1}\mathcal{O
}
'
\to
\mathcal{O}$
or
equivalently
$
h^\sharp
:
\mathcal{O
}
'
\to
h_{total
,
*
}
\mathcal{O}$
is
a
homomorphism
of
sheaves
of
rings
.
\end{remark
}
\begin{lemma
}
\label{lemma
-
morphism
-
simplicial
-
sites
-
modules
}
Let
$
\mathcal{C}_n
,
f_\varphi
,
u_\varphi$
and
$
\mathcal{C}'_n
,
f'_\varphi
,
u'_\varphi$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{O}$
and
$
\mathcal{O}'$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
and
$
\mathcal{C}'_{total}$.
Let
$
(
h
,
h^\sharp)$
be
a
morphism TYPE
between
simplicial
sites
as
in
Remark
\ref{remark
-
morphism
-
simplicial
-
sites
-
modules}.
Then
we
obtain
a
morphism
of
ringed
topoi
$
$
h_{total
}
:
(
\Sh(\mathcal{C}_{total
}
,
\mathcal{O
}
)
\to
(
\Sh(\mathcal{C}'_{total
}
)
,
\mathcal{O
}
'
)
$
$
and
commutative
diagrams
$
$
\xymatrix
{
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\ar[d]_{g_n
}
\ar[r]_{h_n
}
&
(
\Sh(\mathcal{C}'_n
)
,
\mathcal{O}'_n
)
\ar[d]^{g'_n
}
\\
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O
}
)
\ar[r]^{h_{total
}
}
&
(
\Sh(\mathcal{C}'_{total
}
)
,
\mathcal{O
}
'
)
}
$
$
of
ringed
topoi
where
$
g_n$
and
$
g'_n$
are
as
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site}.
Moreover
,
we
have
$
(
g'_n)^
*
\circ
h_{total
,
*
}
=
h_{n
,
*
}
\circ
g_n^*$
as
functor
$
\textit{Mod}(\mathcal{O
}
)
\to
\textit{Mod}(\mathcal{O}'_n)$.
\end{lemma
}
\begin{proof
}
Follows
from
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
and
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site
}
by
keeping
track
of
the
sheaves
of
rings
.
A
small
point
is
that
in
order
to
define
$
h_n$
as
a
morphism
of
ringed
topoi
we
set
$
h_n^\sharp
=
g_n^{-1}h^\sharp
:
g_n^{-1}h_{total}^{-1}\mathcal{O
}
'
\to
g_n^{-1}\mathcal{O}$
which
makes
sense
because
$
g_n^{-1}h_{total}^{-1}\mathcal{O
}
'
=
h_n^{-1}(g'_n)^{-1}\mathcal{O
}
'
=
h_n^{-1}\mathcal{O}'_n$
and
$
g_n^{-1}\mathcal{O
}
=
\mathcal{O}_n$.
Note
that
$
g_n^*\mathcal{F
}
=
g_n^{-1}\mathcal{F}$
for
a
sheaf
of
$
\mathcal{O}$-modules
$
\mathcal{F}$
and
similarly
for
$
g'_n$
and
this
helps
explain
why
$
(
g'_n)^
*
\circ
h_{total
,
*
}
=
h_{n
,
*
}
\circ
g_n^*$
follows
from
the
corresponding
statement
of
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites
-
modules
}
With
notation
and
hypotheses
as
in
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
-
modules}.
For
$
K
\in
D(\mathcal{O})$
we
have
$
(
g'_n)^*Rh_{total
,
*
}
K
=
Rh_{n
,
*
}
g_n^*K$.
\end{lemma
}
\begin{proof
}
Recall
that
$
g_n^
*
=
g_n^{-1}$
because
$
g_n^{-1}\mathcal{O
}
=
\mathcal{O}_n$
by
the
construction
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site}.
In
particular
$
g_n^*$
is
exact
and
$
Lg_n^*$
is
given
by
applying
$
g_n^*$
to
any
representative
complex
of
modules
.
Similarly
for
$
g'_n$.
There
is
a
canonical
base
change
map
$
(
g'_n)^*Rh_{total
,
*
}
K
\to
Rh_{n
,
*
}
g_n^*K$
,
see
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
base
-
change}.
By
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
modules
-
abelian
-
unbounded
}
the
image
of
this
in
$
D(\mathcal{C}'_n)$
is
the
map
$
(
g'_n)^{-1}Rh_{total
,
*
}
K_{ab
}
\to
Rh_{n
,
*
}
g_n^{-1}K_{ab}$
where
$
K_{ab}$
is
the
image
of
$
K$
in
$
D(\mathcal{C}_{total})$.
This
we
proved
to
be
an
isomorphism TYPE
in
Lemma
\ref{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites
}
and
the
result
follows
.
\end{proof
}
\section{Cohomology
on
simplicial
sites
}
\label{section
-
cohomology
-
simplicial
-
sites
}
\noindent
Let
$
\mathcal{C}$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
In
statement
of
the
following
lemmas
we
will
let
$
g_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_{total})$
be
the
morphism
of
topoi
of
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
If
$
\varphi
:
[
m
]
\to
[
n]$
is
a
morphism
of
$
\Delta$
,
then
the
diagram
of
topoi
$
$
\xymatrix
{
\Sh(\mathcal{C}_n
)
\ar[rd]_{g_n
}
\ar[rr]_{f_\varphi
}
&
&
\Sh(\mathcal{C}_m
)
\ar[ld]^{g_m
}
\\
&
\Sh(\mathcal{C}_{total
}
)
}
$
$
is
not
commutative
,
but
there
is
a
$
2$-morphism
$
g_n
\to
g_m
\circ
f_\varphi$
coming
from
the
maps
$
\mathcal{F}(\varphi
)
:
f_\varphi^{-1}\mathcal{F}_m
\to
\mathcal{F}_n$.
See
Sites
,
Section
\ref{sites
-
section-2-category}.
\begin{lemma
}
\label{lemma
-
simplicial
-
resolution
-
Z
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site
}
and
with
notation
as
above
there
is
a
complex
$
$
\ldots
\to
g_{2!}\mathbf{Z
}
\to
g_{1!}\mathbf{Z
}
\to
g_{0!}\mathbf{Z
}
$
$
of
abelian
sheaves
on
$
\mathcal{C}_{total}$
which
forms
a
resolution
of
the
constant
sheaf
with
value
$
\mathbf{Z}$
on
$
\mathcal{C}_{total}$.
\end{lemma
}
\begin{proof
}
We
will
use
the
description
of
the
functors
$
g_{n!}$
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
without
further
mention
.
As
maps
of
the
complex
we
take
$
\sum
(
-1)^i
d^n_i$
where
$
d^n_i
:
g_{n!}\mathbf{Z
}
\to
g_{n
-
1!}\mathbf{Z}$
is
the
adjoint
to
the
map
$
\mathbf{Z
}
\to
\bigoplus_{[n
-
1
]
\to
[
n
]
}
\mathbf{Z
}
=
g_n^{-1}g_{n
-
1!}\mathbf{Z}$
corresponding
to
the
factor
labeled
with
$
\delta^n_i
:
[
n
-
1
]
\to
[
n]$.
Then
$
g_m^{-1}$
applied
to
the
complex
gives
the
complex
$
$
\ldots
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([2
]
,
[
m
]
)
]
}
\mathbf{Z
}
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([1
]
,
[
m
]
)
]
}
\mathbf{Z
}
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([0
]
,
[
m
]
)
]
}
\mathbf{Z
}
$
$
on
$
\mathcal{C}_m$.
In
other
words
,
this
is
the
complex
associated
to
the
free
abelian
sheaf
on
the
simplicial
set
$
\Delta[m]$
,
see
Simplicial
,
Example
\ref{simplicial
-
example
-
simplex
-
simplicial
-
set}.
Since
$
\Delta[m]$
is
homotopy
equivalent
to
$
\Delta[0]$
,
see
Simplicial
,
Example
\ref{simplicial
-
example
-
simplex
-
contractible
}
,
and
since
``
taking
free
abelian
sheaf
on
''
is
a
functor
,
we
see
that
the
complex
above
is
homotopy
equivalent
to
the
free
abelian
sheaf
on
$
\Delta[0]$
(
Simplicial
,
Remark
\ref{simplicial
-
remark
-
homotopy
-
better
}
and
Lemma
\ref{simplicial
-
lemma
-
homotopy
-
equivalence
-
s
-
N
}
)
.
This
complex
is
acyclic
in
positive
degrees
and
equal
to
$
\mathbf{Z}$
in
degree
$
0$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cech
-
complex
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{F}$
be
an
abelian TYPE
sheaf
on
$
\mathcal{C}_{total}$
there
is
a
canonical
complex
$
$
0
\to
\Gamma(\mathcal{C}_{total
}
,
\mathcal{F
}
)
\to
\Gamma(\mathcal{C}_0
,
\mathcal{F}_0
)
\to
\Gamma(\mathcal{C}_1
,
\mathcal{F}_1
)
\to
\Gamma(\mathcal{C}_2
,
\mathcal{F}_2
)
\to
\ldots
$
$
which
is
exact
in
degrees
$
-1
,
0
$
and
exact
everywhere
if
$
\mathcal{F}$
is
injective
.
\end{lemma
}
\begin{proof
}
Observe
that
$
\Hom(\mathbf{Z
}
,
\mathcal{F
}
)
=
\Gamma(\mathcal{C}_{total
}
,
\mathcal{F})$
and
$
\Hom(g_{n!}\mathbf{Z
}
,
\mathcal{F
}
)
=
\Gamma(\mathcal{C}_n
,
\mathcal{F}_n)$.
Hence
this
lemma
is
an
immediate
consequence
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site
}
and
the
fact
that
$
\Hom(-
,
\mathcal{F})$
is
exact
if
$
\mathcal{F}$
is
injective
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
simplicial
-
sheaf
-
cohomology
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site}.
For
$
K$
in
$
D^+(\mathcal{C}_{total})$
there
is
a
spectral
sequence
$
(
E_r
,
d_r)_{r
\geq
0}$
with
$
$
E_1^{p
,
q
}
=
H^q(\mathcal{C}_p
,
K_p),\quad
d_1^{p
,
q
}
:
E_1^{p
,
q
}
\to
E_1^{p
+
1
,
q
}
$
$
converging
to
$
H^{p
+
q}(\mathcal{C}_{total
}
,
K)$.
This
spectral
sequence
is
functorial
in
$
K$.
\end{lemma
}
\begin{proof
}
Let
$
\mathcal{I}^\bullet$
be
a
bounded TYPE
below
complex
of
injectives
representing
$
K$.
Consider
the
double
complex
with
terms
$
$
A^{p
,
q
}
=
\Gamma(\mathcal{C}_p
,
\mathcal{I}^q_p
)
$
$
where
the
horizontal
arrows
come
from
Lemma
\ref{lemma
-
cech
-
complex
}
and
the
vertical
arrows
from
the
differentials
of
the
complex
$
\mathcal{I}^\bullet$.
The
rows
of
the
double
complex
are
exact
in
positive
degrees
and
evaluate
to
$
\Gamma(\mathcal{C}_{total
}
,
\mathcal{I}^q)$
in
degree
$
0$.
On
the
other
hand
,
since
restriction
to
$
\mathcal{C}_p$
is
exact
(
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
)
the
complex
$
\mathcal{I}_p^\bullet$
represents
$
K_p$
in
$
D(\mathcal{C}_p)$.
The
sheaves
$
\mathcal{I}_p^q$
are
injective
abelian
sheaves
on
$
\mathcal{C}_p$
(
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
-
site
}
)
.
Hence
the
cohomology
of
the
columns
computes
the
groups
$
H^q(\mathcal{C}_p
,
K_p)$.
We
conclude
by
applying
Homology
,
Lemmas
\ref{homology
-
lemma
-
first
-
quadrant
-
ss
}
and
\ref{homology
-
lemma
-
double
-
complex
-
gives
-
resolution}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
sanity
-
check
}
Let
$
\mathcal{C}$
be
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
U
\in
\Ob(\mathcal{C}_n)$.
Let
$
\mathcal{F
}
\in
\textit{Ab}(\mathcal{C}_{total})$.
Then
$
H^p(U
,
\mathcal{F
}
)
=
H^p(U
,
g_n^{-1}\mathcal{F})$
where
on
the
left
hand
side
$
U$
is
viewed
as
an
object
of
$
\mathcal{C}_{total}$.
\end{lemma
}
\begin{proof
}
Observe
that
``
$
U$
viewed
as
object
of
$
\mathcal{C}_{total}$
''
is
explained
by
the
construction
of
$
\mathcal{C}_{total}$
in
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
in
case
(
A
)
and
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
in
case
(
B
)
.
The
equality
then
follows
from
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
-
site
}
and
the
definition
of
cohomology
.
\end{proof
}
\section{Cohomology
and
augmentations
of
simplicial
sites
}
\label{section
-
cohomology
-
augmentation
-
simplicial
-
sites
}
\noindent
Consider
a
simplicial
site
$
\mathcal{C}$
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
a_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
By
Lemma
\ref{lemma
-
augmentation
-
site
}
we
obtain
a
morphism
of
topoi
$
$
a
:
\Sh(\mathcal{C}_{total
}
)
\longrightarrow
\Sh(\mathcal{D
}
)
$
$
and
morphisms
of
topoi
$
g_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_{total})$
as
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
The
compositions
$
a
\circ
g_n$
are
denoted
$
a_n
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{D})$.
Furthermore
,
the
simplicial
structure
gives
morphisms
of
topoi
$
f_\varphi
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_m)$
such
that
$
a_n
\circ
f_\varphi
=
a_m$
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\begin{lemma
}
\label{lemma
-
simplicial
-
resolution
-
augmentation
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
a_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
For
any
abelian
sheaf
$
\mathcal{G}$
on
$
\mathcal{D}$
there
is
an
exact
complex
$
$
\ldots
\to
g_{2!}(a_2^{-1}\mathcal{G
}
)
\to
g_{1!}(a_1^{-1}\mathcal{G
}
)
\to
g_{0!}(a_0^{-1}\mathcal{G
}
)
\to
a^{-1}\mathcal{G
}
\to
0
$
$
of
abelian
sheaves
on
$
\mathcal{C}_{total}$.
\end{lemma
}
\begin{proof
}
We
encourage
the
reader
to
read
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site
}
first
.
We
will
use
Lemma
\ref{lemma
-
augmentation
-
site
}
and
the
description
of
the
functors
$
g_{n!}$
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
without
further
mention
.
In
particular
$
g_{n!}(a_n^{-1}\mathcal{G})$
is
the
sheaf
on
$
\mathcal{C}_{total}$
whose
restriction
to
$
\mathcal{C}_m$
is
the
sheaf
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}a_n^{-1}\mathcal{G
}
=
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
a_m^{-1}\mathcal{G
}
$
$
As
maps
of
the
complex
we
take
$
\sum
(
-1)^i
d^n_i$
where
$
d^n_i
:
g_{n!}(a_n^{-1}\mathcal{G
}
)
\to
g_{n
-
1!}(a_{n
-
1}^{-1}\mathcal{G})$
is
the
adjoint
to
the
map
$
a_n^{-1}\mathcal{G
}
\to
\bigoplus_{[n
-
1
]
\to
[
n
]
}
a_n^{-1}\mathcal{G
}
=
g_n^{-1}g_{n
-
1!}(a_{n
-
1}^{-1}\mathcal{G})$
corresponding
to
the
factor
labeled
with
$
\delta^n_i
:
[
n
-
1
]
\to
[
n]$.
The
map
$
g_{0!}(a_0^{-1}\mathcal{G
}
)
\to
a^{-1}\mathcal{G}$
is
adjoint
to
the
identity
map
of
$
a_0^{-1}\mathcal{G}$.
Then
$
g_m^{-1}$
applied
to
the
chain
complex
in
degrees
$
\ldots
,
2
,
1
,
0
$
gives
the
complex
$
$
\ldots
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([2
]
,
[
m
]
)
]
}
a_m^{-1}\mathcal{G
}
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([1
]
,
[
m
]
)
]
}
a_m^{-1}\mathcal{G
}
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([0
]
,
[
m
]
)
]
}
a_m^{-1}\mathcal{G
}
$
$
on
$
\mathcal{C}_m$.
This
is
equal
to
$
a_m^{-1}\mathcal{G}$
tensored
over
the
constant
sheaf
$
\mathbf{Z}$
with
the
complex
$
$
\ldots
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([2
]
,
[
m
]
)
]
}
\mathbf{Z
}
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([1
]
,
[
m
]
)
]
}
\mathbf{Z
}
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([0
]
,
[
m
]
)
]
}
\mathbf{Z
}
$
$
discussed
in
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site}.
There
we
have
seen
that
this
complex
is
homotopy
equivalent
to
$
\mathbf{Z}$
placed
in
degree
$
0
$
which
finishes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
-
cech
-
complex
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
a_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
For
an
abelian
sheaf
$
\mathcal{F}$
on
$
\mathcal{C}_{total}$
there
is
a
canonical
complex
$
$
0
\to
a_*\mathcal{F
}
\to
a_{0
,
*
}
\mathcal{F}_0
\to
a_{1
,
*
}
\mathcal{F}_1
\to
a_{2
,
*
}
\mathcal{F}_2
\to
\ldots
$
$
on
$
\mathcal{D}$
which
is
exact
in
degrees
$
-1
,
0
$
and
exact
everywhere
if
$
\mathcal{F}$
is
injective
.
\end{lemma
}
\begin{proof
}
To
construct
the
complex
,
by
the
Yoneda
lemma
,
it
suffices
for
any
abelian
sheaf
$
\mathcal{G}$
on
$
\mathcal{D}$
to
construct
a
complex
$
$
0
\to
\Hom(\mathcal{G
}
,
a_*\mathcal{F
}
)
\to
\Hom(\mathcal{G
}
,
a_{0
,
*
}
\mathcal{F}_0
)
\to
\Hom(\mathcal{G
}
,
a_{1
,
*
}
\mathcal{F}_1
)
\to
\ldots
$
$
functorially
in
$
\mathcal{G}$.
To
do
this
apply
$
\Hom(-
,
\mathcal{F})$
to
the
exact
complex
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
augmentation
}
and
use
adjointness
of
pullback
and
pushforward
.
The
exactness
properties
in
degrees
$
-1
,
0
$
follow
from
the
construction
as
$
\Hom(-
,
\mathcal{F})$
is
left
exact
.
If
$
\mathcal{F}$
is
an
injective
abelian
sheaf
,
then
the
complex
is
exact
because
$
\Hom(-
,
\mathcal{F})$
is
exact
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
-
spectral
-
sequence
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
a_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
For
any
$
K$
in
$
D^+(\mathcal{C}_{total})$
there
is
a
spectral
sequence
$
(
E_r
,
d_r)_{r
\geq
0}$
with
$
$
E_1^{p
,
q
}
=
R^qa_{p
,
*
}
K_p,\quad
d_1^{p
,
q
}
:
E_1^{p
,
q
}
\to
E_1^{p
+
1
,
q
}
$
$
converging
to
$
R^{p
+
q}a_*K$.
This
spectral
sequence
is
functorial
in
$
K$.
\end{lemma
}
\begin{proof
}
Let
$
\mathcal{I}^\bullet$
be
a
bounded TYPE
below
complex
of
injectives
representing
$
K$.
Consider
the
double
complex
with
terms
$
$
A^{p
,
q
}
=
a_{p
,
*
}
\mathcal{I}^q_p
$
$
where
the
horizontal
arrows
come
from
Lemma
\ref{lemma
-
augmentation
-
cech
-
complex
}
and
the
vertical
arrows
from
the
differentials
of
the
complex
$
\mathcal{I}^\bullet$.
The
rows
of
the
double
complex
are
exact
in
positive
degrees
and
evaluate
to
$
a_*\mathcal{I}^q$
in
degree
$
0$.
On
the
other
hand
,
since
restriction
to
$
\mathcal{C}_p$
is
exact
(
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
)
the
complex
$
\mathcal{I}_p^\bullet$
represents
$
K_p$
in
$
D(\mathcal{C}_p)$.
The
sheaves
$
\mathcal{I}_p^q$
are
injective
abelian
sheaves
on
$
\mathcal{C}_p$
(
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
-
site
}
)
.
Hence
the
cohomology
of
the
columns
computes
$
R^qa_{p
,
*
}
K_p$.
We
conclude
by
applying
Homology
,
Lemmas
\ref{homology
-
lemma
-
first
-
quadrant
-
ss
}
and
\ref{homology
-
lemma
-
double
-
complex
-
gives
-
resolution}.
\end{proof
}
\section{Cohomology
on
ringed
simplicial
sites
}
\label{section
-
cohomology
-
simplicial
-
sites
-
modules
}
\noindent
This
section
is
the
analogue
of
Section
\ref{section
-
cohomology
-
simplicial
-
sites
}
for
sheaves
of
modules
.
\medskip\noindent
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
In
statement
of
the
following
lemmas
we
will
let
$
g_n
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O})$
be
the
morphism
of
ringed
topoi
of
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site}.
If
$
\varphi
:
[
m
]
\to
[
n]$
is
a
morphism
of
$
\Delta$
,
then
the
diagram
of
ringed
topoi
$
$
\xymatrix
{
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\ar[rd]_{g_n
}
\ar[rr]_{f_\varphi
}
&
&
(
\Sh(\mathcal{C}_m
)
,
\mathcal{O}_m
)
\ar[ld]^{g_m
}
\\
&
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O
}
)
}
$
$
is
not
commutative
,
but
there
is
a
$
2$-morphism
$
g_n
\to
g_m
\circ
f_\varphi$
coming
from
the
maps
$
\mathcal{F}(\varphi
)
:
f_\varphi^{-1}\mathcal{F}_m
\to
\mathcal{F}_n$.
See
Sites
,
Section
\ref{sites
-
section-2-category}.
\begin{lemma
}
\label{lemma
-
simplicial
-
resolution
-
ringed
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
There
is
a
complex
$
$
\ldots
\to
g_{2!}\mathcal{O}_2
\to
g_{1!}\mathcal{O}_1
\to
g_{0!}\mathcal{O}_0
$
$
of
$
\mathcal{O}$-modules
which
forms
a
resolution
of
$
\mathcal{O}$.
Here
$
g_{n!}$
is
as
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site}.
\end{lemma
}
\begin{proof
}
We
will
use
the
description
of
$
g_{n!}$
given
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site}.
As
maps
of
the
complex
we
take
$
\sum
(
-1)^i
d^n_i$
where
$
d^n_i
:
g_{n!}\mathcal{O}_n
\to
g_{n
-
1!}\mathcal{O}_{n
-
1}$
is
the
adjoint
to
the
map
$
\mathcal{O}_n
\to
\bigoplus_{[n
-
1
]
\to
[
n
]
}
\mathcal{O}_n
=
g_n^*g_{n
-
1!}\mathcal{O}_{n
-
1}$
corresponding
to
the
factor
labeled
with
$
\delta^n_i
:
[
n
-
1
]
\to
[
n]$.
Then
$
g_m^{-1}$
applied
to
the
complex
gives
the
complex
$
$
\ldots
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([2
]
,
[
m
]
)
]
}
\mathcal{O}_m
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([1
]
,
[
m
]
)
]
}
\mathcal{O}_m
\to
\bigoplus\nolimits_{\alpha
\in
\Mor_\Delta([0
]
,
[
m
]
)
]
}
\mathcal{O}_m
$
$
on
$
\mathcal{C}_m$.
In
other
words
,
this
is
the
complex
associated
to
the
free
$
\mathcal{O}_m$-module
on
the
simplicial
set
$
\Delta[m]$
,
see
Simplicial
,
Example
\ref{simplicial
-
example
-
simplex
-
simplicial
-
set}.
Since
$
\Delta[m]$
is
homotopy
equivalent
to
$
\Delta[0]$
,
see
Simplicial
,
Example
\ref{simplicial
-
example
-
simplex
-
contractible
}
,
and
since
``
taking
free
abelian
sheaf
on
''
is
a
functor
,
we
see
that
the
complex
above
is
homotopy
equivalent
to
the
free
abelian
sheaf
on
$
\Delta[0]$
(
Simplicial
,
Remark
\ref{simplicial
-
remark
-
homotopy
-
better
}
and
Lemma
\ref{simplicial
-
lemma
-
homotopy
-
equivalence
-
s
-
N
}
)
.
This
complex
is
acyclic
in
positive
degrees
and
equal
to
$
\mathcal{O}_m$
in
degree
$
0$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cech
-
complex
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
.
Let
$
\mathcal{F}$
be
a
TYPE
sheaf
of
$
\mathcal{O}$-modules
.
There
is
a
canonical
complex
$
$
0
\to
\Gamma(\mathcal{C}_{total
}
,
\mathcal{F
}
)
\to
\Gamma(\mathcal{C}_0
,
\mathcal{F}_0
)
\to
\Gamma(\mathcal{C}_1
,
\mathcal{F}_1
)
\to
\Gamma(\mathcal{C}_2
,
\mathcal{F}_2
)
\to
\ldots
$
$
which
is
exact
in
degrees
$
-1
,
0
$
and
exact
everywhere
if
$
\mathcal{F}$
is
an
injective
$
\mathcal{O}$-module
.
\end{lemma
}
\begin{proof
}
Observe
that
$
\Hom(\mathcal{O
}
,
\mathcal{F
}
)
=
\Gamma(\mathcal{C}_{total
}
,
\mathcal{F})$
and
$
\Hom(g_{n!}\mathcal{O}_n
,
\mathcal{F
}
)
=
\Gamma(\mathcal{C}_n
,
\mathcal{F}_n)$.
Hence
this
lemma
is
an
immediate
consequence
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
ringed
}
and
the
fact
that
$
\Hom(-
,
\mathcal{F})$
is
exact
if
$
\mathcal{F}$
is
injective
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
simplicial
-
module
-
cohomology
-
site
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
.
For
$
K$
in
$
D^+(\mathcal{O})$
there
is
a
spectral
sequence
$
(
E_r
,
d_r)_{r
\geq
0}$
with
$
$
E_1^{p
,
q
}
=
H^q(\mathcal{C}_p
,
K_p),\quad
d_1^{p
,
q
}
:
E_1^{p
,
q
}
\to
E_1^{p
+
1
,
q
}
$
$
converging
to
$
H^{p
+
q}(\mathcal{C}_{total
}
,
K)$.
This
spectral
sequence
is
functorial
in
$
K$.
\end{lemma
}
\begin{proof
}
Let
$
\mathcal{I}^\bullet$
be
a
bounded TYPE
below
complex
of
injective
$
\mathcal{O}$-modules
representing
$
K$.
Consider
the
double
complex
with
terms
$
$
A^{p
,
q
}
=
\Gamma(\mathcal{C}_p
,
\mathcal{I}^q_p
)
$
$
where
the
horizontal
arrows
come
from
Lemma
\ref{lemma
-
cech
-
complex
-
modules
}
and
the
vertical
arrows
from
the
differentials
of
the
complex
$
\mathcal{I}^\bullet$.
Observe
that
$
\Gamma(\mathcal{D
}
,
-
)
=
\Hom_{\mathcal{O}_\mathcal{D}}(\mathcal{O}_\mathcal{D
}
,
-)$
on
$
\textit{Mod}(\mathcal{O}_\mathcal{D})$.
Hence
the
lemma
says
rows
of
the
double
complex
are
exact
in
positive
degrees
and
evaluate
to
$
\Gamma(\mathcal{C}_{total
}
,
\mathcal{I}^q)$
in
degree
$
0$.
Thus
the
total
complex
associated
to
the
double
complex
computes
$
R\Gamma(\mathcal{C}_{total
}
,
K)$
by
Homology
,
Lemma
\ref{homology
-
lemma
-
double
-
complex
-
gives
-
resolution}.
On
the
other
hand
,
since
restriction
to
$
\mathcal{C}_p$
is
exact
(
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
)
the
complex
$
\mathcal{I}_p^\bullet$
represents
$
K_p$
in
$
D(\mathcal{C}_p)$.
The
sheaves
$
\mathcal{I}_p^q$
are
are
limp
on
$
\mathcal{C}_p$
(
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
-
limp
}
)
.
Hence
the
cohomology
of
the
columns
computes
the
groups
$
H^q(\mathcal{C}_p
,
K_p)$
by
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
and
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
limp
-
acyclic}.
We
conclude
by
applying
Homology
,
Lemma
\ref{homology
-
lemma
-
first
-
quadrant
-
ss}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
sanity
-
check
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
.
Let
$
U
\in
\Ob(\mathcal{C}_n)$.
Let
$
\mathcal{F
}
\in
\textit{Mod}(\mathcal{O})$.
Then
$
H^p(U
,
\mathcal{F
}
)
=
H^p(U
,
g_n^*\mathcal{F})$
where
on
the
left
hand
side
$
U$
is
viewed
as
an
object
of
$
\mathcal{C}_{total}$.
\end{lemma
}
\begin{proof
}
Observe
that
``
$
U$
viewed
as
object
of
$
\mathcal{C}_{total}$
''
is
explained
by
the
construction
of
$
\mathcal{C}_{total}$
in
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
in
case
(
A
)
and
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
in
case
(
B
)
.
In
both
cases
the
functor
$
\mathcal{C}_n
\to
\mathcal{C}$
is
continuous
and
cocontinuous
,
see
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
,
and
$
g_n^{-1}\mathcal{O
}
=
\mathcal{O}_n$
by
definition
.
Hence
the
result
is
a
special
case
of
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
pullback
-
same
-
cohomology}.
\end{proof
}
\section{Cohomology
and
augmentations
of
ringed
simplicial
sites
}
\label{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites
}
\noindent
This
section
is
the
analogue
of
Section
\ref{section
-
cohomology
-
augmentation
-
simplicial
-
sites
}
for
sheaves
of
modules
.
\medskip\noindent
Consider
a
simplicial
site
$
\mathcal{C}$
as
in
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
a_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
Let
$
\mathcal{O}_\mathcal{D}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{D}$.
Suppose
we
are
given
a
morphism
$
$
a^\sharp
:
\mathcal{O}_\mathcal{D
}
\longrightarrow
a_*\mathcal{O
}
$
$
where
$
a$
is
as
in
Lemma
\ref{lemma
-
augmentation
-
site}.
Consequently
,
we
obtain
a
morphism
of
ringed
topoi
$
$
a
:
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O
}
)
\longrightarrow
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D
}
)
$
$
We
will
think
of
$
g_n
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O})$
as
a
morphism
of
ringed
topoi
as
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site
}
,
then
taking
the
composition
$
a_n
=
a
\circ
g_n$
(
Lemma
\ref{lemma
-
augmentation
-
site
}
)
as
morphisms
of
ringed
topoi
we
obtain
$
$
a_n
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\longrightarrow
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D
}
)
$
$
Using
the
transition
maps
$
f_\varphi^{-1}\mathcal{O}_m
\to
\mathcal{O}_n$
we
obtain
morphisms
of
ringed
topoi
$
$
f_\varphi
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_m
)
,
\mathcal{O}_m
)
$
$
such
that
$
a_n
\circ
f_\varphi
=
a_m$
as
morphisms
of
ringed
topoi
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\begin{lemma
}
\label{lemma
-
flat
-
augmentation
-
modules
}
With
notation
as
above
.
The
morphism
$
a
:
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O
}
)
\to
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D})$
is
flat
if
and
only
if
$
a_n
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D})$
is
flat
for
$
n
\geq
0$.
\end{lemma
}
\begin{proof
}
Since
$
g_n
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_{total
}
)
,
\mathcal{O})$
is
flat
,
we
see
that
if
$
a$
is
flat
,
then
$
a_n
=
a
\circ
g_n$
is
flat
as
a
composition
.
Conversely
,
suppose
that
$
a_n$
is
flat
for
all
$
n$.
We
have
to
check
that
$
\mathcal{O}$
is
flat
as
a
sheaf
of
$
a^{-1}\mathcal{O}_\mathcal{D}$-modules
.
Let
$
\mathcal{F
}
\to
\mathcal{G}$
be
an
injective TYPE
map
of
$
a^{-1}\mathcal{O}_\mathcal{D}$-modules
.
We
have
to
show
that
$
$
\mathcal{F
}
\otimes_{a^{-1}\mathcal{O}_\mathcal{D
}
}
\mathcal{O
}
\to
\mathcal{G
}
\otimes_{a^{-1}\mathcal{O}_\mathcal{D
}
}
\mathcal{O
}
$
$
is
injective
.
We
can
check
this
on
$
\mathcal{C}_n$
,
i.e.
,
after
applying
$
g_n^{-1}$.
Since
$
g_n^
*
=
g_n^{-1}$
because
$
g_n^{-1}\mathcal{O
}
=
\mathcal{O}_n$
we
obtain
$
$
g_n^{-1}\mathcal{F
}
\otimes_{g_n^{-1}a^{-1}\mathcal{O}_\mathcal{D
}
}
\mathcal{O}_n
\to
g_n^{-1}\mathcal{G
}
\otimes_{g_n^{-1}a^{-1}\mathcal{O}_\mathcal{D
}
}
\mathcal{O}_n
$
$
which
is
injective
because
$
g_n^{-1}a^{-1}\mathcal{O}_\mathcal{D
}
=
a_n^{-1}\mathcal{O}_\mathcal{D}$
and
we
assume
$
a_n$
was
flat
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
simplicial
-
resolution
-
augmentation
-
modules
}
With
notation
as
above
.
For
a
$
\mathcal{O}_\mathcal{D}$-module
$
\mathcal{G}$
there
is
an
exact
complex
$
$
\ldots
\to
g_{2!}(a_2^*\mathcal{G
}
)
\to
g_{1!}(a_1^*\mathcal{G
}
)
\to
g_{0!}(a_0^*\mathcal{G
}
)
\to
a^*\mathcal{G
}
\to
0
$
$
of
sheaves
of
$
\mathcal{O}$-modules
on
$
\mathcal{C}_{total}$.
Here
$
g_{n!}$
is
as
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site}.
\end{lemma
}
\begin{proof
}
Observe
that
$
a^*\mathcal{G}$
is
the
$
\mathcal{O}$-module
on
$
\mathcal{C}_{total}$
whose
restriction
to
$
\mathcal{C}_m$
is
the
$
\mathcal{O}_m$-module
$
a_m^*\mathcal{G}$.
The
description
of
the
functors
$
g_{n!}$
on
modules
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site
}
shows
that
$
g_{n!}(a_n^*\mathcal{G})$
is
the
$
\mathcal{O}$-module
on
$
\mathcal{C}_{total}$
whose
restriction
to
$
\mathcal{C}_m$
is
the
$
\mathcal{O}_m$-module
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^*a_n^*\mathcal{G
}
=
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
a_m^*\mathcal{G
}
$
$
The
rest
of
the
proof
is
exactly
the
same
as
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
augmentation
}
,
replacing
$
a_m^{-1}\mathcal{G}$
by
$
a_m^*\mathcal{G}$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
-
cech
-
complex
-
modules
}
With
notation
as
above
.
For
an
$
\mathcal{O}$-module
$
\mathcal{F}$
on
$
\mathcal{C}_{total}$
there
is
a
canonical
complex
$
$
0
\to
a_*\mathcal{F
}
\to
a_{0
,
*
}
\mathcal{F}_0
\to
a_{1
,
*
}
\mathcal{F}_1
\to
a_{2
,
*
}
\mathcal{F}_2
\to
\ldots
$
$
of
$
\mathcal{O}_\mathcal{D}$-modules
which
is
exact
in
degrees
$
-1
,
0$.
If
$
\mathcal{F}$
is
an
injective
$
\mathcal{O}$-module
,
then
the
complex
is
exact
in
all
degrees
and
remains
exact
on
applying
the
functor
$
\Hom_{\mathcal{O}_\mathcal{D}}(\mathcal{G
}
,
-)$
for
any
$
\mathcal{O}_\mathcal{D}$-module
$
\mathcal{G}$.
\end{lemma
}
\begin{proof
}
To
construct
the
complex
,
by
the
Yoneda
lemma
,
it
suffices
for
any
$
\mathcal{O}_\mathcal{D}$-modules
$
\mathcal{G}$
on
$
\mathcal{D}$
to
construct
a
complex
$
$
0
\to
\Hom_{\mathcal{O}_\mathcal{D}}(\mathcal{G
}
,
a_*\mathcal{F
}
)
\to
\Hom_{\mathcal{O}_\mathcal{D}}(\mathcal{G
}
,
a_{0
,
*
}
\mathcal{F}_0
)
\to
\Hom_{\mathcal{O}_\mathcal{D}}(\mathcal{G
}
,
a_{1
,
*
}
\mathcal{F}_1
)
\to
\ldots
$
$
functorially
in
$
\mathcal{G}$.
To
do
this
apply
$
\Hom_\mathcal{O}(-
,
\mathcal{F})$
to
the
exact
complex
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
augmentation
-
modules
}
and
use
adjointness
of
pullback
and
pushforward
.
The
exactness
properties
in
degrees
$
-1
,
0
$
follow
from
the
construction
as
$
\Hom_\mathcal{O}(-
,
\mathcal{F})$
is
left
exact
.
If
$
\mathcal{F}$
is
an
injective
$
\mathcal{O}$-module
,
then
the
complex
is
exact
because
$
\Hom_\mathcal{O}(-
,
\mathcal{F})$
is
exact
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
-
spectral
-
sequence
-
modules
}
With
notation
as
above
for
any
$
K$
in
$
D^+(\mathcal{O})$
there
is
a
spectral
sequence
$
(
E_r
,
d_r)_{r
\geq
0}$
in
$
\textit{Mod}(\mathcal{O}_\mathcal{D})$
with
$
$
E_1^{p
,
q
}
=
R^qa_{p
,
*
}
K_p
$
$
converging
to
$
R^{p
+
q}a_*K$.
This
spectral
sequence
is
functorial
in
$
K$.
\end{lemma
}
\begin{proof
}
Let
$
\mathcal{I}^\bullet$
be
a
bounded TYPE
below
complex
of
injective
$
\mathcal{O}$-modules
representing
$
K$.
Consider
the
double
complex
with
terms
$
$
A^{p
,
q
}
=
a_{p
,
*
}
\mathcal{I}^q_p
$
$
where
the
horizontal
arrows
come
from
Lemma
\ref{lemma
-
augmentation
-
cech
-
complex
-
modules
}
and
the
vertical
arrows
from
the
differentials
of
the
complex
$
\mathcal{I}^\bullet$.
The
lemma
says
rows
of
the
double
complex
are
exact
in
positive
degrees
and
evaluate
to
$
a_*\mathcal{I}^q$
in
degree
$
0$.
Thus
the
total
complex
associated
to
the
double
complex
computes
$
Ra_*K$
by
Homology
,
Lemma
\ref{homology
-
lemma
-
double
-
complex
-
gives
-
resolution}.
On
the
other
hand
,
since
restriction
to
$
\mathcal{C}_p$
is
exact
(
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
)
the
complex
$
\mathcal{I}_p^\bullet$
represents
$
K_p$
in
$
D(\mathcal{C}_p)$.
The
sheaves
$
\mathcal{I}_p^q$
are
are
limp
on
$
\mathcal{C}_p$
(
Lemma
\ref{lemma
-
restriction
-
injective
-
to
-
component
-
limp
}
)
.
Hence
the
cohomology
of
the
columns
are
the
sheaves
$
R^qa_{p
,
*
}
K_p$
by
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
and
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
limp
-
acyclic}.
We
conclude
by
applying
Homology
,
Lemma
\ref{homology
-
lemma
-
first
-
quadrant
-
ss}.
\end{proof
}
\section{Cartesian
sheaves
and
modules
}
\label{section
-
cartesian
}
\noindent
Here
is
the
definition
.
\begin{definition
}
\label{definition
-
cartesian
-
sheaf
}
In
Situation
\ref{situation
-
simplicial
-
site}.
\begin{enumerate
}
\item
A
sheaf
$
\mathcal{F}$
of
sets
or
of
abelian
groups
on
$
\mathcal{C}$
is
{
\it
cartesian
}
if
the
maps
$
\mathcal{F}(\varphi
)
:
f_\varphi^{-1}\mathcal{F}_m
\to
\mathcal{F}_n$
are
isomorphisms
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\item
If
$
\mathcal{O}$
is
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$
,
then
a
sheaf
$
\mathcal{F}$
of
$
\mathcal{O}$-modules
is
{
\it
cartesian
}
if
the
maps
$
f_\varphi^*\mathcal{F}_m
\to
\mathcal{F}_n$
are
isomorphisms
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\item
An
object
$
K$
of
$
D(\mathcal{C}_{total})$
is
{
\it
cartesian
}
if
the
maps
$
f_\varphi^{-1}K_m
\to
K_n$
are
isomorphisms
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\item
If
$
\mathcal{O}$
is
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$
,
then
an
object
$
K$
of
$
D(\mathcal{O})$
is
{
\it
cartesian
}
if
the
maps
$
Lf_\varphi^*K_m
\to
K_n$
are
isomorphisms
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
\end{enumerate
}
\end{definition
}
\noindent
Of
course
there
is
a
general
notion
of
a
cartesian
section
of
a
fibred
category
and
the
above
are
merely
examples
of
this
.
The
property
on
pullbacks
needs
only
be
checked
for
the
degeneracies
.
\begin{lemma
}
\label{lemma
-
check
-
cartesian
-
module
}
In
Situation
\ref{situation
-
simplicial
-
site}.
\begin{enumerate
}
\item
A
sheaf
$
\mathcal{F}$
of
sets
or
abelian
groups
is
cartesian
if
and
only
if
the
maps
$
(
f_{\delta^n_j})^{-1}\mathcal{F}_{n
-
1
}
\to
\mathcal{F}_n$
are
isomorphisms
.
\item
An
object
$
K$
of
$
D(\mathcal{C}_{total})$
is
cartesian
if
and
only
if
the
maps
$
(
f_{\delta^n_j})^{-1}K_{n
-
1
}
\to
K_n$
are
isomorphisms
.
\item
If
$
\mathcal{O}$
is
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$
a
sheaf
$
\mathcal{F}$
of
$
\mathcal{O}$-modules
is
cartesian
if
and
only
if
the
maps
$
(
f_{\delta^n_j})^*\mathcal{F}_{n
-
1
}
\to
\mathcal{F}_n$
are
isomorphisms
.
\item
If
$
\mathcal{O}$
is
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$
an
object
$
K$
of
$
D(\mathcal{O})$
is
cartesian
if
and
only
if
the
maps
$
L(f_{\delta^n_j})^*K_{n
-
1
}
\to
K_n$
are
isomorphisms
.
\item
Add
more
here
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
In
each
case
the
key
is
that
the
pullback
functors
compose
to
pullback
functor
;
for
part
(
4
)
see
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
derived
-
pullback
-
composition}.
We
show
how
the
argument
works
in
case
(
1
)
and
omit
the
proof
in
the
other
cases
.
The
category
$
\Delta$
is
generated
by
the
morphisms
the
morphisms
$
\delta^n_j$
and
$
\sigma^n_j$
,
see
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
face
-
degeneracy}.
Hence
we
only
need
to
check
the
maps
$
(
f_{\delta^n_j})^{-1}\mathcal{F}_{n
-
1
}
\to
\mathcal{F}_n$
and
$
(
f_{\sigma^n_j})^{-1}\mathcal{F}_{n
+
1
}
\to
\mathcal{F}_n$
are
isomorphisms
,
see
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
characterize
-
simplicial
-
object
}
for
notation
.
Since
$
\sigma^n_j
\circ
\delta_j^{n
+
1
}
=
\text{id}_{[n]}$
the
composition
$
$
\mathcal{F}_n
=
(
f_{\sigma^n_j})^{-1
}
(
f_{\delta_j^{n
+
1}})^{-1
}
\mathcal{F}_n
\to
(
f_{\sigma^n_j})^{-1
}
\mathcal{F}_{n
+
1
}
\to
\mathcal{F}_n
$
$
is
the
identity
.
Thus
the
result
for
$
\delta^{n
+
1}_j$
implies
the
result
for
$
\sigma^n_j$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
augmentation
-
cartesian
-
module
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
a_0
$
be
an
augmentation TYPE
towards
a
site
$
\mathcal{D}$
as
in
Remark
\ref{remark
-
augmentation
-
site}.
\begin{enumerate
}
\item
The
pullback
$
a^{-1}\mathcal{G}$
of
a
sheaf
of
sets
or
abelian
groups
on
$
\mathcal{D}$
is
cartesian
.
\item
The
pullback
$
a^{-1}K$
of
an
object
$
K$
of
$
D(\mathcal{D})$
is
cartesian
.
\end{enumerate
}
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
and
$
\mathcal{O}_\mathcal{D}$
a
sheaf
of
rings
on
$
\mathcal{D}$
and
$
a^\sharp
:
\mathcal{O}_\mathcal{D
}
\to
a_*\mathcal{O}$
a
morphism
as
in
Section
\ref{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites}.
\begin{enumerate
}
\item[(3
)
]
The
pullback
$
a^*\mathcal{F}$
of
a
sheaf
of
$
\mathcal{O}_\mathcal{D}$-modules
is
cartesian
.
\item[(4
)
]
The
derived
pullback
$
La^*K$
of
an
object
$
K$
of
$
D(\mathcal{O}_\mathcal{D})$
is
cartesian
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
This
follows
immediately
from
the
identities
$
a_m
\circ
f_\varphi
=
a_n$
for
all
$
\varphi
:
[
m
]
\to
[
n]$.
See
Lemma
\ref{lemma
-
augmentation
-
site
}
and
the
discussion
in
Section
\ref{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
characterize
-
cartesian
}
In
Situation
\ref{situation
-
simplicial
-
site}.
The
category
of
cartesian
sheaves
of
sets
(
resp.\
abelian
groups
)
is
equivalent
to
the
category
of
pairs
$
(
\mathcal{F
}
,
\alpha)$
where
$
\mathcal{F}$
is
a
a
sheaf
of
sets
(
resp.\
abelian
groups
)
on
$
\mathcal{C}_0
$
and
$
$
\alpha
:
(
f_{\delta_1
^
1})^{-1}\mathcal{F
}
\longrightarrow
(
f_{\delta_0
^
1})^{-1}\mathcal{F
}
$
$
is
an
isomorphism
of
sheaves
of
sets
(
resp.\
abelian
groups
)
on
$
\mathcal{C}_1
$
such
that
$
(
f_{\delta^2_1})^{-1}\alpha
=
(
f_{\delta^2_0})^{-1}\alpha
\circ
(
f_{\delta^2_2})^{-1}\alpha$
as
maps
of
sheaves
on
$
\mathcal{C}_2$.
\end{lemma
}
\begin{proof
}
We
abbreviate
$
d^n_j
=
f_{\delta^n_j
}
:
\Sh(\mathcal{C}_n
)
\to
\Sh(\mathcal{C}_{n
-
1})$.
The
condition
on
$
\alpha$
in
the
statement
of
the
lemma
makes
sense
because
$
$
d^1_1
\circ
d^2_2
=
d^1_1
\circ
d^2_1
,
\quad
d^1_1
\circ
d^2_0
=
d^1_0
\circ
d^2_2
,
\quad
d^1_0
\circ
d^2_0
=
d^1_0
\circ
d^2_1
$
$
as
morphisms
of
topoi
$
\Sh(\mathcal{C}_2
)
\to
\Sh(\mathcal{C}_0)$
,
see
Simplicial
,
Remark
\ref{simplicial
-
remark
-
relations}.
Hence
we
can
picture
these
maps
as
follows
$
$
\xymatrix
{
&
(
d^2_0)^{-1}(d^1_1)^{-1}\mathcal{F
}
\ar[r]_-{(d^2_0)^{-1}\alpha
}
&
(
d^2_0)^{-1}(d^1_0)^{-1}\mathcal{F
}
\ar@{=}[rd
]
&
\\
(
d^2_2)^{-1}(d^1_0)^{-1}\mathcal{F
}
\ar@{=}[ru
]
&
&
&
(
d^2_1)^{-1}(d^1_0)^{-1}\mathcal{F
}
\\
&
(
d^2_2)^{-1}(d^1_1)^{-1}\mathcal{F
}
\ar[lu]^{(d^2_2)^{-1}\alpha
}
\ar@{=}[r
]
&
(
d^2_1)^{-1}(d^1_1)^{-1}\mathcal{F
}
\ar[ru]_{(d^2_1)^{-1}\alpha
}
}
$
$
and
the
condition
signifies
the
diagram
is
commutative
.
It
is
clear
that
given
a
cartesian
sheaf
$
\mathcal{G}$
of
sets
(
resp.\
abelian
groups
)
on
$
\mathcal{C}_{total}$
we
can
set
$
\mathcal{F
}
=
\mathcal{G}_0
$
and
$
\alpha$
equal
to
the
composition
$
$
(
d_1
^
1)^{-1}\mathcal{G}_0
\to
\mathcal{G}_1
\leftarrow
(
d_1
^
0)^{-1}\mathcal{G}_0
$
$
where
the
arrows
are
invertible
as
$
\mathcal{G}$
is
cartesian
.
To
prove
this
functor
is
an
equivalence
we
construct
a
quasi
-
inverse
.
The
construction
of
the
quasi
-
inverse
is
analogous
to
the
construction
discussed
in
Descent
,
Section
\ref{descent
-
section
-
descent
-
modules
}
from
which
we
borrow
the
notation
$
\tau^n_i
:
[
0
]
\to
[
n]$
,
$
0
\mapsto
i$
and
$
\tau^n_{ij
}
:
[
1
]
\to
[
n]$
,
$
0
\mapsto
i$
,
$
1
\mapsto
j$.
Namely
,
given
a
pair
$
(
\mathcal{F
}
,
\alpha)$
as
in
the
lemma
we
set
$
\mathcal{G}_n
=
(
f_{\tau^n_n})^{-1}\mathcal{F}$.
Given
$
\varphi
:
[
n
]
\to
[
m]$
we
define
$
\mathcal{G}(\varphi
)
:
(
f_\varphi)^{-1}\mathcal{G}_n
\to
\mathcal{G}_m$
using
$
$
\xymatrix
{
(
f_\varphi)^{-1}\mathcal{G}_n
\ar@{=}[r
]
&
(
f_\varphi)^{-1}(f_{\tau^n_n})^{-1}\mathcal{F
}
\ar@{=}[r
]
&
(
f_{\tau^m_{\varphi(n)}})^{-1}\mathcal{F
}
\ar@{=}[r
]
&
(
f_{\tau^m_{\varphi(n)m}})^{-1}(d^1_1)^{-1}\mathcal{F
}
\ar[d]^{(f_{\tau^m_{\varphi(n)m}})^{-1}\alpha
}
\\
&
\mathcal{G}_m
\ar@{=}[r
]
&
(
f_{\tau^m_m})^{-1}\mathcal{F
}
\ar@{=}[r
]
&
(
f_{\tau^m_{\varphi(n)m}})^{-1}(d^1_0)^{-1}\mathcal{F
}
}
$
$
We
omit
the
verification
that
the
commutativity
of
the
displayed
diagram
above
implies
the
maps
compose
correctly
and
hence
give
rise
to
a
sheaf
on
$
\mathcal{C}_{total}$
,
see
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site}.
We
also
omit
the
verification
that
the
two
functors
are
quasi
-
inverse
to
each
other
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
characterize
-
cartesian
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
The
category
of
cartesian
$
\mathcal{O}$-modules
is
equivalent
to
the
category
of
pairs
$
(
\mathcal{F
}
,
\alpha)$
where
$
\mathcal{F}$
is
a
$
\mathcal{O}_0$-module
and
$
$
\alpha
:
(
f_{\delta_1
^
1})^*\mathcal{F
}
\longrightarrow
(
f_{\delta_0
^
1})^*\mathcal{F
}
$
$
is
an
isomorphism
of
$
\mathcal{O}_1$-modules
such
that
$
(
f_{\delta^2_1})^*\alpha
=
(
f_{\delta^2_0})^*\alpha
\circ
(
f_{\delta^2_2})^*\alpha$
as
$
\mathcal{O}_2$-module
maps
.
\end{lemma
}
\begin{proof
}
The
proof
is
identical
to
the
proof
of
Lemma
\ref{lemma
-
characterize
-
cartesian
}
with
pullback
of
sheaves
of
abelian
groups
replaced
by
pullback
of
modules
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
Serre
-
subcat
-
cartesian
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site}.
\begin{enumerate
}
\item
The
full
subcategory
of
cartesian
abelian
sheaves
forms
a
weak
Serre
subcategory
of
$
\textit{Ab}(\mathcal{C}_{total})$.
Colimits
of
systems
of
cartesian
abelian
sheaves
are
cartesian
.
\item
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
such
that
the
morphisms
$
$
f_{\delta^n_j
}
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_{n
-
1
}
)
,
\mathcal{O}_{n
-
1
}
)
$
$
are
flat
.
The
full
subcategory
of
cartesian
$
\mathcal{O}$-modules
forms
a
weak
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O})$.
Colimits
of
systems
of
cartesian
$
\mathcal{O}$-modules
are
cartesian
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
To
see
we
obtain
a
weak
Serre
subcategory
in
(
1
)
we
check
the
conditions
listed
in
Homology
,
Lemma
\ref{homology
-
lemma
-
characterize
-
weak
-
serre
-
subcategory}.
First
,
if
$
\varphi
:
\mathcal{F
}
\to
\mathcal{G}$
is
a
map
between
cartesian
abelian
sheaves
,
then
$
\Ker(\varphi)$
and
$
\Coker(\varphi)$
are
cartesian
too
because
the
restriction
functors
$
\Sh(\mathcal{C}_{total
}
)
\to
\Sh(\mathcal{C}_n)$
and
the
functors
$
f_\varphi^{-1}$
are
exact
.
Similarly
,
if
$
$
0
\to
\mathcal{F
}
\to
\mathcal{H
}
\to
\mathcal{G
}
\to
0
$
$
is
a
short
exact
sequence
of
abelian
sheaves
on
$
\mathcal{C}_{total}$
with
$
\mathcal{F}$
and
$
\mathcal{G}$
cartesian
,
then
it
follows
that
$
\mathcal{H}$
is
cartesian
from
the
5-lemma
.
To
see
the
property
of
colimits
,
use
that
colimits
commute
with
pullback
as
pullback
is
a
left
adjoint
.
In
the
case
of
modules
we
argue
in
the
same
manner
,
using
the
exactness
of
flat
pullback
(
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
flat
-
pullback
-
exact
}
)
and
the
fact
that
it
suffices
to
check
the
condition
for
$
f_{\delta^n_j}$
,
see
Lemma
\ref{lemma
-
check
-
cartesian
-
module}.
\end{proof
}
\begin{remark}[Warning
]
\label{remark
-
warning
-
cartesian
-
modules
}
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules
}
notwithstanding
,
it
can
happen
that
the
category
of
cartesian
$
\mathcal{O}$-modules
is
abelian
without
being
a
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O})$.
Namely
,
suppose
that
we
only
know
that
$
f_{\delta_1
^
1}$
and
$
f_{\delta_0
^
1}$
are
flat
.
Then
it
follows
easily
from
Lemma
\ref{lemma
-
characterize
-
cartesian
-
modules
}
that
the
category
of
cartesian
$
\mathcal{O}$-modules
is
abelian
.
But
if
$
f_{\delta_0
^
2}$
is
not
flat
(
for
example
)
,
there
is
no
reason
for
the
inclusion
functor
from
the
category
of
cartesian
$
\mathcal{O}$-modules
to
all
$
\mathcal{O}$-modules
to
be
exact
.
\end{remark
}
\begin{lemma
}
\label{lemma
-
derived
-
cartesian
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site}.
\begin{enumerate
}
\item
An
object
$
K$
of
$
D(\mathcal{C}_{total})$
is
cartesian
if
and
only
if
$
H^q(K)$
is
a
cartesian
abelian
sheaf
for
all
$
q$.
\item
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
such
that
the
morphisms
$
f_{\delta^n_j
}
:
(
\Sh(\mathcal{C}_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}_{n
-
1
}
)
,
\mathcal{O}_{n
-
1})$
are
flat
.
Then
an
object
$
K$
of
$
D(\mathcal{O})$
is
cartesian
if
and
only
if
$
H^q(K)$
is
a
cartesian
$
\mathcal{O}$-module
for
all
$
q$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Part
(
1
)
is
true
because
the
pullback
functors
$
(
f_\varphi)^{-1}$
are
exact
.
Part
(
2
)
follows
from
the
characterization
in
Lemma
\ref{lemma
-
check
-
cartesian
-
module
}
and
the
fact
that
$
L(f_{\delta^n_j})^
*
=
(
f_{\delta^n_j})^*$
by
flatness
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
derived
-
cartesian
-
shriek
}
In
Situation
\ref{situation
-
simplicial
-
site}.
\begin{enumerate
}
\item
An
object
$
K$
of
$
D(\mathcal{C}_{total})$
is
cartesian
if
and
only
the
canonical
map
$
$
g_{n!}K_n
\longrightarrow
g_{n!}\mathbf{Z
}
\otimes^\mathbf{L}_\mathbf{Z
}
K
$
$
is
an
isomorphism
for
all
$
n$.
\item
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$
such
that
the
morphisms
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
are
flat
for
all
$
\varphi
:
[
n
]
\to
[
m]$.
Then
an
object
$
K$
of
$
D(\mathcal{O})$
is
cartesian
if
and
only
the
canonical
map
$
$
g_{n!}K_n
\longrightarrow
g_{n!}\mathcal{O}_n
\otimes^\mathbf{L}_\mathcal{O
}
K
$
$
is
an
isomorphism
for
all
$
n$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Proof
of
(
1
)
.
Since
$
g_{n!}$
is
exact
,
it
induces
a
functor
on
derived
categories
adjoint
to
$
g_n^{-1}$.
The
map
is
the
adjoint
of
the
map
$
K_n
\to
(
g_n^{-1}g_{n!}\mathbf{Z
}
)
\otimes^\mathbf{L}_\mathbf{Z
}
K_n$
corresponding
to
$
\mathbf{Z
}
\to
g_n^{-1}g_{n!}\mathbf{Z}$
which
in
turn
is
adjoint
to
$
\text{id
}
:
g_{n!}\mathbf{Z
}
\to
g_{n!}\mathbf{Z}$.
Using
the
description
of
$
g_{n!}$
given
in
Lemma
\ref{lemma
-
restriction
-
to
-
components
-
site
}
we
see
that
the
restriction
to
$
\mathcal{C}_m$
of
this
map
is
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}K_n
\longrightarrow
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
K_m
$
$
Thus
the
statement
is
clear
.
\medskip\noindent
Proof
of
(
2
)
.
Since
$
g_{n!}$
is
exact
(
Lemma
\ref{lemma
-
exactness
-
g
-
shriek
-
modules
}
)
,
it
induces
a
functor
on
derived
categories
adjoint
to
$
g_n^*$
(
also
exact
)
.
The
map
is
the
adjoint
of
the
map
$
K_n
\to
(
g_n^*g_{n!}\mathcal{O}_n
)
\otimes^\mathbf{L}_{\mathcal{O}_n
}
K_n$
corresponding
to
$
\mathcal{O}_n
\to
g_n^*g_{n!}\mathcal{O}_n$
which
in
turn
is
adjoint
to
$
\text{id
}
:
g_{n!}\mathcal{O}_n
\to
g_{n!}\mathcal{O}_n$.
Using
the
description
of
$
g_{n!}$
given
in
Lemma
\ref{lemma
-
restriction
-
module
-
to
-
components
-
site
}
we
see
that
the
restriction
to
$
\mathcal{C}_m$
of
this
map
is
$
$
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^*K_n
\longrightarrow
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^*\mathcal{O}_n
\otimes_{\mathcal{O}_m
}
K_m
=
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
K_m
$
$
Thus
the
statement
is
clear
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
quasi
-
coherent
-
sheaf
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
Let
$
\mathcal{F}$
be
a
sheaf TYPE
of
$
\mathcal{O}$-modules
.
Then
$
\mathcal{F}$
is
quasi
-
coherent
in
the
sense
of
Modules
on
Sites
,
Definition
\ref{sites
-
modules
-
definition
-
site
-
local
}
if
and
only
if
$
\mathcal{F}$
is
cartesian
and
$
\mathcal{F}_n$
is
a
quasi
-
coherent
$
\mathcal{O}_n$-module
for
all
$
n$.
\end{lemma
}
\begin{proof
}
Assume
$
\mathcal{F}$
is
quasi
-
coherent
.
Since
pullbacks
of
quasi
-
coherent
modules
are
quasi
-
coherent
(
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
local
-
pullback
}
)
we
see
that
$
\mathcal{F}_n$
is
a
quasi
-
coherent
$
\mathcal{O}_n$-module
for
all
$
n$.
To
show
that
$
\mathcal{F}$
is
cartesian
,
let
$
U$
be
an
object TYPE
of
$
\mathcal{C}_n$
for
some
$
n$.
Let
us
view
$
U$
as
an
object
of
$
\mathcal{C}_{total}$.
Because
$
\mathcal{F}$
is
quasi
-
coherent
there
exists
a
covering
$
\{U_i
\to
U\}$
and
for
each
$
i$
a
presentation
$
$
\bigoplus\nolimits_{j
\in
J_i
}
\mathcal{O}_{\mathcal{C}_{total}/U_i
}
\to
\bigoplus\nolimits_{k
\in
K_i
}
\mathcal{O}_{\mathcal{C}_{total}/U_i
}
\to
\mathcal{F}|_{\mathcal{C}_{total}/U_i
}
\to
0
$
$
Observe
that
$
\{U_i
\to
U\}$
is
a
covering
of
$
\mathcal{C}_n$
by
the
construction
of
the
site
$
\mathcal{C}_{total}$.
Next
,
let
$
V$
be
an
object TYPE
of
$
\mathcal{C}_m$
for
some
$
m$
and
let
$
V
\to
U$
be
a
morphism
of
$
\mathcal{C}_{total}$
lying
over
$
\varphi
:
[
n
]
\to
[
m]$.
The
fibre
products
$
V_i
=
V
\times_U
U_i$
exist
and
we
get
an
induced
covering
$
\{V_i
\to
V\}$
in
$
\mathcal{C}_m$.
Restricting
the
presentation
above
to
the
sites
$
\mathcal{C}_n
/
U_i$
and
$
\mathcal{C}_m
/
V_i$
we
obtain
presentations
$
$
\bigoplus\nolimits_{j
\in
J_i
}
\mathcal{O}_{\mathcal{C}_m
/
U_i
}
\to
\bigoplus\nolimits_{k
\in
K_i
}
\mathcal{O}_{\mathcal{C}_m
/
U_i
}
\to
\mathcal{F}_n|_{\mathcal{C}_n
/
U_i
}
\to
0
$
$
and
$
$
\bigoplus\nolimits_{j
\in
J_i
}
\mathcal{O}_{\mathcal{C}_m
/
V_i
}
\to
\bigoplus\nolimits_{k
\in
K_i
}
\mathcal{O}_{\mathcal{C}_m
/
V_i
}
\to
\mathcal{F}_m|_{\mathcal{C}_m
/
V_i
}
\to
0
$
$
These
presentations
are
compatible
with
the
map
$
\mathcal{F}(\varphi
)
:
f_\varphi^*\mathcal{F}_n
\to
\mathcal{F}_m$
(
as
this
map
is
defined
using
the
restriction
maps
of
$
\mathcal{F}$
along
morphisms
of
$
\mathcal{C}_{total}$
lying
over
$
\varphi$
)
.
We
conclude
that
$
\mathcal{F}(\varphi)|_{\mathcal{C}_m
/
V_i}$
is
an
isomorphism
.
As
$
\{V_i
\to
V\}$
is
a
covering
we
conclude
$
\mathcal{F}(\varphi)|_{\mathcal{C}_m
/
V}$
is
an
isomorphism
.
Since
$
V$
and
$
U$
were
arbitrary
this
proves
that
$
\mathcal{F}$
is
cartesian
.
(
In
case
A
use
Sites
,
Lemma
\ref{sites
-
lemma
-
morphism
-
of
-
sites
-
covering}.
)
\medskip\noindent
Conversely
,
assume
$
\mathcal{F}_n$
is
quasi
-
coherent
for
all
$
n$
and
that
$
\mathcal{F}$
is
cartesian
.
Then
for
any
$
n$
and
object
$
U$
of
$
\mathcal{C}_n$
we
can
choose
a
covering
$
\{U_i
\to
U\}$
of
$
\mathcal{C}_n$
and
for
each
$
i$
a
presentation
$
$
\bigoplus\nolimits_{j
\in
J_i
}
\mathcal{O}_{\mathcal{C}_m
/
U_i
}
\to
\bigoplus\nolimits_{k
\in
K_i
}
\mathcal{O}_{\mathcal{C}_m
/
U_i
}
\to
\mathcal{F}_n|_{\mathcal{C}_n
/
U_i
}
\to
0
$
$
Pulling
back
to
$
\mathcal{C}_{total}/U_i$
we
obtain
complexes
$
$
\bigoplus\nolimits_{j
\in
J_i
}
\mathcal{O}_{\mathcal{C}_{total}/U_i
}
\to
\bigoplus\nolimits_{k
\in
K_i
}
\mathcal{O}_{\mathcal{C}_{total}/U_i
}
\to
\mathcal{F}|_{\mathcal{C}_{total}/U_i
}
\to
0
$
$
of
modules
on
$
\mathcal{C}_{total}/U_i$.
Then
the
property
that
$
\mathcal{F}$
is
cartesian
implies
that
this
is
exact
.
We
omit
the
details
.
\end{proof
}
\section{Formalities
on
cohomological
descent
}
\label{section
-
formal
-
cohomological
-
descent
}
\noindent
In
this
section
we
discuss
only
to
what
extent
a
morphism
of
ringed
topoi
determines
an
embedding
from
the
derived
category
downstairs
to
the
derived
category
upstairs
.
Here
is
a
typical
result
.
\begin{lemma
}
\label{lemma
-
downstairs
}
Let
$
f
:
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C
}
)
\to
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D})$
be
a
morphism
of
ringed
topoi
.
Consider
the
full
subcategory
$
D
'
\subset
D(\mathcal{O}_\mathcal{D})$
consisting
of
objects
$
K$
such
that
$
$
K
\longrightarrow
Rf_*Lf^*K
$
$
is
an
isomorphism
.
Then
$
D'$
is
a
saturated
triangulated
strictly
full
subcategory
of
$
D(\mathcal{O}_\mathcal{D})$
and
the
functor
$
Lf^
*
:
D
'
\to
D(\mathcal{O}_\mathcal{C})$
is
fully
faithful
.
\end{lemma
}
\begin{proof
}
See
Derived
Categories
,
Definition
\ref{derived
-
definition
-
saturated
}
for
the
definition
of
saturated
in
this
setting
.
See
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
triangulated
-
subcategory
}
for
a
discussion
of
triangulated
subcategories
.
The
canonical
map
of
the
lemma
is
the
unit
of
the
adjoint
pair
of
functors
$
(
Lf^
*
,
Rf_*)$
,
see
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
adjoint}.
Having
said
this
the
proof
that
$
D'$
is
a
saturated
triangulated
subcategory
is
omitted
;
it
follows
formally
from
the
fact
that
$
Lf^*$
and
$
Rf_*$
are
exact
functors
of
triangulated
categories
.
The
final
part
follows
formally
from
fact
that
$
Lf^*$
and
$
Rf_*$
are
adjoint
;
compare
with
Categories
,
Lemma
\ref{categories
-
lemma
-
adjoint
-
fully
-
faithful}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
upstairs
}
Let
$
f
:
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C
}
)
\to
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D})$
be
a
morphism
of
ringed
topoi
.
Consider
the
full
subcategory
$
D
'
\subset
D(\mathcal{O}_\mathcal{C})$
consisting
of
objects
$
K$
such
that
$
$
Lf^*Rf_*K
\longrightarrow
K
$
$
is
an
isomorphism
.
Then
$
D'$
is
a
saturated
triangulated
strictly
full
subcategory
of
$
D(\mathcal{O}_\mathcal{C})$
and
the
functor
$
Rf
_
*
:
D
'
\to
D(\mathcal{O}_\mathcal{D})$
is
fully
faithful
.
\end{lemma
}
\begin{proof
}
See
Derived
Categories
,
Definition
\ref{derived
-
definition
-
saturated
}
for
the
definition
of
saturated
in
this
setting
.
See
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
triangulated
-
subcategory
}
for
a
discussion
of
triangulated
subcategories
.
The
canonical
map
of
the
lemma
is
the
counit
of
the
adjoint
pair
of
functors
$
(
Lf^
*
,
Rf_*)$
,
see
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
adjoint}.
Having
said
this
the
proof
that
$
D'$
is
a
saturated
triangulated
subcategory
is
omitted
;
it
follows
formally
from
the
fact
that
$
Lf^*$
and
$
Rf_*$
are
exact
functors
of
triangulated
categories
.
The
final
part
follows
formally
from
fact
that
$
Lf^*$
and
$
Rf_*$
are
adjoint
;
compare
with
Categories
,
Lemma
\ref{categories
-
lemma
-
adjoint
-
fully
-
faithful}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
bounded
-
in
-
image
-
upstairs
}
Let
$
f
:
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C
}
)
\to
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D})$
be
a
morphism
of
ringed
topoi
.
Let
$
K$
be
an
object
of
$
D(\mathcal{O}_\mathcal{C})$.
Assume
\begin{enumerate
}
\item
$
f$
is
flat
,
\item
$
K$
is
bounded
below
,
\item
$
f^*Rf_*H^q(K
)
\to
H^q(K)$
is
an
isomorphism
.
\end{enumerate
}
Then
$
f^*Rf_*K
\to
K$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
Observe
that
$
f^*Rf_*K
\to
K$
is
an
isomorphism
if
and
only
if
it
is
an
isomorphism
on
cohomology
sheaves
$
H^j$.
Observe
that
$
H^j(f^*Rf_*K
)
=
f^*H^j(Rf_*K
)
=
f^*H^j(Rf_*\tau_{\leq
j}K
)
=
H^j(f^*Rf_*\tau_{\leq
j}K)$.
Hence
we
may
assume
that
$
K$
is
bounded
.
Then
property
(
3
)
tells
us
the
cohomology
sheaves
are
in
the
triangulated
subcategory
$
D
'
\subset
D(\mathcal{O}_\mathcal{C})$
of
Lemma
\ref{lemma
-
upstairs}.
Hence
$
K$
is
in
it
too
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
bounded
-
in
-
image
-
downstairs
}
Let
$
f
:
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C
}
)
\to
(
\Sh(\mathcal{D
}
)
,
\mathcal{O}_\mathcal{D})$
be
a
morphism
of
ringed
topoi
.
Let
$
K$
be
an
object
of
$
D(\mathcal{O}_\mathcal{D})$.
Assume
\begin{enumerate
}
\item
$
f$
is
flat
,
\item
$
K$
is
bounded
below
,
\item
$
H^q(K
)
\to
Rf_*f^*H^q(K)$
is
an
isomorphism
.
\end{enumerate
}
Then
$
K
\to
Rf_*f^*K$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
Observe
that
$
K
\to
Rf_*f^*K$
is
an
isomorphism
if
and
only
if
it
is
an
isomorphism
on
cohomology
sheaves
$
H^j$.
Observe
that
$
H^j(Rf_*f^*K
)
=
H^j(Rf_*\tau_{\leq
j}f^*K
)
=
H^j(Rf_*f^*\tau_{\leq
j}K)$.
Hence
we
may
assume
that
$
K$
is
bounded
.
Then
property
(
3
)
tells
us
the
cohomology
sheaves
are
in
the
triangulated
subcategory
$
D
'
\subset
D(\mathcal{O}_\mathcal{D})$
of
Lemma
\ref{lemma
-
downstairs}.
Hence
$
K$
is
in
it
too
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
equivalence
-
bounded
}
Let
$
f
:
(
\Sh(\mathcal{C
}
)
,
\mathcal{O
}
)
\to
(
\Sh(\mathcal{C
}
'
)
,
\mathcal{O}')$
be
a
morphism
of
ringed
topoi
.
Let
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O})$
and
$
\mathcal{A
}
'
\subset
\textit{Mod}(\mathcal{O}')$
be
weak
Serre
subcategories
.
Assume
\begin{enumerate
}
\item
$
f$
is
flat
,
\item
$
f^*$
induces
an
equivalence
of
categories
$
\mathcal{A
}
'
\to
\mathcal{A}$
,
\item
$
\mathcal{F
}
'
\to
Rf_*f^*\mathcal{F}'$
is
an
isomorphism
for
$
\mathcal{F
}
'
\in
\Ob(\mathcal{A}')$.
\end{enumerate
}
Then
$
f^
*
:
D_{\mathcal{A}'}^+(\mathcal{O
}
'
)
\to
D_\mathcal{A}^+(\mathcal{O})$
is
an
equivalence
of
categories
with
quasi
-
inverse
given
by
$
Rf
_
*
:
D_\mathcal{A}^+(\mathcal{O
}
)
\to
D_{\mathcal{A}'}^+(\mathcal{O}')$.
\end{lemma
}
\begin{proof
}
By
assumptions
(
2
)
and
(
3
)
and
Lemmas
\ref{lemma
-
bounded
-
in
-
image
-
upstairs
}
and
\ref{lemma
-
downstairs
}
we
see
that
$
f^
*
:
D_{\mathcal{A}'}^+(\mathcal{O
}
'
)
\to
D_\mathcal{A}^+(\mathcal{O})$
is
fully
faithful
.
Let
$
\mathcal{F
}
\in
\Ob(\mathcal{A})$.
Then
we
can
write
$
\mathcal{F
}
=
f^*\mathcal{F}'$.
Then
$
Rf_*\mathcal{F
}
=
Rf
_
*
f^*\mathcal{F
}
'
=
\mathcal{F}'$.
In
particular
,
we
have
$
R^pf_*\mathcal{F
}
=
0
$
for
$
p
>
0
$
and
$
f_*\mathcal{F
}
\in
\Ob(\mathcal{A}')$.
Thus
for
any
$
K
\in
D^+_\mathcal{A}(\mathcal{O})$
we
see
,
using
the
spectral
sequence
$
E_2^{p
,
q
}
=
R^pf_*H^q(K)$
converging
to
$
R^{p
+
q}f_*K$
,
that
$
Rf_*K$
is
in
$
D^+_{\mathcal{A}'}(\mathcal{O}')$.
Of
course
,
it
also
follows
from
Lemmas
\ref{lemma
-
bounded
-
in
-
image
-
downstairs
}
and
\ref{lemma
-
upstairs
}
that
$
Rf
_
*
:
D_\mathcal{A}^+(\mathcal{O
}
)
\to
D_{\mathcal{A}'}^+(\mathcal{O}')$
is
fully
faithful
.
Since
$
f^*$
and
$
Rf_*$
are
adjoint
we
then
get
the
result
of
the
lemma
,
for
example
by
Categories
,
Lemma
\ref{categories
-
lemma
-
adjoint
-
fully
-
faithful}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
equivalence
-
unbounded
-
one
}
\begin{reference
}
This
is
analogous
to
\cite[Theorem
2.2.3]{six
-
I}.
\end{reference
}
Let
$
f
:
(
\Sh(\mathcal{C
}
)
,
\mathcal{O
}
)
\to
(
\Sh(\mathcal{C
}
'
)
,
\mathcal{O}')$
be
a
morphism
of
ringed
topoi
.
Let
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O})$
and
$
\mathcal{A
}
'
\subset
\textit{Mod}(\mathcal{O}')$
be
weak
Serre
subcategories
.
Assume
\begin{enumerate
}
\item
$
f$
is
flat
,
\item
$
f^*$
induces
an
equivalence
of
categories
$
\mathcal{A
}
'
\to
\mathcal{A}$
,
\item
$
\mathcal{F
}
'
\to
Rf_*f^*\mathcal{F}'$
is
an
isomorphism
for
$
\mathcal{F
}
'
\in
\Ob(\mathcal{A}')$
,
\item
$
\mathcal{C
}
,
\mathcal{O
}
,
\mathcal{A}$
satisfy
the
assumption
of
Cohomology
on
Sites
,
Situation
\ref{sites
-
cohomology
-
situation
-
olsson
-
laszlo
}
,
\item
$
\mathcal{C
}
'
,
\mathcal{O
}
'
,
\mathcal{A}'$
satisfy
the
assumption
of
Cohomology
on
Sites
,
Situation
\ref{sites
-
cohomology
-
situation
-
olsson
-
laszlo}.
\end{enumerate
}
Then
$
f^
*
:
D_{\mathcal{A}'}(\mathcal{O
}
'
)
\to
D_\mathcal{A}(\mathcal{O})$
is
an
equivalence
of
categories
with
quasi
-
inverse
given
by
$
Rf
_
*
:
D_\mathcal{A}(\mathcal{O
}
)
\to
D_{\mathcal{A}'}(\mathcal{O}')$.
\end{lemma
}
\begin{proof
}
Since
$
f^*$
is
exact
,
it
is
clear
that
$
f^*$
defines
a
functor
$
f^
*
:
D_{\mathcal{A}'}(\mathcal{O
}
'
)
\to
D_\mathcal{A}(\mathcal{O})$
as
in
the
statement
of
the
lemma
and
that
moreover
this
functor
commutes
with
the
truncation
functors
$
\tau_{\geq
-n}$.
We
already
know
that
$
f^*$
and
$
Rf_*$
are
quasi
-
inverse
equivalence
on
the
corresponding
bounded
below
categories
,
see
Lemma
\ref{lemma
-
equivalence
-
bounded}.
By
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
olsson
-
laszlo
-
map
-
version
-
one
}
with
$
N
=
0
$
we
see
that
$
Rf_*$
indeed
defines
a
functor
$
Rf
_
*
:
D_\mathcal{A}(\mathcal{O
}
)
\to
D_{\mathcal{A}'}(\mathcal{O}')$
and
that
moreover
this
functor
commutes
with
the
truncation
functors
$
\tau_{\geq
-n}$.
Thus
for
$
K$
in
$
D_\mathcal{A}(\mathcal{O})$
the
map
$
f^*Rf_*K
\to
K$
is
an
isomorphism
as
this
is
true
on
trunctions
.
Similarly
,
for
$
K'$
in
$
D_{\mathcal{A}'}(\mathcal{O}')$
the
map
$
K
'
\to
Rf_*f^*K'$
is
an
isomorphism
as
this
is
true
on
trunctions
.
This
finishes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
equivalence
-
unbounded
-
two
}
\begin{reference
}
This
is
analogous
to
\cite[Theorem
2.2.3]{six
-
I}.
\end{reference
}
Let
$
f
:
(
\mathcal{C
}
,
\mathcal{O
}
)
\to
(
\mathcal{C
}
'
,
\mathcal{O}')$
be
a
morphism
of
ringed
sites
.
Let
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O})$
and
$
\mathcal{A
}
'
\subset
\textit{Mod}(\mathcal{O}')$
be
weak
Serre
subcategories
.
Assume
\begin{enumerate
}
\item
$
f$
is
flat
,
\item
$
f^*$
induces
an
equivalence
of
categories
$
\mathcal{A
}
'
\to
\mathcal{A}$
,
\item
$
\mathcal{F
}
'
\to
Rf_*f^*\mathcal{F}'$
is
an
isomorphism
for
$
\mathcal{F
}
'
\in
\Ob(\mathcal{A}')$
,
\item
$
\mathcal{C
}
,
\mathcal{O
}
,
\mathcal{A}$
satisfy
the
assumption
of
Cohomology
on
Sites
,
Situation
\ref{sites
-
cohomology
-
situation
-
olsson
-
laszlo
}
,
\item
$
f
:
(
\mathcal{C
}
,
\mathcal{O
}
)
\to
(
\mathcal{C
}
'
,
\mathcal{O}')$
and
$
\mathcal{A}$
satisfy
the
assumption
of
Cohomology
on
Sites
,
Situation
\ref{sites
-
cohomology
-
situation
-
olsson
-
laszlo
-
prime}.
\end{enumerate
}
Then
$
f^
*
:
D_{\mathcal{A}'}(\mathcal{O
}
'
)
\to
D_\mathcal{A}(\mathcal{O})$
is
an
equivalence
of
categories
with
quasi
-
inverse
given
by
$
Rf
_
*
:
D_\mathcal{A}(\mathcal{O
}
)
\to
D_{\mathcal{A}'}(\mathcal{O}')$.
\end{lemma
}
\begin{proof
}
The
proof
of
this
lemma
is
exactly
the
same
as
the
proof
of
Lemma
\ref{lemma
-
equivalence
-
unbounded
-
one
}
except
the
reference
to
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
olsson
-
laszlo
-
map
-
version
-
one
}
is
replaced
by
a
reference
to
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
olsson
-
laszlo
-
map
-
version
-
two}.
\end{proof
}
\noindent
Let
$
\mathcal{C}$
be
a
category TYPE
. TYPE
Let
$
\text{Cov}(\mathcal{C
}
)
\supset
\text{Cov}'(\mathcal{C})$
be
two
ways
to
endow
$
\mathcal{C}$
with
the
structure
of
a
site
.
Denote
$
\tau$
the
topology
corresponding
to
$
\text{Cov}(\mathcal{C})$
and
$
\tau'$
the
topology
corresponding
to
$
\text{Cov}'(\mathcal{C})$.
Then
the
identity
functor
on
$
\mathcal{C}$
defines
a
morphism
of
sites
$
$
\epsilon
:
\mathcal{C}_\tau
\longrightarrow
\mathcal{C}_{\tau
'
}
$
$
where
$
\epsilon_*$
is
the
identity
functor
on
underlying
presheaves
and
where
$
\epsilon^{-1}$
is
the
$
\tau$-sheafification
of
a
$
\tau'$-sheaf
(
hence
clearly
exact
)
.
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
for
the
$
\tau$-topology
.
Then
$
\mathcal{O}$
is
also
a
sheaf
for
the
$
\tau'$-topology
and
$
\epsilon$
becomes
a
morphism
of
ringed
sites
$
$
\epsilon
:
(
\mathcal{C}_\tau
,
\mathcal{O}_\tau
)
\longrightarrow
(
\mathcal{C}_{\tau
'
}
,
\mathcal{O}_{\tau
'
}
)
$
$
\begin{lemma
}
\label{lemma
-
compare
-
topologies
-
derived
-
adequate
-
modules
}
With
$
\epsilon
:
(
\mathcal{C}_\tau
,
\mathcal{O}_\tau
)
\to
(
\mathcal{C}_{\tau
'
}
,
\mathcal{O}_{\tau'})$
as
above
.
Let
$
\mathcal{B
}
\subset
\Ob(\mathcal{C})$
be
a
subset
.
Let
$
\mathcal{A
}
\subset
\textit{PMod}(\mathcal{O})$
be
a
full TYPE
subcategory
.
Assume
\begin{enumerate
}
\item
every
object
of
$
\mathcal{A}$
is
a
sheaf
for
the
$
\tau$-topology
,
\item
$
\mathcal{A}$
is
a
weak
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O}_\tau)$
,
\item
every
object
of
$
\mathcal{C}$
has
a
$
\tau'$-covering
whose
members
are
elements
of
$
\mathcal{B}$
,
and
\item
for
every
$
U
\in
\mathcal{B}$
we
have
$
H^p_\tau(U
,
\mathcal{F
}
)
=
0
$
,
$
p
>
0
$
for
all
$
\mathcal{F
}
\in
\mathcal{A}$.
\end{enumerate
}
Then
$
\mathcal{A}$
is
a
weak
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O}_{\tau'})$
and
there
is
an
equivalence
of
triangulated
categories
$
D_\mathcal{A}(\mathcal{O}_\tau
)
=
D_\mathcal{A}(\mathcal{O}_{\tau'})$
given
by
$
\epsilon^*$
and
$
R\epsilon_*$.
\end{lemma
}
\begin{proof
}
Since
$
\epsilon^{-1}\mathcal{O}_{\tau
'
}
=
\mathcal{O}_\tau$
we
see
that
$
\epsilon$
is
a
flat
morphism
of
ringed
sites
and
that
in
fact
$
\epsilon^{-1
}
=
\epsilon^*$
on
sheaves
of
modules
.
By
property
(
1
)
we
can
think
of
every
object
of
$
\mathcal{A}$
as
a
sheaf
of
$
\mathcal{O}_\tau$-modules
and
as
a
sheaf
of
$
\mathcal{O}_{\tau'}$-modules
.
In
other
words
,
we
have
fully
faithful
inclusion
functors
$
$
\mathcal{A
}
\to
\textit{Mod}(\mathcal{O}_\tau
)
\to
\textit{Mod}(\mathcal{O}_{\tau
'
}
)
$
$
To
avoid
confusion
we
will
denote
$
\mathcal{A
}
'
\subset
\textit{Mod}(\mathcal{O}_{\tau'})$
the
image
of
$
\mathcal{A}$.
Then
it
is
clear
that
$
\epsilon
_
*
:
\mathcal{A
}
\to
\mathcal{A}'$
and
$
\epsilon^
*
:
\mathcal{A
}
'
\to
\mathcal{A}$
are
quasi
-
inverse
equivalences
(
see
discussion
preceding
the
lemma
and
use
that
objects
of
$
\mathcal{A}'$
are
sheaves
in
the
$
\tau$
topology
)
.
\medskip\noindent
Conditions
(
3
)
and
(
4
)
imply
that
$
R^p\epsilon_*\mathcal{F
}
=
0
$
for
$
p
>
0
$
and
$
\mathcal{F
}
\in
\Ob(\mathcal{A})$.
This
is
true
because
$
R^p\epsilon_*$
is
the
sheaf
associated
to
the
presheave
$
U
\mapsto
H^p_\tau(U
,
\mathcal{F})$
,
see
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
higher
-
direct
-
images}.
Thus
any
exact
complex
in
$
\mathcal{A}$
(
which
is
the
same
thing
as
an
exact
complex
in
$
\textit{Mod}(\mathcal{O}_\tau)$
whose
terms
are
in
$
\mathcal{A}$
,
see
Homology
,
Lemma
\ref{homology
-
lemma
-
characterize
-
weak
-
serre
-
subcategory
}
)
remains
exact
upon
applying
the
functor
$
\epsilon_*$.
\medskip\noindent
Consider
an
exact
sequence
$
$
\mathcal{F}'_0
\to
\mathcal{F}'_1
\to
\mathcal{F}'_2
\to
\mathcal{F}'_3
\to
\mathcal{F}'_4
$
$
in
$
\textit{Mod}(\mathcal{O}_{\tau'})$
with
$
\mathcal{F}'_0
,
\mathcal{F}'_1
,
\mathcal{F}'_3
,
\mathcal{F}'_4
$
in
$
\mathcal{A}'$.
Apply
the
exact
functor
$
\epsilon^*$
to
get
an
exact
sequence
$
$
\epsilon^*\mathcal{F}'_0
\to
\epsilon^*\mathcal{F}'_1
\to
\epsilon^*\mathcal{F}'_2
\to
\epsilon^*\mathcal{F}'_3
\to
\epsilon^*\mathcal{F}'_4
$
$
in
$
\textit{Mod}(\mathcal{O}_\tau)$.
Since
$
\mathcal{A}$
is
a
weak
Serre
subcategory
and
since
$
\epsilon^*\mathcal{F}'_0
,
\epsilon^*\mathcal{F}'_1
,
\epsilon^*\mathcal{F}'_3
,
\epsilon^*\mathcal{F}'_4
$
are
in
$
\mathcal{A}$
,
we
conclude
that
$
\epsilon^*\mathcal{F}_2
$
is
in
$
\mathcal{A}$
by
Homology
,
Definition
\ref{homology
-
definition
-
serre
-
subcategory}.
Consider
the
map
of
sequences
$
$
\xymatrix
{
\mathcal{F}'_0
\ar[r
]
\ar[d
]
&
\mathcal{F}'_1
\ar[r
]
\ar[d
]
&
\mathcal{F}'_2
\ar[r
]
\ar[d
]
&
\mathcal{F}'_3
\ar[r
]
\ar[d
]
&
\mathcal{F}'_4
\ar[d
]
\\
\epsilon_*\epsilon^*\mathcal{F}'_0
\ar[r
]
&
\epsilon_*\epsilon^*\mathcal{F}'_1
\ar[r
]
&
\epsilon_*\epsilon^*\mathcal{F}'_2
\ar[r
]
&
\epsilon_*\epsilon^*\mathcal{F}'_3
\ar[r
]
&
\epsilon_*\epsilon^*\mathcal{F}'_4
}
$
$
The
lower
row
is
exact
by
the
discussion
in
the
preceding
paragraph
.
The
vertical
arrows
with
index
$
0
$
,
$
1
$
,
$
3
$
,
$
4
$
are
isomorphisms
by
the
discussion
in
the
first
paragraph
.
By
the
$
5
$
lemma
(
Homology
,
Lemma
\ref{homology
-
lemma
-
five
-
lemma
}
)
we
find
that
$
\mathcal{F}'_2
\cong
\epsilon_*\epsilon^*\mathcal{F}'_2
$
and
hence
$
\mathcal{F}'_2
$
is
in
$
\mathcal{A}'$.
In
this
way
we
see
that
$
\mathcal{A}'$
is
a
weak
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O}_{\tau'})$
,
see
Homology
,
Definition
\ref{homology
-
definition
-
serre
-
subcategory}.
\medskip\noindent
At
this
point
it
makes
sense
to
talk
about
the
derived
categories
$
D_\mathcal{A}(\mathcal{O}_\tau)$
and
$
D_{\mathcal{A}'}(\mathcal{O}_{\tau'})$
,
see
Derived
Categories
,
Section
\ref{derived
-
section
-
triangulated
-
sub}.
To
finish
the
proof
we
show
that
conditions
(
1
)
--
(
5
)
of
Lemma
\ref{lemma
-
equivalence
-
unbounded
-
two
}
apply
.
We
have
already
seen
(
1
)
,
(
2
)
,
(
3
)
above
.
Note
that
since
every
object
has
a
$
\tau'$-covering
by
objects
of
$
\mathcal{B}$
,
a
fortiori
every
object
has
a
$
\tau$-covering
by
objects
of
$
\mathcal{B}$.
Hence
condition
(
4
)
of
Lemma
\ref{lemma
-
equivalence
-
unbounded
-
two
}
is
satisfied
.
Similarly
,
condition
(
5
)
is
satisfied
as
well
.
\end{proof
}
\section{Simplicial
systems
of
the
derived
category
}
\label{section
-
glueing
}
\noindent
In
this
section
we
are
going
to
prove
a
special
case
of
\cite[Proposition
3.2.9]{BBD
}
in
the
setting
of
derived
categories
of
abelian
sheaves
.
The
case
of
modules
is
discussed
in
Section
\ref{section
-
glueing
-
modules}.
\begin{definition
}
\label{definition
-
cartesian
-
derived
}
In
Situation
\ref{situation
-
simplicial
-
site}.
A
{
\it
simplicial
system
of
the
derived
category
}
consists
of
the
following
data
\begin{enumerate
}
\item
for
every
$
n$
an
object
$
K_n$
of
$
D(\mathcal{C}_n)$
,
\item
for
every
$
\varphi
:
[
m
]
\to
[
n]$
a
map
$
K_\varphi
:
f_\varphi^{-1}K_m
\to
K_n$
in
$
D(\mathcal{C}_n)$
\end{enumerate
}
subject
to
the
condition
that
$
$
K_{\varphi
\circ
\psi
}
=
K_\varphi
\circ
f_\varphi^{-1}K_\psi
:
f_{\varphi
\circ
\psi}^{-1}K_l
=
f_\varphi^{-1
}
f_\psi^{-1}K_l
\longrightarrow
K_n
$
$
for
any
morphisms
$
\varphi
:
[
m
]
\to
[
n]$
and
$
\psi
:
[
l
]
\to
[
m]$
of
$
\Delta$.
We
say
the
simplicial
system
is
{
\it
cartesian
}
if
the
maps
$
K_\varphi$
are
isomorphisms
for
all
$
\varphi$.
Given
two
simplicial
systems
of
the
derived
category
there
is
an
obvious
notion
of
a
{
\it
morphism
of
simplicial
systems
of
the
derived
category}.
\end{definition
}
\noindent
We
have
given
this
notion
a
ridiculously
long
name
intentionally
.
The
goal
is
to
show
that
a
simplicial
system
of
the
derived
category
comes
from
an
object
of
$
D(\mathcal{C}_{total})$
under
certain
hypotheses
.
\begin{lemma
}
\label{lemma
-
cartesian
-
objects
-
derived
}
In
Situation
\ref{situation
-
simplicial
-
site}.
If
$
K
\in
D(\mathcal{C}_{total})$
is
an
object
,
then
$
(
K_n
,
K(\varphi))$
is
a
simplicial
system
of
the
derived
category
.
If
$
K$
is
cartesian
,
so
is
the
system
.
\end{lemma
}
\begin{proof
}
This
is
obvious
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
abelian
-
postnikov
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
K$
be
an
object
of
$
D(\mathcal{C}_{total})$.
Set
$
$
X_n
=
(
g_{n!}\mathbf{Z
}
)
\otimes^\mathbf{L}_\mathbf{Z
}
K
\quad\text{and}\quad
Y_n
=
(
g_{n!}\mathbf{Z
}
\to
\ldots
\to
g_{0!}\mathbf{Z})[-n
]
\otimes^\mathbf{L}_\mathbf{Z
}
K
$
$
as
objects
of
$
D(\mathcal{C}_{total})$
where
the
maps
are
as
in
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site}.
With
the
evident
canonical
maps
$
Y_n
\to
X_n$
and
$
Y_0
\to
Y_1[1
]
\to
Y_2[2
]
\to
\ldots$
we
have
\begin{enumerate
}
\item
the
distinguished
triangles
$
Y_n
\to
X_n
\to
Y_{n
-
1
}
\to
Y_n[1]$
define
a
Postnikov
system
(
Derived
Categories
,
Definition
\ref{derived
-
definition
-
postnikov
-
system
}
)
for
$
\ldots
\to
X_2
\to
X_1
\to
X_0
$
,
\item
$
K
=
\text{hocolim
}
Y_n[n]$
in
$
D(\mathcal{C}_{total})$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
First
,
if
$
K
=
\mathbf{Z}$
,
then
this
is
the
construction
of
Derived
Categories
,
Example
\ref{derived
-
example
-
key
-
postnikov
}
applied
to
the
complex
$
$
\ldots
\to
g_{2!}\mathbf{Z
}
\to
g_{1!}\mathbf{Z
}
\to
g_{0!}\mathbf{Z
}
$
$
in
$
\textit{Ab}(\mathcal{C}_{total})$
combined
with
the
fact
that
this
complex
represents
$
K
=
\mathbf{Z}$
in
$
D(\mathcal{C}_{total})$
by
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site}.
The
general
case
follows
from
this
,
the
fact
that
the
exact
functor
$
-
\otimes^\mathbf{L}_\mathbf{Z
}
K$
sends
Postnikov
systems
to
Postnikov
systems
,
and
that
$
-
\otimes^\mathbf{L}_\mathbf{Z
}
K$
commutes
with
homotopy
colimits
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
nullity
-
cartesian
-
objects
-
derived
}
In
Situation
\ref{situation
-
simplicial
-
site}.
If
$
K
,
K
'
\in
D(\mathcal{C}_{total})$.
Assume
\begin{enumerate
}
\item
$
K$
is
cartesian
,
\item
$
\Hom(K_i[i
]
,
K'_i
)
=
0
$
for
$
i
>
0
$
,
and
\item
$
\Hom(K_i[i
+
1
]
,
K'_i
)
=
0
$
for
$
i
\geq
0$.
\end{enumerate
}
Then
any
map
$
K
\to
K'$
which
induces
the
zero
map
$
K_0
\to
K'_0
$
is
zero
.
\end{lemma
}
\begin{proof
}
Consider
the
objects
$
X_n$
and
the
Postnikov
system
$
Y_n$
associated
to
$
K$
in
Lemma
\ref{lemma
-
abelian
-
postnikov}.
As
$
K
=
\text{hocolim
}
Y_n[n]$
the
map
$
K
\to
K'$
induces
a
compatible
family
of
morphisms
$
Y_n[n
]
\to
K'$.
By
(
1
)
and
Lemma
\ref{lemma
-
derived
-
cartesian
-
shriek
}
we
have
$
X_n
=
g_{n!}K_n$.
Since
$
Y_0
=
X_0
$
we
find
that
$
K_0
\to
K'_0
$
being
zero
implies
$
Y_0
\to
K'$
is
zero
.
Suppose
we
've
shown
that
the
map
$
Y_n[n
]
\to
K'$
is
zero
for
some
$
n
\geq
0$.
From
the
distinguished
triangle
$
$
Y_n[n
]
\to
Y_{n
+
1}[n
+
1
]
\to
X_{n
+
1}[n
+
1
]
\to
Y_n[n
+
1
]
$
$
we
get
an
exact
sequence
$
$
\Hom(X_{n
+
1}[n
+
1
]
,
K
'
)
\to
\Hom(Y_{n
+
1}[n
+
1
]
,
K
'
)
\to
\Hom(Y_n[n
]
,
K
'
)
$
$
As
$
X_{n
+
1}[n
+
1
]
=
g_{n
+
1!}K_{n
+
1}[n
+
1]$
the
first
group
is
equal
to
$
$
\Hom(K_{n
+
1}[n
+
1
]
,
K'_{n
+
1
}
)
$
$
which
is
zero
by
assumption
(
2
)
.
By
induction
we
conclude
all
the
maps
$
Y_n[n
]
\to
K'$
are
zero
.
Consider
the
defining
distinguished
triangle
$
$
\bigoplus
Y_n[n
]
\to
\bigoplus
Y_n[n
]
\to
K
\to
(
\bigoplus
Y_n[n])[1
]
$
$
for
the
homotopy
colimit
.
Arguing
as
above
,
we
find
that
it
suffices
to
show
that
$
$
\Hom((\bigoplus
Y_n[n])[1
]
,
K
'
)
=
\prod
\Hom(Y_n[n
+
1
]
,
K
'
)
$
$
is
zero
for
all
$
n
\geq
0$.
To
see
this
,
arguing
as
above
,
it
suffices
to
show
that
$
$
\Hom(K_n[n
+
1
]
,
K'_n
)
=
0
$
$
for
all
$
n
\geq
0
$
which
follows
from
condition
(
3
)
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hom
-
cartesian
-
objects
-
derived
}
In
Situation
\ref{situation
-
simplicial
-
site}.
If
$
K
,
K
'
\in
D(\mathcal{C}_{total})$.
Assume
\begin{enumerate
}
\item
$
K$
is
cartesian
,
\item
$
\Hom(K_i[i
-
1
]
,
K'_i
)
=
0
$
for
$
i
>
1$.
\end{enumerate
}
Then
any
map
$
\{K_n
\to
K'_n\}$
between
the
associated
simplicial
systems
of
$
K$
and
$
K'$
comes
from
a
map
$
K
\to
K'$
in
$
D(\mathcal{C}_{total})$.
\end{lemma
}
\begin{proof
}
Let
$
\{K_n
\to
K'_n\}_{n
\geq
0}$
be
a
morphism
of
simplicial
systems
of
the
derived
category
.
Consider
the
objects
$
X_n$
and
Postnikov
system
$
Y_n$
associated
to
$
K$
of
Lemma
\ref{lemma
-
abelian
-
postnikov}.
By
(
1
)
and
Lemma
\ref{lemma
-
derived
-
cartesian
-
shriek
}
we
have
$
X_n
=
g_{n!}K_n$.
In
particular
,
the
map
$
K_0
\to
K'_0
$
induces
a
morphism
$
X_0
\to
K'$.
Since
$
\{K_n
\to
K'_n\}$
is
a
morphism
of
systems
,
a
computation
(
omitted
)
shows
that
the
composition
$
$
X_1
\to
X_0
\to
K
'
$
$
is
zero
.
As
$
Y_0
=
X_0
$
and
as
$
Y_1
$
fits
into
a
distinguished
triangle
$
$
Y_1
\to
X_1
\to
Y_0
\to
Y_1[1
]
$
$
we
conclude
that
there
exists
a
morphism
$
Y_1[1
]
\to
K'$
whose
composition
with
$
X_0
=
Y_0
\to
Y_1[1]$
is
the
morphism
$
X_0
\to
K'$
given
above
.
Suppose
given
a
map
$
Y_n[n
]
\to
K'$
for
$
n
\geq
1$.
From
the
distinguished
triangle
$
$
X_{n
+
1}[n
]
\to
Y_n[n
]
\to
Y_{n
+
1}[n
+
1
]
\to
X_{n
+
1}[n
+
1
]
$
$
we
get
an
exact
sequence
$
$
\Hom(Y_{n
+
1}[n
+
1
]
,
K
'
)
\to
\Hom(Y_n[n
]
,
K
'
)
\to
\Hom(X_{n
+
1}[n
]
,
K
'
)
$
$
As
$
X_{n
+
1}[n
]
=
g_{n
+
1!}K_{n
+
1}[n]$
the
last
group
is
equal
to
$
$
\Hom(K_{n
+
1}[n
]
,
K'_{n
+
1
}
)
$
$
which
is
zero
by
assumption
(
2
)
.
By
induction
we
get
a
system
of
maps
$
Y_n[n
]
\to
K'$
compatible
with
transition
maps
and
reducing
to
the
given
map
on
$
Y_0$.
This
produces
a
map
$
$
\gamma
:
K
=
\text{hocolim
}
Y_n[n
]
\longrightarrow
K
'
$
$
This
map
in
any
case
has
the
property
that
the
diagram
$
$
\xymatrix
{
X_0
\ar[rd
]
\ar[r
]
&
K
\ar[d]^\gamma
\\
&
K
'
}
$
$
is
commutative
.
Restricting
to
$
\mathcal{C}_0
$
we
deduce
that
the
map
$
\gamma_0
:
K_0
\to
K'_0
$
is
the
same
as
the
first
map
$
K_0
\to
K'_0
$
of
the
morphism
of
simplicial
systems
.
Since
$
K$
is
cartesian
,
this
easily
gives
that
$
\{\gamma_n\}$
is
the
map
of
simplicial
systems
we
started
out
with
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cartesian
-
object
-
derived
-
from
-
simplicial
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
(
K_n
,
K_\varphi)$
be
a
simplicial TYPE
system
of
the
derived
category
.
Assume
\begin{enumerate
}
\item
$
(
K_n
,
K_\varphi)$
is
cartesian
,
\item
$
\Hom(K_i[t
]
,
K_i
)
=
0
$
for
$
i
\geq
0
$
and
$
t
>
0$.
\end{enumerate
}
Then
there
exists
a
cartesian
object
$
K$
of
$
D(\mathcal{C}_{total})$
whose
associated
simplicial
system
is
isomorphic
to
$
(
K_n
,
K_\varphi)$.
\end{lemma
}
\begin{proof
}
Set
$
X_n
=
g_{n!}K_n$
in
$
D(\mathcal{C}_{total})$.
For
each
$
n
\geq
1
$
we
have
$
$
\Hom(X_n
,
X_{n
-
1
}
)
=
\Hom(K_n
,
g_n^{-1}g_{n
-
1!}K_{n
-
1
}
)
=
\bigoplus\nolimits_{\varphi
:
[
n
-
1
]
\to
[
n
]
}
\Hom(K_n
,
f_\varphi^{-1}K_{n
-
1
}
)
$
$
Thus
we
get
a
map
$
X_n
\to
X_{n
-
1}$
corresponding
to
the
alternating
sum
of
the
maps
$
K_\varphi^{-1
}
:
K_n
\to
f_\varphi^{-1}K_{n
-
1}$
where
$
\varphi$
runs
over
$
\delta^n_0
,
\ldots
,
\delta^n_n$.
We
can
do
this
because
$
K_\varphi$
is
invertible
by
assumption
(
1
)
.
Please
observe
the
similarity
with
the
definition
of
the
maps
in
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site}.
We
obtain
a
complex
$
$
\ldots
\to
X_2
\to
X_1
\to
X_0
$
$
in
$
D(\mathcal{C}_{total})$.
We
omit
the
computation
which
shows
that
the
compositions
are
zero
.
By
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
existence
-
postnikov
-
system
}
if
we
have
$
$
\Hom(X_i[i
-
j
-
2
]
,
X_j
)
=
0\text
{
for
}
i
>
j
+
2
$
$
then
we
can
extend
this
complex
to
a
Postnikov
system
.
The
group
is
equal
to
$
$
\Hom(K_i[i
-
j
-
2
]
,
g_i^{-1}g_{j!}K_j
)
$
$
Again
using
that
$
(
K_n
,
K_\varphi)$
is
cartesian
we
see
that
$
g_i^{-1}g_{j!}K_j$
is
isomorphic
to
a
finite
direct
sum
of
copies
of
$
K_i$.
Hence
the
group
vanishes
by
assumption
(
2
)
.
Let
the
Postnikov
system
be
given
by
$
Y_0
=
X_0
$
and
distinguished
sequences
$
Y_n
\to
X_n
\to
Y_{n
-
1
}
\to
Y_n[1]$
for
$
n
\geq
1$.
We
set
$
$
K
=
\text{hocolim
}
Y_n[n
]
$
$
To
finish
the
proof
we
have
to
show
that
$
g_m^{-1}K$
is
isomorphic
to
$
K_m$
for
all
$
m$
compatible
with
the
maps
$
K_\varphi$.
Observe
that
$
$
g_m^{-1
}
K
=
\text{hocolim
}
g_m^{-1}Y_n[n
]
$
$
and
that
$
g_m^{-1}Y_n[n]$
is
a
Postnikov
system
for
$
g_m^{-1}X_n$.
Consider
the
isomorphisms
$
$
g_m^{-1}X_n
=
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
f_\varphi^{-1}K_n
\xrightarrow{\bigoplus
K_\varphi
}
\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
K_m
$
$
These
maps
define
an
isomorphism
of
complexes
$
$
\xymatrix
{
\ldots
\ar[r
]
&
g_m^{-1}X_2
\ar[r
]
\ar[d
]
&
g_m^{-1}X_1
\ar[r
]
\ar[d
]
&
g_m^{-1}X_0
\ar[d
]
\\
\ldots
\ar[r
]
&
\bigoplus\nolimits_{\varphi
:
[
2
]
\to
[
m
]
}
K_m
\ar[r
]
&
\bigoplus\nolimits_{\varphi
:
[
1
]
\to
[
m
]
}
K_m
\ar[r
]
&
\bigoplus\nolimits_{\varphi
:
[
0
]
\to
[
m
]
}
K_m
}
$
$
in
$
D(\mathcal{C}_m)$
where
the
arrows
in
the
bottom
row
are
as
in
the
proof
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site}.
The
squares
commute
by
our
choice
of
the
arrows
of
the
complex
$
\ldots
\to
X_2
\to
X_1
\to
X_0
$
;
we
omit
the
computation
.
The
bottom
row
complex
has
a
postnikov
tower
given
by
$
$
Y'_{m
,
n
}
=
\left(\bigoplus\nolimits_{\varphi
:
[
n
]
\to
[
m
]
}
\mathbf{Z
}
\to
\ldots
\to
\bigoplus\nolimits_{\varphi
:
[
0
]
\to
[
m
]
}
\mathbf{Z}\right)[-n
]
\otimes^\mathbf{L}_\mathbf{Z
}
K_m
$
$
and
$
\text{hocolim
}
Y'_{m
,
n
}
=
K_m$
(
please
compare
with
the
proof
of
Lemma
\ref{lemma
-
abelian
-
postnikov
}
and
Derived
Categories
,
Example
\ref{derived
-
example
-
key
-
postnikov
}
)
.
Applying
the
second
part
of
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
existence
-
postnikov
-
system
}
the
vertical
maps
in
the
big
diagram
extend
to
an
isomorphism
of
Postnikov
systems
provided
we
have
$
$
\Hom(g_m^{-1}X_i[i
-
j
-
1
]
,
\bigoplus\nolimits_{\varphi
:
[
j
]
\to
[
m
]
}
K_m
)
=
0\text
{
for
}
i
>
j
+
1
$
$
The
is
true
if
$
\Hom(K_m[i
-
j
-
1
]
,
K_m
)
=
0
$
for
$
i
>
j
+
1
$
which
holds
by
assumption
(
2
)
.
Choose
an
isomorphism
given
by
$
\gamma_{m
,
n
}
:
g_m^{-1}Y_n
\to
Y'_{m
,
n}$
of
Postnikov
systems
in
$
D(\mathcal{C}_m)$.
By
uniqueness
of
homotopy
colimits
,
we
can
find
an
isomorphism
$
$
g_m^{-1
}
K
=
\text{hocolim
}
g_m^{-1}Y_n[n
]
\xrightarrow{\gamma_m
}
\text{hocolim
}
Y'_{m
,
n
}
=
K_m
$
$
compatible
with
$
\gamma_{m
,
n}$.
\medskip\noindent
We
still
have
to
prove
that
the
maps
$
\gamma_m$
fit
into
commutative
diagrams
$
$
\xymatrix
{
f_\varphi^{-1}g_m^{-1}K
\ar[d]_{f_\varphi^{-1}\gamma_m
}
\ar[r]_{K(\varphi
)
}
&
g_n^{-1}K
\ar[d]^{\gamma_n
}
\\
f_\varphi^{-1}K_m
\ar[r]^{K_\varphi
}
&
K_n
}
$
$
for
every
$
\varphi
:
[
m
]
\to
[
n]$.
Consider
the
diagram
$
$
\xymatrix
{
f_\varphi^{-1}(\bigoplus_{\psi
:
[
0
]
\to
[
m
]
}
f_\psi^{-1}K_0
)
\ar@{=}[r
]
\ar[d]_{f_\varphi^{-1}(\bigoplus
K_\psi
)
}
&
f_\varphi^{-1}g_m^{-1}X_0
\ar[d
]
\ar[r]_{X_0(\varphi
)
}
&
g_n^{-1}X_0
\ar[d
]
&
\bigoplus_{\chi
:
[
0
]
\to
[
n
]
}
f_\chi^{-1}K_0
\ar@{=}[l
]
\ar[d]^{\bigoplus
K_\chi
}
\\
f_\varphi^{-1}(\bigoplus_{\psi
:
[
0
]
\to
[
m
]
}
K_m
)
\ar@{=}[d
]
&
f_\varphi^{-1}g_m^{-1}K
\ar[d]_{f_\varphi^{-1}\gamma_m
}
\ar[r]_{K(\varphi
)
}
&
g_n^{-1}K
\ar[d]^{\gamma_n
}
&
\bigoplus_{\chi
:
[
0
]
\to
[
n
]
}
K_n
\ar@{=}[d
]
\\
f_\varphi^{-1}Y'_{0
,
m
}
\ar[r
]
&
f_\varphi^{-1}K_m
\ar[r]^{K_\varphi
}
&
K_n
&
Y'_{0
,
n
}
\ar[l
]
}
$
$
The
top
middle
square
is
commutative
as
$
X_0
\to
K$
is
a
morphism
of
simplicial
objects
.
The
left
,
resp.\
the
right
rectangles
are
commutative
as
$
\gamma_m$
,
resp.\
$
\gamma_n$
is
compatible
with
$
\gamma_{0
,
m}$
,
resp.\
$
\gamma_{0
,
n}$
which
are
the
arrows
$
\bigoplus
K_\psi$
and
$
\bigoplus
K_\chi$
in
the
diagram
.
Going
around
the
outer
rectangle
of
the
diagram
is
commutative
as
$
(
K_n
,
K_\varphi)$
is
a
simplical
system
and
the
map
$
X_0(\varphi)$
is
given
by
the
obvious
identifications
$
f_\varphi^{-1}f_\psi^{-1}K_0
=
f_{\varphi
\circ
\psi}^{-1}K_0$.
Note
that
the
arrow
$
\bigoplus_\psi
K_m
\to
Y'_{0
,
m
}
\to
K_m$
induces
an
isomorphism
on
any
of
the
direct
summands
(
because
of
our
explicit
construction
of
the
Postnikov
systems
$
Y'_{i
,
j}$
above
)
.
Hence
,
if
we
take
a
direct
summand
summand
of
the
upper
left
and
corner
,
then
this
maps
isomorphically
to
$
f_\varphi^{-1}g_m^{-1}K$
as
$
\gamma_m$
is
an
isomorphism
.
Working
out
what
the
above
says
,
but
looking
only
at
this
direct
summand
we
conclude
the
lower
middle
square
commutes
as
we
well
.
This
concludes
the
proof
.
\end{proof
}
\section{Simplicial
systems
of
the
derived
category
:
modules
}
\label{section
-
glueing
-
modules
}
\noindent
In
this
section
we
are
going
to
prove
a
special
case
of
\cite[Proposition
3.2.9]{BBD
}
in
the
setting
of
derived
categories
of
$
\mathcal{O}$-modules
.
The
(
slightly
)
easier
case
of
abelian
sheaves
is
discussed
in
Section
\ref{section
-
glueing}.
\begin{definition
}
\label{definition
-
cartesian
-
derived
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site}.
Let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
A
{
\it
simplicial
system
of
the
derived
category
of
modules
}
consists
of
the
following
data
\begin{enumerate
}
\item
for
every
$
n$
an
object
$
K_n$
of
$
D(\mathcal{O}_n)$
,
\item
for
every
$
\varphi
:
[
m
]
\to
[
n]$
a
map
$
K_\varphi
:
Lf_\varphi^*K_m
\to
K_n$
in
$
D(\mathcal{O}_n)$
\end{enumerate
}
subject
to
the
condition
that
$
$
K_{\varphi
\circ
\psi
}
=
K_\varphi
\circ
Lf_\varphi^*K_\psi
:
Lf_{\varphi
\circ
\psi}^*K_l
=
Lf_\varphi^
*
Lf_\psi^*K_l
\longrightarrow
K_n
$
$
for
any
morphisms
$
\varphi
:
[
m
]
\to
[
n]$
and
$
\psi
:
[
l
]
\to
[
m]$
of
$
\Delta$.
We
say
the
simplicial
system
is
{
\it
cartesian
}
if
the
maps
$
K_\varphi$
are
isomorphisms
for
all
$
\varphi$.
Given
two
simplicial
systems
of
the
derived
category
there
is
an
obvious
notion
of
a
{
\it
morphism
of
simplicial
systems
of
the
derived
category
of
modules}.
\end{definition
}
\noindent
We
have
given
this
notion
a
ridiculously
long
name
intentionally
.
The
goal
is
to
show
that
a
simplicial
system
of
the
derived
category
of
modules
comes
from
an
object
of
$
D(\mathcal{O})$
under
certain
hypotheses
.
\begin{lemma
}
\label{lemma
-
cartesian
-
objects
-
derived
-
modules
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
TYPE
sheaf
of
rings
on
$
\mathcal{C}_{total}$.
If
$
K
\in
D(\mathcal{O})$
is
an
object
,
then
$
(
K_n
,
K(\varphi))$
is
a
simplicial
system
of
the
derived
category
of
modules
.
If
$
K$
is
cartesian
,
so
is
the
system
.
\end{lemma
}
\begin{proof
}
This
is
immediate
from
the
definitions
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
modules
-
postnikov
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}_{total}$.
Let
$
K$
be
an
object
of
$
D(\mathcal{C}_{total})$.
Set
$
$
X_n
=
(
g_{n!}\mathcal{O}_n
)
\otimes^\mathbf{L}_\mathcal{O
}
K
\quad\text{and}\quad
Y_n
=
(
g_{n!}\mathcal{O}_n
\to
\ldots
\to
g_{0!}\mathcal{O}_0)[-n
]
\otimes^\mathbf{L}_\mathcal{O
}
K
$
$
as
objects
of
$
D(\mathcal{O})$
where
the
maps
are
as
in
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site}.
With
the
evident
canonical
maps
$
Y_n
\to
X_n$
and
$
Y_0
\to
Y_1[1
]
\to
Y_2[2
]
\to
\ldots$
we
have
\begin{enumerate
}
\item
the
distinguished
triangles
$
Y_n
\to
X_n
\to
Y_{n
-
1
}
\to
Y_n[1]$
define
a
Postnikov
system
(
Derived
Categories
,
Definition
\ref{derived
-
definition
-
postnikov
-
system
}
)
for
$
\ldots
\to
X_2
\to
X_1
\to
X_0
$
,
\item
$
K
=
\text{hocolim
}
Y_n[n]$
in
$
D(\mathcal{O})$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
First
,
if
$
K
=
\mathcal{O}$
,
then
this
is
the
construction
of
Derived
Categories
,
Example
\ref{derived
-
example
-
key
-
postnikov
}
applied
to
the
complex
$
$
\ldots
\to
g_{2!}\mathcal{O}_2
\to
g_{1!}\mathcal{O}_1
\to
g_{0!}\mathcal{O}_0
$
$
in
$
\textit{Ab}(\mathcal{C}_{total})$
combined
with
the
fact
that
this
complex
represents
$
K
=
\mathcal{O}$
in
$
D(\mathcal{C}_{total})$
by
Lemma
\ref{lemma
-
simplicial
-
resolution
-
ringed}.
The
general
case
follows
from
this
,
the
fact
that
the
exact
functor
$
-
\otimes^\mathbf{L}_\mathcal{O
}
K$
sends
Postnikov
systems
to
Postnikov
systems
,
and
that
$
-
\otimes^\mathbf{L}_\mathcal{O
}
K$
commutes
with
homotopy
colimits
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
nullity
-
cartesian
-
modules
-
derived
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$.
If
$
K
,
K
'
\in
D(\mathcal{O})$.
Assume
\begin{enumerate
}
\item
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
is
flat
for
$
\varphi
:
[
m
]
\to
[
n]$
,
\item
$
K$
is
cartesian
,
\item
$
\Hom(K_i[i
]
,
K'_i
)
=
0
$
for
$
i
>
0
$
,
and
\item
$
\Hom(K_i[i
+
1
]
,
K'_i
)
=
0
$
for
$
i
\geq
0$.
\end{enumerate
}
Then
any
map
$
K
\to
K'$
which
induces
the
zero
map
$
K_0
\to
K'_0
$
is
zero
.
\end{lemma
}
\begin{proof
}
The
proof
is
exactly
the
same
as
the
proof
of
Lemma
\ref{lemma
-
nullity
-
cartesian
-
objects
-
derived
}
except
using
Lemma
\ref{lemma
-
modules
-
postnikov
}
instead
of
Lemma
\ref{lemma
-
abelian
-
postnikov}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hom
-
cartesian
-
modules
-
derived
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$.
If
$
K
,
K
'
\in
D(\mathcal{O})$.
Assume
\begin{enumerate
}
\item
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
is
flat
for
$
\varphi
:
[
m
]
\to
[
n]$
,
\item
$
K$
is
cartesian
,
\item
$
\Hom(K_i[i
-
1
]
,
K'_i
)
=
0
$
for
$
i
>
1$.
\end{enumerate
}
Then
any
map
$
\{K_n
\to
K'_n\}$
between
the
associated
simplicial
systems
of
$
K$
and
$
K'$
comes
from
a
map
$
K
\to
K'$
in
$
D(\mathcal{O})$.
\end{lemma
}
\begin{proof
}
The
proof
is
exactly
the
same
as
the
proof
of
Lemma
\ref{lemma
-
hom
-
cartesian
-
objects
-
derived
}
except
using
Lemma
\ref{lemma
-
modules
-
postnikov
}
instead
of
Lemma
\ref{lemma
-
abelian
-
postnikov}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cartesian
-
module
-
derived
-
from
-
simplicial
}
In
Situation
\ref{situation
-
simplicial
-
site
}
let
$
\mathcal{O}$
be
a
sheaf
of
rings
on
$
\mathcal{C}_{total}$.
Let
$
(
K_n
,
K_\varphi)$
be
a
simplicial TYPE
system
of
the
derived
category
of
modules
.
Assume
\begin{enumerate
}
\item
$
f_\varphi^{-1}\mathcal{O}_n
\to
\mathcal{O}_m$
is
flat
for
$
\varphi
:
[
m
]
\to
[
n]$
,
\item
$
(
K_n
,
K_\varphi)$
is
cartesian
,
\item
$
\Hom(K_i[t
]
,
K_i
)
=
0
$
for
$
i
\geq
0
$
and
$
t
>
0$.
\end{enumerate
}
Then
there
exists
a
cartesian
object
$
K$
of
$
D(\mathcal{O})$
whose
associated
simplicial
system
is
isomorphic
to
$
(
K_n
,
K_\varphi)$.
\end{lemma
}
\begin{proof
}
The
proof
is
exactly
the
same
as
the
proof
of
Lemma
\ref{lemma
-
cartesian
-
object
-
derived
-
from
-
simplicial
}
with
the
following
changes
\begin{enumerate
}
\item
use
$
g_n^
*
=
Lg_n^*$
everywhere
instead
of
$
g_n^{-1}$
,
\item
use
$
f_\varphi^
*
=
Lf_\varphi^*$
everywhere
instead
of
$
f_\varphi^{-1}$
,
\item
refer
to
Lemma
\ref{lemma
-
simplicial
-
resolution
-
ringed
}
instead
of
Lemma
\ref{lemma
-
simplicial
-
resolution
-
Z
-
site
}
,
\item
in
the
construction
of
$
Y'_{m
,
n}$
use
$
\mathcal{O}_m$
instead
of
$
\mathbf{Z}$
,
\item
compare
with
the
proof
of
Lemma
\ref{lemma
-
modules
-
postnikov
}
rather
than
the
proof
of
Lemma
\ref{lemma
-
abelian
-
postnikov}.
\end{enumerate
}
This
ends
the
proof
.
\end{proof
}
\section{The
site
associated
to
a
semi
-
representable
object
}
\label{section
-
semi
-
representable
}
\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Recall
that
a
{
\it
semi
-
representable
object
}
of
$
\mathcal{C}$
is
simply
a
family
$
\{U_i\}_{i
\in
I}$
of
objects
of
$
\mathcal{C}$.
A
{
\it
morphism
$
\{U_i\}_{i
\in
I
}
\to
\{V_j\}_{j
\in
J}$
of
semi
-
representable
objects
}
is
given
by
a
map
$
\alpha
:
I
\to
J$
and
for
every
$
i
\in
I$
a
morphism
$
f_i
:
U_i
\to
V_{\alpha(i)}$
of
$
\mathcal{C}$.
The
category
of
semi
-
representable
objects
of
$
\mathcal{C}$
is
denoted
$
\text{SR}(\mathcal{C})$.
See
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
SR
}
and
the
enclosing
section
for
more
information
.
\medskip\noindent
For
a
semi
-
representable
object
$
K
=
\{U_i\}_{i
\in
I}$
of
$
\mathcal{C}$
we
let
$
$
\mathcal{C}/K
=
\coprod\nolimits_{i
\in
I
}
\mathcal{C}/U_i
$
$
be
the
disjoint
union
of
the
localizations
of
$
\mathcal{C}$
at
$
U_i$.
There
is
a
natural
structure
of
a
site
on
this
category
,
with
coverings
inherited
from
the
localizations
$
\mathcal{C}/U_i$.
The
site
$
\mathcal{C}/K$
is
called
the
{
\it
localization
of
$
\mathcal{C}$
at
$
K$}.
Observe
that
a
sheaf
on
$
\mathcal{C}/K$
is
the
same
thing
as
a
family
of
sheaves
$
\mathcal{F}_i$
on
$
\mathcal{C}/U_i$
,
i.e.
,
$
$
\Sh(\mathcal{C}/K
)
=
\prod\nolimits_{i
\in
I
}
\Sh(\mathcal{C}/U_i
)
$
$
This
is
occasionally
usefull
to
understand
what
is
going
on
.
\medskip\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
K
=
\{U_i\}_{i
\in
I}$
be
an
object TYPE
of
$
\text{SR}(\mathcal{C})$.
There
is
a
continuous
and
cocontinuous
localization
functor
$
j
:
\mathcal{C}/K
\to
\mathcal{C}$
which
is
the
product
of
the
localization
functors
$
j_i
:
\mathcal{C}/V_i
\to
\mathcal{C}$.
We
obtain
functors
$
j_!$
,
$
j^{-1}$
,
$
j_*$
exactly
as
in
Sites
,
Section
\ref{sites
-
section
-
localize}.
In
terms
of
of
the
product
decomposition
$
\Sh(\mathcal{C}/K
)
=
\prod\nolimits_{i
\in
I
}
\Sh(\mathcal{C}/U_i)$
we
have
$
$
\begin{matrix
}
j
_
!
&
:
&
(
\mathcal{F}_i)_{i
\in
I
}
&
\longmapsto
&
\coprod
j_{i
,
!
}
\mathcal{F}_i
\\
j^{-1
}
&
:
&
\mathcal{G
}
&
\longmapsto
&
(
j_i^{-1}\mathcal{G})_{i
\in
I
}
\\
j
_
*
&
:
&
(
\mathcal{F}_i)_{i
\in
I
}
&
\longmapsto
&
\prod
j_{i
,
*
}
\mathcal{F}_i
\end{matrix
}
$
$
as
the
reader
easily
verifies
.
\medskip\noindent
Let
$
f
:
K
\to
L$
be
a
morphism
of
$
\text{SR}(\mathcal{C})$.
Then
we
obtain
a
continuous
and
cocontinuous
functor
$
$
v
:
\mathcal{C}/K
\longrightarrow
\mathcal{C}/L
$
$
by
applying
the
construction
of
Sites
,
Lemma
\ref{sites
-
lemma
-
relocalize
}
to
the
components
.
More
precisely
,
suppose
$
f
=
(
\alpha
,
f_i)$
where
$
K
=
\{U_i\}_{i
\in
I}$
,
$
L
=
\{V_j\}_{j
\in
J}$
,
$
\alpha
:
I
\to
J$
,
and
$
f_i
:
U_i
\to
V_{\alpha(i)}$.
Then
the
functor
$
v$
maps
the
component
$
\mathcal{C}/U_i$
into
the
component
$
\mathcal{C}/V_{\alpha(i)}$
via
the
construction
of
the
aforementioned
lemma
.
In
particular
we
obtain
a
morphism
$
$
f
:
\Sh(\mathcal{C}/K
)
\to
\Sh(\mathcal{C}/L
)
$
$
of
topoi
.
In
terms
of
the
product
decompositions
$
\Sh(\mathcal{C}/K
)
=
\prod\nolimits_{i
\in
I
}
\Sh(\mathcal{C}/U_i)$
and
$
\Sh(\mathcal{C}/L
)
=
\prod\nolimits_{j
\in
J
}
\Sh(\mathcal{C}/V_j)$
the
reader
verifies
that
$
$
\begin{matrix
}
f
_
!
&
:
&
(
\mathcal{F}_i)_{i
\in
I
}
&
\longmapsto
&
(
\coprod\nolimits_{i
\in
I
,
\alpha(i
)
=
j
}
f_{i
,
!
}
\mathcal{F}_i)_{j
\in
J
}
\\
f^{-1
}
&
:
&
(
\mathcal{G}_j)_{j
\in
J
}
&
\longmapsto
&
(
f_i^{-1}\mathcal{G}_{\alpha(i)})_{i
\in
I
}
\\
f
_
*
&
:
&
(
\mathcal{F}_i)_{i
\in
I
}
&
\longmapsto
&
(
\prod\nolimits_{i
\in
I
,
\alpha(i
)
=
j
}
f_{i
,
*
}
\mathcal{F}_i)_{j
\in
J
}
\end{matrix
}
$
$
where
$
f_i
:
\Sh(\mathcal{C}/U_i
)
\to
\Sh(\mathcal{C}/V_{\alpha(i)})$
is
the
morphism
associated
to
the
localization
functor
$
\mathcal{C}/U_i
\to
\mathcal{C}/V_{\alpha(i)}$
corresponding
to
$
f_i
:
U_i
\to
V_{\alpha(i)}$.
\begin{lemma
}
\label{lemma
-
has
-
P
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
\begin{enumerate
}
\item
For
$
K$
in
$
\text{SR}(\mathcal{C})$
the
functor
$
j
:
\mathcal{C}/K
\to
\mathcal{C}$
is
continuous
,
cocontinuous
,
and
has
property
P
of
Sites
,
Remark
\ref{sites
-
remark
-
cartesian
-
cocontinuous}.
\item
For
$
f
:
K
\to
L$
in
$
\text{SR}(\mathcal{C})$
the
functor
$
v
:
\mathcal{C}/K
\to
\mathcal{C}/L$
(
see
above
)
is
continuous
,
cocontinuous
,
and
has
property
P
of
Sites
,
Remark
\ref{sites
-
remark
-
cartesian
-
cocontinuous}.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Proof
of
(
2
)
.
In
the
notation
of
the
discussion
preceding
the
lemma
,
the
localization
functors
$
\mathcal{C}/U_i
\to
\mathcal{C}/V_{\alpha(i)}$
are
continuous
and
cocontinuous
by
Sites
,
Section
\ref{sites
-
section
-
localize
}
and
satisfy
$
P$
by
Sites
,
Remark
\ref{sites
-
remark
-
localization
-
cartesian
-
cocontinuous}.
It
is
formal
to
deduce
$
v$
is
continuous
and
cocontinuous
and
has
$
P$.
We
omit
the
details
.
We
also
omit
the
proof
of
(
1
)
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
push
-
pull
-
localization
}
Let
$
\mathcal{C}$
be
a
site TYPE
and
$
K$
in
$
\text{SR}(\mathcal{C})$.
For
$
\mathcal{F}$
in
$
\Sh(\mathcal{C})$
we
have
$
$
j_*j^{-1}\mathcal{F
}
=
\SheafHom(F(K)^\
#
,
\mathcal{F
}
)
$
$
where
$
F$
is
as
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
SR
-
F}.
\end{lemma
}
\begin{proof
}
Say
$
K
=
\{U_i\}_{i
\in
I}$.
Using
the
description
of
the
functors
$
j^{-1}$
and
$
j_*$
given
above
we
see
that
$
$
j_*j^{-1}\mathcal{F
}
=
\prod\nolimits_{i
\in
I
}
j_{i
,
*
}
(
\mathcal{F}|_{\mathcal{C}/U_i
}
)
=
\prod\nolimits_{i
\in
I
}
\SheafHom(h_{U_i}^\
#
,
\mathcal{F
}
)
$
$
The
second
equality
by
Sites
,
Lemma
\ref{sites
-
lemma
-
hom
-
sheaf
-
hU}.
Since
$
F(K
)
=
\coprod
h_{U_i}$
in
$
\textit{PSh}(\mathcal{C}$
,
we
have
$
F(K)^\
#
=
\coprod
h_{U_i}^\#$
in
$
\Sh(\mathcal{C})$
and
since
$
\SheafHom(-
,
\mathcal{F})$
turns
coproducts
into
products
(
immediate
from
the
construction
in
Sites
,
Section
\ref{sites
-
section
-
glueing
-
sheaves
}
)
,
we
conclude
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
localize
-
compare
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
\begin{enumerate
}
\item
For
$
K$
in
$
\text{SR}(\mathcal{C})$
the
functor
$
j_!$
gives
an
equivalence
$
\Sh(\mathcal{C}/K
)
\to
\Sh(\mathcal{C})/F(K)^\#$
where
$
F$
is
as
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
SR
-
F}.
\item
The
functor
$
j^{-1
}
:
\Sh(\mathcal{C
}
)
\to
\Sh(\mathcal{C}/K)$
corresponds
via
the
identification
of
(
1
)
with
$
\mathcal{F
}
\mapsto
(
\mathcal{F
}
\times
F(K)^\
#
\to
F(K)^\#)$.
\item
For
$
f
:
K
\to
L$
in
$
\text{SR}(\mathcal{C})$
the
functor
$
f^{-1}$
corresponds
via
the
identifications
of
(
1
)
to
the
functor
$
\Sh(\mathcal{C})/F(L)^\
#
\to
\Sh(\mathcal{C})/F(K)^\#$
,
$
(
\mathcal{G
}
\to
F(L)^\
#
)
\mapsto
(
\mathcal{G
}
\times_{F(L)^\
#
}
F(K)^\
#
\to
F(K)^\#)$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Observe
that
if
$
K
=
\{U_i\}_{i
\in
I}$
then
the
category
$
\Sh(\mathcal{C}/K)$
decomposes
as
the
product
of
the
categories
$
\Sh(\mathcal{C}/U_i)$.
Observe
that
$
F(K)^\
#
=
\coprod_{i
\in
I
}
h_{U_i}^\#$
(
coproduct
in
sheaves
)
.
Hence
$
\Sh(\mathcal{C})/F(K)^\#$
is
the
product
of
the
categories
$
\Sh(\mathcal{C})/h_{U_i}^\#$.
Thus
(
1
)
and
(
2
)
follow
from
the
corresponding
statements
for
each
$
i$
,
see
Sites
,
Lemmas
\ref{sites
-
lemma
-
essential
-
image
-
j
-
shriek
}
and
\ref{sites
-
lemma
-
compute
-
j
-
shriek
-
restrict}.
Similarly
,
if
$
L
=
\{V_j\}_{j
\in
J}$
and
$
f$
is
given
by
$
\alpha
:
I
\to
J$
and
$
f_i
:
U_i
\to
V_{\alpha(i)}$
,
then
we
can
apply
Sites
,
Lemma
\ref{sites
-
lemma
-
relocalize
-
explicit
}
to
each
of
the
re
-
localization
morphisms
$
\mathcal{C}/U_i
\to
\mathcal{C}/V_{\alpha(i)}$
to
get
(
3
)
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
localize
-
injective
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
For
$
K$
in
$
\text{SR}(\mathcal{C})$
the
functor
$
j^{-1}$
sends
injective
abelian
sheaves
to
injective
abelian
sheaves
.
\end{lemma
}
\begin{proof
}
This
is
the
natural
generalization
of
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
to
semi
-
representable
objects
.
In
fact
,
it
follows
from
this
lemma
by
the
product
decomposition
of
$
\Sh(\mathcal{C}/K)$
and
the
description
of
the
functor
$
j^{-1}$
given
above
.
\end{proof
}
\begin{remark}[Variant
for
over
an
object
]
\label{remark
-
semi
-
representable
-
over
-
object
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
X
\in
\Ob(\mathcal{C})$.
The
category
$
\text{SR}(\mathcal{C
}
,
X)$
of
{
\it
semi
-
representable
objects
over
$
X$
}
is
defined
by
the
formula
$
\text{SR}(\mathcal{C
}
,
X
)
=
\text{SR}(\mathcal{C}/X)$.
See
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
SR}.
Thus
we
may
apply
the
above
discussion
to
the
site
$
\mathcal{C}/X$.
Briefly
,
the
constructions
above
give
\begin{enumerate
}
\item
a
site
$
\mathcal{C}/K$
for
$
K$
in
$
\text{SR}(\mathcal{C
}
,
X)$
,
\item
a
decomposition
$
\Sh(\mathcal{C}/K
)
=
\prod
\Sh(\mathcal{C}/U_i)$
if
$
K
=
\{U_i
/
X\}$
,
\item
a
localization
functor
$
j
:
\mathcal{C}/K
\to
\mathcal{C}/X$
,
\item
a
morphism
$
f
:
\Sh(\mathcal{C}/K
)
\to
\Sh(\mathcal{C}/L)$
for
$
f
:
K
\to
L$
in
$
\text{SR}(\mathcal{C
}
,
X)$.
\end{enumerate
}
All
results
of
this
section
hold
in
this
situation
by
replacing
$
\mathcal{C}$
everywhere
by
$
\mathcal{C}/X$.
\end{remark
}
\begin{remark}[Ringed
variant
]
\label{remark
-
semi
-
representable
-
ringed
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}$.
In
this
case
,
for
any
semi
-
representable
object
$
K$
of
$
\mathcal{C}$
the
site
$
\mathcal{C}/K$
is
a
ringed
site
with
sheaf
of
rings
$
\mathcal{O}_K
=
j^{-1}\mathcal{O}_\mathcal{C}$.
The
constructions
above
give
\begin{enumerate
}
\item
a
ringed
site
$
(
\mathcal{C}/K
,
\mathcal{O}_K)$
for
$
K$
in
$
\text{SR}(\mathcal{C})$
,
\item
a
decomposition
$
\textit{Mod}(\mathcal{O}_K
)
=
\prod
\textit{Mod}(\mathcal{O}_{U_i})$
if
$
K
=
\{U_i\}$
,
\item
a
localization
morphism
$
j
:
(
\Sh(\mathcal{C}/K
)
,
\mathcal{O}_K
)
\to
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C})$
of
ringed
topoi
,
\item
a
morphism
$
f
:
(
\Sh(\mathcal{C}/K
)
,
\mathcal{O}_K
)
\to
(
\Sh(\mathcal{C}/L
)
,
\mathcal{O}_L)$
of
ringed
topoi
for
$
f
:
K
\to
L$
in
$
\text{SR}(\mathcal{C})$.
\end{enumerate
}
Many
of
the
results
above
hold
in
this
setting
.
For
example
,
the
functor
$
j^*$
has
an
exact
left
adjoint
$
$
j
_
!
:
\textit{Mod}(\mathcal{O}_K
)
\to
\textit{Mod}(\mathcal{O}_\mathcal{C
}
)
,
$
$
which
in
terms
of
the
product
decomposition
given
in
(
2
)
sends
$
(
\mathcal{F}_i)_{i
\in
I}$
to
$
\bigoplus
j_{i
,
!
}
\mathcal{F}_i$.
Similarly
,
given
$
f
:
K
\to
L$
as
above
,
the
functor
$
f^*$
has
an
exact
left
adjoint
$
f
_
!
:
\textit{Mod}(\mathcal{O}_K
)
\to
\textit{Mod}(\mathcal{O}_L)$.
Thus
the
functors
$
j^*$
and
$
f^*$
are
exact
,
i.e.
,
$
j$
and
$
f$
are
flat
morphisms
of
ringed
topoi
(
also
follows
from
the
equalities
$
\mathcal{O}_K
=
j^{-1}\mathcal{O}_\mathcal{C}$
and
$
\mathcal{O}_K
=
f^{-1}\mathcal{O}_L$
)
.
\end{remark
}
\begin{remark}[Ringed
variant
over
an
object
]
\label{remark
-
semi
-
representable
-
ringed
-
over
-
object
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}$.
Let
$
X
\in
\Ob(\mathcal{C})$
and
denote
$
\mathcal{O}_X
=
\mathcal{O}_\mathcal{C}|_{\mathcal{C}/U}$.
Then
we
can
combine
the
constructions
given
in
Remarks
\ref{remark
-
semi
-
representable
-
over
-
object
}
and
\ref{remark
-
semi
-
representable
-
ringed
}
to
get
\begin{enumerate
}
\item
a
ringed
site
$
(
\mathcal{C}/K
,
\mathcal{O}_K)$
for
$
K$
in
$
\text{SR}(\mathcal{C
}
,
X)$
,
\item
a
decomposition
$
\textit{Mod}(\mathcal{O}_K
)
=
\prod
\textit{Mod}(\mathcal{O}_{U_i})$
if
$
K
=
\{U_i\}$
,
\item
a
localization
morphism
$
j
:
(
\Sh(\mathcal{C}/K
)
,
\mathcal{O}_K
)
\to
(
\Sh(\mathcal{C}/X
)
,
\mathcal{O}_X)$
of
ringed
topoi
,
\item
a
morphism
$
f
:
(
\Sh(\mathcal{C}/K
)
,
\mathcal{O}_K
)
\to
(
\Sh(\mathcal{C}/L
)
,
\mathcal{O}_L)$
of
ringed
topoi
for
$
f
:
K
\to
L$
in
$
\text{SR}(\mathcal{C
}
,
X)$.
\end{enumerate
}
Of
course
all
of
the
results
mentioned
in
Remark
\ref{remark
-
semi
-
representable
-
ringed
}
hold
in
this
setting
as
well
.
\end{remark
}
\section{The
site
associate
to
a
simplicial
semi
-
representable
object
}
\label{section
-
simplicial
-
semi
-
representable
}
\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
K$
be
a
simplicial TYPE
object
of
$
\text{SR}(\mathcal{C})$.
As
usual
,
set
$
K_n
=
K([n])$
and
denote
$
K(\varphi
)
:
K_n
\to
K_m$
the
morphism
associated
to
$
\varphi
:
[
m
]
\to
[
n]$.
By
the
construction
in
Section
\ref{section
-
semi
-
representable
}
we
obtain
a
simplicial
object
$
n
\mapsto
\mathcal{C}/K_n$
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
cocontinuous
functors
.
In
other
words
,
we
get
a
gadget
as
in
Case
B
of
Section
\ref{section
-
simplicial
-
sites}.
The
functors
satisfy
property
P
by
Lemma
\ref{lemma
-
has
-
P}.
Hence
we
may
apply
Lemma
\ref{lemma
-
simplicial
-
cocontinuous
-
site
}
to
obtain
a
site
$
(
\mathcal{C}/K)_{total}$.
\medskip\noindent
We
can
describe
the
site
$
(
\mathcal{C}/K)_{total}$
explicitly
as
follows
.
Say
$
K_n
=
\{U_{n
,
i}\}_{i
\in
I_n}$.
For
$
\varphi
:
[
m
]
\to
[
n]$
the
morphism
$
K(\varphi
)
:
K_n
\to
K_m$
is
given
by
a
map
$
\alpha(\varphi
)
:
I_n
\to
I_m$
and
morphisms
$
f_{\varphi
,
i
}
:
U_{n
,
i
}
\to
U_{m
,
\alpha(\varphi)(i)}$
for
$
i
\in
I_n$.
Then
we
have
\begin{enumerate
}
\item
an
object
of
$
(
\mathcal{C}/K)_{total}$
corresponds
to
an
object
$
(
U
/
U_{n
,
i})$
of
$
\mathcal{C}/U_{n
,
i}$
for
some
$
n$
and
some
$
i
\in
I_n$
,
\item
a
morphism
between
$
U
/
U_{n
,
i}$
and
$
V
/
U_{m
,
j}$
is
a
pair
$
(
\varphi
,
f)$
where
$
\varphi
:
[
m
]
\to
[
n]$
,
$
j
=
\alpha(\varphi)(i)$
,
and
$
f
:
U
\to
V$
is
a
morphism
of
$
\mathcal{C}$
such
that
$
$
\vcenter
{
\xymatrix
{
U
\ar[r]_f
\ar[d
]
&
V
\ar[d
]
\\
U_{n
,
i
}
\ar[r]^-{f_{\varphi
,
i
}
}
&
U_{m
,
j
}
}
}
$
$
is
commutative
,
and
\item
coverings
of
the
object
$
U
/
U_{n
,
i}$
are
constructed
by
starting
with
a
covering
$
\{f_j
:
U_j
\to
U\}$
in
$
\mathcal{C}$
and
letting
$
\{(\text{id
}
,
f_j
)
:
U_j
/
U_{n
,
i
}
\to
U
/
U_{n
,
i}\}$
be
a
covering TYPE
in
$
(
\mathcal{C}/K)_{total}$.
\end{enumerate
}
All
of
our
general
theory
developed
for
simplicial
sites
applies
to
$
(
\mathcal{C}/K)_{total}$.
Observe
that
the
obvious
forgetful
functor
$
$
j_{total
}
:
(
\mathcal{C}/K)_{total
}
\longrightarrow
\mathcal{C
}
$
$
is
continuous
and
cocontinuous
.
It
turns
out
that
the
associated
morphism
of
topoi
comes
from
an
(
obvious
)
augmentation
.
\begin{lemma
}
\label{lemma
-
augmentation
-
simplicial
-
semi
-
representable
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
K$
be
a
simplicial TYPE
object
of
$
\text{SR}(\mathcal{C})$.
The
localization
functor
$
j_0
:
\mathcal{C}/K_0
\to
\mathcal{C}$
defines
an
augmentation
$
a_0
:
\Sh(\mathcal{C}/K_0
)
\to
\Sh(\mathcal{C})$
,
as
in
case
(
B
)
of
Remark
\ref{remark
-
augmentation
-
site}.
The
corresponding
morphisms
of
topoi
$
$
a_n
:
\Sh(\mathcal{C}/K_n
)
\longrightarrow
\Sh(\mathcal{C}),\quad
a
:
\Sh((\mathcal{C}/K)_{total
}
)
\longrightarrow
\Sh(\mathcal{C
}
)
$
$
of
Lemma
\ref{lemma
-
augmentation
-
site
}
are
equal
to
the
morphisms
of
topoi
associated
to
the
continuous
and
cocontinuous
localization
functors
$
j_n
:
\mathcal{C}/K_n
\to
\mathcal{C}$
and
$
j_{total
}
:
(
\mathcal{C}/K)_{total
}
\to
\mathcal{C}$.
\end{lemma
}
\begin{proof
}
This
is
immediate
from
working
through
the
definitions
.
See
in
particular
the
footnote
in
the
proof
of
Lemma
\ref{lemma
-
augmentation
-
site
}
for
the
relationship
between
$
a$
and
$
j_{total}$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
comparison
}
With
assumption
and
notation
as
in
Lemma
\ref{lemma
-
augmentation
-
simplicial
-
semi
-
representable
}
we
have
the
following
properties
:
\begin{enumerate
}
\item
there
is
a
functor
$
a^{Sh
}
_
!
:
\Sh((\mathcal{C}/K)_{total
}
)
\to
\Sh(\mathcal{C})$
left
adjoint
to
$
a^{-1
}
:
\Sh(\mathcal{C
}
)
\to
\Sh((\mathcal{C}/K)_{total})$
,
\item
there
is
a
functor
$
a
_
!
:
\textit{Ab}((\mathcal{C}/K)_{total
}
)
\to
\textit{Ab}(\mathcal{C})$
left
adjoint
to
$
a^{-1
}
:
\textit{Ab}(\mathcal{C
}
)
\to
\textit{Ab}((\mathcal{C}/K)_{total})$
,
\item
the
functor
$
a^{-1}$
associates
to
$
\mathcal{F}$
in
$
\Sh(\mathcal{C})$
the
sheaf
on
$
(
\mathcal{C}/K)_{total}$
wich
in
degree
$
n$
is
equal
to
$
a_n^{-1}\mathcal{F}$
,
\item
the
functor
$
a_*$
associates
to
$
\mathcal{G}$
in
$
\textit{Ab}((\mathcal{C}/K)_{total})$
the
equalizer
of
the
two
maps
$
j_{0
,
*
}
\mathcal{G}_0
\to
j_{1
,
*
}
\mathcal{G}_1
$
,
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Parts
(
3
)
and
(
4
)
hold
for
any
augmentation
of
a
simplicial
site
,
see
Lemma
\ref{lemma
-
augmentation
-
site}.
Parts
(
1
)
and
(
2
)
follow
as
$
j_{total}$
is
continuous
and
cocontinuous
.
The
functor
$
a^{Sh}_!$
is
constructed
in
Sites
,
Lemma
\ref{sites
-
lemma
-
when
-
shriek
}
and
the
functor
$
a_!$
is
constructed
in
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
g
-
shriek
-
adjoint}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
sanity
-
check
-
simplicial
-
semi
-
representable
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
K$
be
a
simplicial TYPE
object
of
$
\text{SR}(\mathcal{C})$.
Let
$
U
/
U_{n
,
i}$
be
an
object TYPE
of
$
\mathcal{C}/K_n$.
Let
$
\mathcal{F
}
\in
\textit{Ab}((\mathcal{C}/K)_{total})$.
Then
$
$
H^p(U
,
\mathcal{F
}
)
=
H^p(U
,
\mathcal{F}_{n
,
i
}
)
$
$
where
\begin{enumerate
}
\item
on
the
left
hand
side
$
U$
is
viewed
as
an
object
of
$
\mathcal{C}_{total}$
,
and
\item
on
the
right
hand
side
$
\mathcal{F}_{n
,
i}$
is
the
$
i$th
component
of
the
sheaf
$
\mathcal{F}_n$
on
$
\mathcal{C}/K_n$
in
the
decomposition
$
\Sh(\mathcal{C}/K_n
)
=
\prod
\Sh(\mathcal{C}/U_{n
,
i})$
of
Section
\ref{section
-
semi
-
representable}.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
This
follows
immediately
from
Lemma
\ref{lemma
-
sanity
-
check
}
and
the
product
decompositions
of
Section
\ref{section
-
semi
-
representable}.
\end{proof
}
\begin{remark}[Variant
for
over
an
object
]
\label{remark
-
augmentation
-
over
-
object
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
X
\in
\Ob(\mathcal{C})$.
Recall
that
we
have
a
category
$
\text{SR}(\mathcal{C
}
,
X
)
=
\text{SR}(\mathcal{C}/X)$
of
semi
-
representable
objects
over
$
X$
,
see
Remark
\ref{remark
-
semi
-
representable
-
over
-
object}.
We
may
apply
the
above
discussion
to
the
site
$
\mathcal{C}/X$.
Briefly
,
the
constructions
above
give
\begin{enumerate
}
\item
a
site
$
(
\mathcal{C}/K)_{total}$
for
a
simplicial
$
K$
object
of
$
\text{SR}(\mathcal{C
}
,
X)$
,
\item
a
localization
functor
$
j_{total
}
:
(
\mathcal{C}/K)_{total
}
\to
\mathcal{C}/X$
,
\item
localization
functors
$
j_n
:
\mathcal{C}/K_n
\to
\mathcal{C}/X$
,
\item
a
morphism
of
topoi
$
a
:
\Sh((\mathcal{C}/K)_{total
}
)
\to
\Sh(\mathcal{C}/X)$
,
\item
morphisms
of
topoi
$
a_n
:
\Sh(\mathcal{C}/K_n
)
\to
\Sh(\mathcal{C}/X)$
,
\item
a
functor
$
a^{Sh
}
_
!
:
\Sh((\mathcal{C}/K)_{total
}
)
\to
\Sh(\mathcal{C}/X)$
left
adjoint
to
$
a^{-1}$
,
and
\item
a
functor
$
a
_
!
:
\textit{Ab}((\mathcal{C}/K)_{total
}
)
\to
\textit{Ab}(\mathcal{C}/X)$
left
adjoint
to
$
a^{-1}$.
\end{enumerate
}
All
of
the
results
of
this
section
hold
in
this
setting
.
To
prove
this
one
replaces
the
site
$
\mathcal{C}$
everywhere
by
$
\mathcal{C}/X$.
\end{remark
}
\begin{remark}[Ringed
variant
]
\label{remark
-
augmentation
-
ringed
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Given
a
simplicial
semi
-
representable
object
$
K$
of
$
\mathcal{C}$
we
set
$
\mathcal{O
}
=
a^{-1}\mathcal{O}_\mathcal{C}$
,
where
$
a$
is
as
in
Lemmas
\ref{lemma
-
augmentation
-
simplicial
-
semi
-
representable
}
and
\ref{lemma
-
comparison}.
The
constructions
above
,
keeping
track
of
the
sheaves
of
rings
as
in
Remark
\ref{remark
-
semi
-
representable
-
ringed
}
,
give
\begin{enumerate
}
\item
a
ringed
site
$
(
(
\mathcal{C}/K)_{total
}
,
\mathcal{O})$
for
a
simplicial
$
K$
object
of
$
\text{SR}(\mathcal{C})$
,
\item
a
morphism
of
ringed
topoi
$
a
:
(
\Sh((\mathcal{C}/K)_{total
}
)
,
\mathcal{O
}
)
\to
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C})$
,
\item
morphisms
of
ringed
topoi
$
a_n
:
(
\Sh(\mathcal{C}/K_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C})$
,
\item
a
functor
$
a
_
!
:
\textit{Mod}(\mathcal{O
}
)
\to
\textit{Mod}(\mathcal{O}_\mathcal{C})$
left
adjoint
to
$
a^*$.
\end{enumerate
}
The
functor
$
a_!$
exists
(
but
in
general
is
not
exact
)
because
$
a^{-1}\mathcal{O}_\mathcal{C
}
=
\mathcal{O}$
and
we
can
replace
the
use
of
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
g
-
shriek
-
adjoint
}
in
the
proof
of
Lemma
\ref{lemma
-
comparison
}
by
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
lower
-
shriek
-
modules}.
As
discussed
in
Remark
\ref{remark
-
semi
-
representable
-
ringed
}
there
are
exact
functors
$
a_{n
!
}
:
\textit{Mod}(\mathcal{O}_n
)
\to
\textit{Mod}(\mathcal{O}_\mathcal{C})$
left
adjoint
to
$
a_n^*$.
Consequently
,
the
morphisms
$
a$
and
$
a_n$
are
flat
.
Remark
\ref{remark
-
semi
-
representable
-
ringed
}
implies
the
morphism
of
ringed
topoi
$
f_\varphi
:
(
\Sh(\mathcal{C}/K_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}/K_m
)
,
\mathcal{O}_m)$
for
$
\varphi
:
[
m
]
\to
[
n]$
is
flat
and
there
exists
an
exact
functor
$
f_{\varphi
!
}
:
\textit{Mod}(\mathcal{O}_n
)
\to
\textit{Mod}(\mathcal{O}_m)$
left
adjoint
to
$
f_\varphi^*$.
This
in
turn
implies
that
for
the
flat
morphism
of
ringed
topoi
$
g_n
:
(
\Sh(\mathcal{C}/K_n
)
,
\mathcal{O}_n
)
\to
(
\Sh((\mathcal{C}/K)_{total
}
)
,
\mathcal{O})$
the
functor
$
g_{n
!
}
:
\textit{Mod}(\mathcal{O}_n
)
\to
\textit{Mod}(\mathcal{O})$
left
adjoint
to
$
g_n^*$
is
exact
,
see
Lemma
\ref{lemma
-
exactness
-
g
-
shriek
-
modules}.
\end{remark
}
\begin{remark}[Ringed
variant
over
an
object
]
\label{remark
-
augmentation
-
ringed
-
over
-
object
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
X
\in
\Ob(\mathcal{C})$
and
denote
$
\mathcal{O}_X
=
\mathcal{O}_\mathcal{C}|_{\mathcal{C}/X}$.
Then
we
can
combine
the
constructions
given
in
Remarks
\ref{remark
-
augmentation
-
over
-
object
}
and
\ref{remark
-
augmentation
-
ringed
}
to
get
\begin{enumerate
}
\item
a
ringed
site
$
(
(
\mathcal{C}/K)_{total
}
,
\mathcal{O})$
for
a
simplicial
$
K$
object
of
$
\text{SR}(\mathcal{C
}
,
X)$
,
\item
a
morphism
of
ringed
topoi
$
a
:
(
\Sh((\mathcal{C}/K)_{total
}
)
,
\mathcal{O
}
)
\to
(
\Sh(\mathcal{C}/X
)
,
\mathcal{O}_X)$
,
\item
morphisms
of
ringed
topoi
$
a_n
:
(
\Sh(\mathcal{C}/K_n
)
,
\mathcal{O}_n
)
\to
(
\Sh(\mathcal{C}/X
)
,
\mathcal{O}_X)$
,
\item
a
functor
$
a
_
!
:
\textit{Mod}(\mathcal{O
}
)
\to
\textit{Mod}(\mathcal{O}_X)$
left
adjoint
to
$
a^*$.
\end{enumerate
}
Of
course
,
all
the
results
mentioned
in
Remark
\ref{remark
-
augmentation
-
ringed
}
hold
in
this
setting
as
well
.
\end{remark
}
\section{Cohomological
descent
for
hypercoverings
}
\label{section
-
cohomological
-
descent
-
hypercoverings
}
\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
In
this
section
we
assume
$
\mathcal{C}$
has
equalizers
and
fibre
products
.
We
let
$
K$
be
a
hypercovering TYPE
as
defined
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
hypercovering
-
variant}.
We
will
study
the
augmentation
$
$
a
:
\Sh((\mathcal{C}/K)_{total
}
)
\longrightarrow
\Sh(\mathcal{C
}
)
$
$
of
Section
\ref{section
-
simplicial
-
semi
-
representable}.
\begin{lemma
}
\label{lemma
-
hypercovering
-
descent
-
sheaves
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
K$
be
a
hypercovering
.
Then
\begin{enumerate
}
\item
$
a^{-1
}
:
\Sh(\mathcal{C
}
)
\to
\Sh((\mathcal{C}/K)_{total})$
is
fully
faithful
with
essential
image
the
cartesian
sheaves
of
sets
,
\item
$
a^{-1
}
:
\textit{Ab}(\mathcal{C
}
)
\to
\textit{Ab}((\mathcal{C}/K)_{total})$
is
fully
faithful
with
essential
image
the
cartesian
sheaves
of
abelian
groups
.
\end{enumerate
}
In
both
cases
$
a_*$
provides
the
quasi
-
inverse
functor
.
\end{lemma
}
\begin{proof
}
The
case
of
abelian
sheaves
follows
immediately
from
the
case
of
sheaves
of
sets
as
the
functor
$
a^{-1}$
commutes
with
products
.
In
the
rest
of
the
proof
we
work
with
sheaves
of
sets
.
Observe
that
$
a^{-1}\mathcal{F}$
is
cartesian
for
$
\mathcal{F}$
in
$
\Sh(\mathcal{C})$
by
Lemma
\ref{lemma
-
augmentation
-
cartesian
-
module}.
It
suffices
to
show
that
the
adjunction
map
$
\mathcal{F
}
\to
a_*a^{-1}\mathcal{F}$
is
an
isomorphism
$
\mathcal{F}$
in
$
\Sh(\mathcal{C})$
and
that
for
a
cartesian
sheaf
$
\mathcal{G}$
on
$
(
\mathcal{C}/K)_{total}$
the
adjunction
map
$
a^{-1}a_*\mathcal{G
}
\to
\mathcal{G}$
is
an
isomorphism
.
\medskip\noindent
Let
$
\mathcal{F}$
be
a
sheaf TYPE
on
$
\mathcal{C}$.
Recall
that
$
a_*a^{-1}\mathcal{F}$
is
the
equalizer
of
the
two
maps
$
a_{0
,
*
}
a_0^{-1}\mathcal{F
}
\to
a_{1
,
*
}
a_1^{-1}\mathcal{F}$
,
see
Lemma
\ref{lemma
-
comparison}.
By
Lemma
\ref{lemma
-
push
-
pull
-
localization
}
$
$
a_{0
,
*
}
a_0^{-1}\mathcal{F
}
=
\SheafHom(F(K_0)^\
#
,
\mathcal{F
}
)
\quad\text{and}\quad
a_{1
,
*
}
a_1^{-1}\mathcal{F
}
=
\SheafHom(F(K_1)^\
#
,
\mathcal{F
}
)
$
$
On
the
other
hand
,
we
know
that
$
$
\xymatrix
{
F(K_1)^\
#
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
F(K_0)^\
#
\ar[r
]
&
\text{final
object
}
*
\text
{
of
}
\Sh(\mathcal{C
}
)
}
$
$
is
a
coequalizer
diagram
in
sheaves
of
sets
by
definition
of
a
hypercovering
.
Thus
it
suffices
to
prove
that
$
\SheafHom(-
,
\mathcal{F})$
transforms
coequalizers
into
equalizers
which
is
immediate
from
the
construction
in
Sites
,
Section
\ref{sites
-
section
-
glueing
-
sheaves}.
\medskip\noindent
Let
$
\mathcal{G}$
be
a
cartesian TYPE
sheaf
on
$
(
\mathcal{C}/K)_{total}$.
We
will
show
that
$
\mathcal{G
}
=
a^{-1}\mathcal{F}$
for
some
sheaf
$
\mathcal{F}$
on
$
\mathcal{C}$.
This
will
finish
the
proof
because
then
$
a^{-1}a_*\mathcal{G
}
=
a^{-1}a_*a^{-1}\mathcal{F
}
=
a^{-1}\mathcal{F
}
=
\mathcal{G}$
by
the
result
of
the
previous
paragraph
.
Set
$
\mathcal{K}_n
=
F(K_n)^\#$
for
$
n
\geq
0$.
Then
we
have
maps
of
sheaves
$
$
\xymatrix
{
\mathcal{K}_2
\ar@<1ex>[r
]
\ar@<0ex>[r
]
\ar@<-1ex>[r
]
&
\mathcal{K}_1
\ar@<0.5ex>[r
]
\ar@<-0.5ex>[r
]
&
\mathcal{K}_0
}
$
$
coming
from
the
fact
that
$
K$
is
a
simplicial
semi
-
representable
object
.
The
fact
that
$
K$
is
a
hypercovering
means
that
$
$
\mathcal{K}_1
\to
\mathcal{K}_0
\times
\mathcal{K}_0
\quad\text{and}\quad
\mathcal{K}_2
\to
\left(\text{cosq}_1
(
\xymatrix
{
\mathcal{K}_1
\ar@<0.5ex>[r
]
\ar@<-0.5ex>[r
]
&
\mathcal{K}_0
\ar[l
]
}
)
\right)_2
$
$
are
surjective
maps
of
sheaves
.
Using
the
description
of
cartesian
sheaves
on
$
(
\mathcal{C}/K)_{total}$
given
in
Lemma
\ref{lemma
-
characterize
-
cartesian
}
and
using
the
description
of
$
\Sh(\mathcal{C}/K_n)$
in
Lemma
\ref{lemma
-
localize
-
compare
}
we
find
that
our
problem
can
be
entirely
formulated\footnote{Even
though
it
does
not
matter
what
the
precise
formulation
is
,
we
spell
it
out
:
the
problem
is
to
show
that
given
an
object
$
\mathcal{G}_0/\mathcal{K}_0
$
of
$
\Sh(\mathcal{C})/\mathcal{K}_0
$
and
an
isomorphism
$
$
\alpha
:
\mathcal{G}_0
\times_{\mathcal{K}_0
,
\mathcal{K}(\delta^1_1
)
}
\mathcal{K}_1
\to
\mathcal{G}_0
\times_{\mathcal{K}_0
,
\mathcal{K}(\delta^1_0
)
}
\mathcal{K}_1
$
$
over
$
\mathcal{K}_1
$
satisfying
a
cocycle
condtion
in
$
\Sh(\mathcal{C})/\mathcal{K}_2
$
,
there
exists
$
\mathcal{F}$
in
$
\Sh(\mathcal{C})$
and
an
isomorphism
$
\mathcal{F
}
\times
\mathcal{K}_0
\to
\mathcal{G}_0
$
over
$
\mathcal{K}_0
$
compatible
with
$
\alpha$.
}
in
terms
of
\begin{enumerate
}
\item
the
topos
$
\Sh(\mathcal{C})$
,
and
\item
the
simplicial
object
$
\mathcal{K}$
in
$
\Sh(\mathcal{C})$
whose
terms
are
$
\mathcal{K}_n$.
\end{enumerate
}
Thus
,
after
replacing
$
\mathcal{C}$
by
a
different
site
$
\mathcal{C}'$
as
in
Sites
,
Lemma
\ref{sites
-
lemma
-
topos
-
good
-
site
}
,
we
may
assume
$
\mathcal{C}$
has
all
finite
limits
,
the
topology
on
$
\mathcal{C}$
is
subcanonical
,
a
family
$
\{V_j
\to
V\}$
of
morphisms
of
$
\mathcal{C}$
is
a
covering
if
and
only
if
$
\coprod
h_{V_j
}
\to
V$
is
surjective
,
and
there
exists
a
simplicial
object
$
U$
of
$
\mathcal{C}$
such
that
$
\mathcal{K}_n
=
h_{U_n}$
as
simplicial
sheaves
.
Working
backwards
through
the
equivalences
we
may
assume
$
K_n
=
\{U_n\}$
for
all
$
n$.
\medskip\noindent
Let
$
X$
be
the
final
object
of
$
\mathcal{C}$.
Then
$
\{U_0
\to
X\}$
is
a
covering
,
$
\{U_1
\to
U_0
\times
U_0\}$
is
a
covering
,
and
$
\{U_2
\to
(
\text{cosq}_1
\text{sk}_1
U)_2\}$
is
a
covering
.
Let
us
use
$
d^n_i
:
U_n
\to
U_{n
-
1}$
and
$
s^n_j
:
U_n
\to
U_{n
+
1}$
the
morphisms
corresponding
to
$
\delta^n_i$
and
$
\sigma^n_j$
as
in
Simplicial
,
Definition
\ref{simplicial
-
definition
-
face
-
degeneracy}.
By
abuse
of
notation
,
given
a
morphism
$
c
:
V
\to
W$
of
$
\mathcal{C}$
we
denote
the
morphism
of
topoi
$
c
:
\Sh(\mathcal{C}/V
)
\to
\Sh(\mathcal{C}/W)$
by
the
same
letter
.
Now
$
\mathcal{G}$
is
given
by
a
sheaf
$
\mathcal{G}_0
$
on
$
\mathcal{C}/U_0
$
and
an
isomorphism
$
\alpha
:
(
d^1_1)^{-1}\mathcal{G}_0
\to
(
d^1_0)^{-1}\mathcal{G}_0
$
satisfying
the
cocycle
condition
on
$
\mathcal{C}/U_2
$
formulated
in
Lemma
\ref{lemma
-
characterize
-
cartesian}.
Since
$
\{U_2
\to
(
\text{cosq}_1
\text{sk}_1
U)_2\}$
is
a
covering
,
the
corresponding
pullback
functor
on
sheaves
is
faithful
(
small
detail
omitted
)
.
Hence
we
may
replace
$
U$
by
$
\text{cosk}_1
\text{sk}_1
U$
,
because
this
replaces
$
U_2
$
by
$
(
\text{cosq}_1
\text{sk}_1
U)_2
$
and
leaves
$
U_1
$
and
$
U_0
$
unchanged
.
Then
$
$
(
d^2_0
,
d^2_1
,
d^2_2
)
:
U_2
\to
U_1
\times
U_1
\times
U_1
$
$
is
a
monomorphism
whose
its
image
on
$
T$-valued
points
is
described
in
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
work
-
out}.
In
particular
,
there
is
a
morphism
$
c$
fitting
into
a
commutative
diagram
$
$
\xymatrix
{
U_1
\times_{(d^1_1
,
d^1_0
)
,
U_0
\times
U_0
,
(
d^1_1
,
d^1_0
)
}
U_1
\ar[d
]
\ar[rr]_c
&
&
U_2
\ar[d
]
\\
U_1
\times
U_1
\ar[rr]^{(\text{pr}_1
,
\text{pr}_2
,
s^0_0
\circ
d^1_1
\circ
\text{pr}_1
)
}
&
&
U_1
\times
U_1
\times
U_1
}
$
$
as
going
around
the
other
way
defines
a
point
of
$
U_2$.
Pulling
back
the
cocycle
condition
for
$
\alpha$
on
$
U_2
$
translates
into
the
condition
that
the
pullbacks
of
$
\alpha$
via
the
projections
to
$
U_1
\times_{(d^1_1
,
d^1_0
)
,
U_0
\times
U_0
,
(
d^1_1
,
d^1_0
)
}
U_1
$
are
the
same
as
the
pullback
of
$
\alpha$
via
$
s^0_0
\circ
d^1_1
\circ
\text{pr}_1
$
is
the
identity
map
(
namely
,
the
pullback
of
$
\alpha$
by
$
s^0_0
$
is
the
identity
)
.
By
Sites
,
Lemma
\ref{sites
-
lemma
-
glue
-
maps
}
this
means
that
$
\alpha$
comes
from
an
isomorphism
$
$
\alpha
'
:
\text{pr}_1^{-1}\mathcal{G}_0
\to
\text{pr}_2^{-1}\mathcal{G}_0
$
$
of
sheaves
on
$
\mathcal{C}/U_0
\times
U_0$.
Then
finally
,
the
morphism
$
U_2
\to
U_0
\times
U_0
\times
U_0
$
is
surjective
on
associated
sheaves
as
is
easily
seen
using
the
surjectivity
of
$
U_1
\to
U_0
\times
U_0
$
and
the
description
of
$
U_2
$
given
above
.
Therefore
$
\alpha'$
satisfies
the
cocycle
condition
on
$
U_0
\times
U_0
\times
U_0$.
The
proof
is
finished
by
an
application
of
Sites
,
Lemma
\ref{sites
-
lemma
-
mapping
-
property
-
glue
}
to
the
covering
$
\{U_0
\to
X\}$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
cech
-
complex
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
K$
be
a
hypercovering
.
The
{
\v
C}ech
complex
of
Lemma
\ref{lemma
-
augmentation
-
cech
-
complex
}
associated
to
$
a^{-1}\mathcal{F}$
$
$
a_{0
,
*
}
a_0^{-1}\mathcal{F
}
\to
a_{1
,
*
}
a_1^{-1}\mathcal{F
}
\to
a_{2
,
*
}
a_2^{-1}\mathcal{F
}
\to
\ldots
$
$
is
equal
to
the
complex
$
\SheafHom(s(\mathbf{Z}_{F(K)}^\
#
)
,
\mathcal{F})$.
Here
$
s(\mathbf{Z}_{F(K)}^\#)$
is
as
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
homology}.
\end{lemma
}
\begin{proof
}
By
Lemma
\ref{lemma
-
push
-
pull
-
localization
}
we
have
$
$
a_{n
,
*
}
a_n^{-1}\mathcal{F
}
=
\SheafHom'(F(K_n)^\
#
,
\mathcal{F
}
)
$
$
where
$
\SheafHom'$
is
as
in
Sites
,
Section
\ref{sites
-
section
-
glueing
-
sheaves}.
The
boundary
maps
in
the
complex
of
Lemma
\ref{lemma
-
augmentation
-
cech
-
complex
}
come
from
the
simplicial
structure
.
Thus
the
equality
of
complexes
comes
from
the
canonical
identifications
$
\SheafHom'(\mathcal{G
}
,
\mathcal{F
}
)
=
\SheafHom(\mathbf{Z}_\mathcal{G
}
,
\mathcal{F})$
for
$
\mathcal{G}$
in
$
\Sh(\mathcal{C})$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
descent
-
bounded
-
abelian
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
K$
be
a
hypercovering
.
For
$
E
\in
D^+(\mathcal{C})$
the
map
$
$
E
\longrightarrow
Ra_*a^{-1}E
$
$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
First
,
let
$
\mathcal{I}$
be
an
injective TYPE
abelian
sheaf
on
$
\mathcal{C}$.
Then
the
spectral
sequence
of
Lemma
\ref{lemma
-
augmentation
-
spectral
-
sequence
}
for
the
sheaf
$
a^{-1}\mathcal{I}$
degenerates
as
$
(
a^{-1}\mathcal{I})_p
=
a_p^{-1}\mathcal{I}$
is
injective
by
Lemma
\ref{lemma
-
localize
-
injective}.
Thus
the
complex
$
$
a_{0
,
*
}
a_0^{-1}\mathcal{I
}
\to
a_{1
,
*
}
a_1^{-1}\mathcal{I
}
\to
a_{2
,
*
}
a_2^{-1}\mathcal{I
}
\to\ldots
$
$
computes
$
Ra_*a^{-1}\mathcal{I}$.
By
Lemma
\ref{lemma
-
hypercovering
-
cech
-
complex
}
this
is
equal
to
the
complex
$
\SheafHom(s(\mathbf{Z}_{F(K)}^\
#
)
,
\mathcal{I})$.
Because
$
K$
is
a
hypercovering
,
we
see
that
$
s(\mathbf{Z}_{F(K)}^\#)$
is
exact
in
degrees
$
>
0
$
by
Hypercoverings
,
Lemma
\ref{hypercovering
-
lemma
-
acyclic
-
hypercover
-
sheaves
}
applied
to
the
simplicial
presheaf
$
F(K)$.
Since
$
\mathcal{I}$
is
injective
,
the
functor
$
\SheafHom(-
,
\mathcal{I})$
is
exact
and
we
conclude
that
$
\SheafHom(s(\mathbf{Z}_{F(K)}^\
#
)
,
\mathcal{I})$
is
exact
in
positive
degrees
.
We
conclude
that
$
R^pa_*a^{-1}\mathcal{I
}
=
0
$
for
$
p
>
0$.
On
the
other
hand
,
we
have
$
\mathcal{I
}
=
a_*a^{-1}\mathcal{I}$
by
Lemma
\ref{lemma
-
hypercovering
-
descent
-
sheaves}.
\medskip\noindent
Next
,
let
$
E$
be
as
in
the
statement
of
the
lemma
.
Choose
a
bounded
below
complex
$
\mathcal{I}^\bullet$
of
injectives
representing
$
E$.
By
the
result
of
the
first
paragraph
and
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
$
Ra_*a^{-1}\mathcal{I}^\bullet$
is
computed
by
the
complex
$
a_*a^{-1}\mathcal{I}^\bullet
=
\mathcal{I}^\bullet$
and
we
conclude
the
lemma
is
true
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
hypercovering
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
K$
be
a
hypercovering
.
Then
we
have
a
canonical
isomorphism
$
$
R\Gamma(\mathcal{C
}
,
E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
a^{-1}E
)
$
$
for
$
E
\in
D^+(\mathcal{C})$.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
abelian
}
because
$
R\Gamma((\mathcal{C}/K)_{total
}
,
-
)
=
R\Gamma(\mathcal{C
}
,
-
)
\circ
Ra_*$
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
equivalence
-
bounded
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
K$
be
a
hypercovering
.
Let
$
\mathcal{A
}
\subset
\textit{Ab}((\mathcal{C}/K)_{total})$
denote
the
weak
Serre
subcategory
of
cartesian
abelian
sheaves
.
Then
the
functor
$
a^{-1}$
defines
an
equivalence
$
$
D^+(\mathcal{C
}
)
\longrightarrow
D_\mathcal{A}^+((\mathcal{C}/K)_{total
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
Observe
that
$
\mathcal{A}$
is
a
weak
Serre
subcategory
by
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules}.
The
equivalence
is
a
formal
consequence
of
the
results
obtained
so
far
.
Use
Lemmas
\ref{lemma
-
equivalence
-
bounded
}
,
\ref{lemma
-
hypercovering
-
descent
-
sheaves
}
,
and
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
abelian}.
\end{proof
}
\noindent
We
urge
the
reader
to
skip
the
following
remark
.
\begin{remark
}
\label{remark
-
compare
-
cohomology
-
hypercovering
-
presheaf
}
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
\mathcal{G}$
be
a
presheaf TYPE
of
sets
on
$
\mathcal{C}$.
If
$
\mathcal{C}$
has
equalizers
and
fibre
products
,
then
we
've
defined
the
notion
of
a
hypercovering
of
$
\mathcal{G}$
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
hypercovering
-
variant}.
We
claim
that
all
the
results
in
this
section
have
a
valid
counterpart
in
this
setting
.
To
see
this
,
define
the
localization
$
\mathcal{C}/\mathcal{G}$
of
$
\mathcal{C}$
at
$
\mathcal{G}$
exactly
as
in
Sites
,
Lemma
\ref{sites
-
lemma
-
localize
-
topos
-
site
}
(
which
is
stated
only
for
sheaves
;
the
topos
$
\Sh(\mathcal{C}/\mathcal{G})$
is
equal
to
the
localization
of
the
topos
$
\Sh(\mathcal{C})$
at
the
sheaf
$
\mathcal{G}^\#$
)
.
Then
the
reader
easily
shows
that
the
site
$
\mathcal{C}/\mathcal{G}$
has
fibre
products
and
equalizers
and
that
a
hypercovering
of
$
\mathcal{G}$
in
$
\mathcal{C}$
is
the
same
thing
as
a
hypercovering
for
the
site
$
\mathcal{C}/\mathcal{G}$.
Hence
replacing
the
site
$
\mathcal{C}$
by
$
\mathcal{C}/\mathcal{G}$
in
the
lemmas
on
hypercoverings
above
we
obtain
proofs
of
the
corresponding
results
for
hypercoverings
of
$
\mathcal{G}$.
Example
:
for
a
hypercovering
$
K$
of
$
\mathcal{G}$
we
have
$
$
R\Gamma(\mathcal{C}/\mathcal{G
}
,
E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
a^{-1}E
)
$
$
for
$
E
\in
D^+(\mathcal{C}/\mathcal{G})$
where
$
a
:
\Sh((\mathcal{C}/K)_{total
}
)
\to
\Sh(\mathcal{C}/\mathcal{G})$
is
the
canonical
augmentation
.
This
is
Lemma
\ref{lemma
-
compare
-
cohomology
-
hypercovering}.
Let
$
R\Gamma(\mathcal{G
}
,
-
)
:
D(\mathcal{C
}
)
\to
D(\textit{Ab})$
be
defined
as
the
derived
functor
of
the
functor
$
H^0(\mathcal{G
}
,
-
)
=
H^0(\mathcal{G}^\
#
,
-)$
discussed
in
Hypercoverings
,
Section
\ref{hypercovering
-
section
-
hypercoverings
-
verdier
}
and
Cohomology
on
Sites
,
Section
\ref{sites
-
cohomology
-
section
-
limp}.
We
have
$
$
R\Gamma(\mathcal{G
}
,
E
)
=
R\Gamma(\mathcal{C}/\mathcal{G
}
,
j^{-1}E
)
$
$
by
the
analogue
of
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
for
the
localization
fuctor
$
j
:
\mathcal{C}/\mathcal{G
}
\to
\mathcal{C}$.
Putting
everything
together
we
obtain
$
$
R\Gamma(\mathcal{G
}
,
E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
a^{-1}j^{-1}E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
g^{-1}E
)
$
$
for
$
E
\in
D^+(\mathcal{C})$
where
$
g
:
\Sh((\mathcal{C}/K)_{total
}
)
\to
\Sh(\mathcal{C})$
is
the
composition
of
$
a$
and
$
j$.
\end{remark
}
\section{Cohomological
descent
for
hypercoverings
:
modules
}
\label{section
-
cohomological
-
descent
-
hypercoverings
-
modules
}
\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
. TYPE
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Assume
$
\mathcal{C}$
has
equalizers
and
fibre
products
and
let
$
K$
be
a
hypercovering TYPE
as
defined
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
hypercovering
-
variant}.
We
will
study
cohomological
descent
for
the
augmentation
$
$
a
:
(
\Sh((\mathcal{C}/K)_{total
}
)
,
\mathcal{O
}
)
\longrightarrow
(
\Sh(\mathcal{C
}
)
,
\mathcal{O}_\mathcal{C
}
)
$
$
of
Remark
\ref{remark
-
augmentation
-
ringed}.
\begin{lemma
}
\label{lemma
-
hypercovering
-
descent
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
.
With
notation
as
above
$
$
a^
*
:
\textit{Mod}(\mathcal{O}_\mathcal{C
}
)
\to
\textit{Mod}(\mathcal{O
}
)
$
$
is
fully
faithful
with
essential
image
the
cartesian
$
\mathcal{O}$-modules
.
The
functor
$
a_*$
provides
the
quasi
-
inverse
.
\end{lemma
}
\begin{proof
}
Since
$
a^{-1}\mathcal{O}_\mathcal{C
}
=
\mathcal{O}$
we
have
$
a^
*
=
a^{-1}$.
Hence
the
lemma
follows
immediately
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
sheaves}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
descent
-
bounded
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
.
For
$
E
\in
D^+(\mathcal{O}_\mathcal{C})$
the
map
$
$
E
\longrightarrow
Ra_*La^*E
$
$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
Since
$
a^{-1}\mathcal{O}_\mathcal{C
}
=
\mathcal{O}$
we
have
$
La^
*
=
a^
*
=
a^{-1}$.
Moreover
$
Ra_*$
agrees
with
$
Ra_*$
on
abelian
sheaves
,
see
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
modules
-
abelian
-
unbounded}.
Hence
the
lemma
follows
immediately
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
abelian}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
hypercovering
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
.
Then
we
have
a
canonical
isomorphism
$
$
R\Gamma(\mathcal{C
}
,
E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
La^*E
)
$
$
for
$
E
\in
D^+(\mathcal{O}_\mathcal{C})$.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
modules
}
because
$
R\Gamma((\mathcal{C}/K)_{total
}
,
-
)
=
R\Gamma(\mathcal{C
}
,
-
)
\circ
Ra_*$
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray
}
or
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
Leray
-
unbounded}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
equivalence
-
bounded
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
equalizers
and
fibre
products
.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
.
Let
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O})$
denote
the
weak
Serre
subcategory
of
cartesian
$
\mathcal{O}$-modules
.
Then
the
functor
$
La^*$
defines
an
equivalence
$
$
D^+(\mathcal{O}_\mathcal{C
}
)
\longrightarrow
D_\mathcal{A}^+(\mathcal{O
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
Observe
that
$
\mathcal{A}$
is
a
weak
Serre
subcategory
by
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules
}
(
the
required
hypotheses
hold
by
the
discussion
in
Remark
\ref{remark
-
augmentation
-
ringed
}
)
.
The
equivalence
is
a
formal
consequence
of
the
results
obtained
so
far
.
Use
Lemmas
\ref{lemma
-
equivalence
-
bounded
}
,
\ref{lemma
-
hypercovering
-
descent
-
modules
}
,
and
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
modules}.
\end{proof
}
\section{Cohomological
descent
for
hypercoverings
of
an
object
}
\label{section
-
cohomological
-
descent
-
hypercoverings
-
X
}
\noindent
In
this
section
we
assume
$
\mathcal{C}$
has
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
We
let
$
K$
be
a
hypercovering TYPE
of
$
X$
as
defined
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
hypercovering}.
We
will
study
the
augmentation
$
$
a
:
\Sh((\mathcal{C}/K)_{total
}
)
\longrightarrow
\Sh(\mathcal{C}/X
)
$
$
of
Remark
\ref{remark
-
augmentation
-
over
-
object}.
Observe
that
$
\mathcal{C}/X$
is
a
site
which
has
equalizers
and
fibre
products
and
that
$
K$
is
a
hypercovering
for
the
site
$
\mathcal{C}/X$\footnote{The
converse
may
not
be
the
case
,
i.e.
,
if
$
K$
is
a
simplicial
object
of
$
\text{SR}(\mathcal{C
}
,
X
)
=
\text{SR}(\mathcal{C}/X)$
which
defines
a
hypercovering
for
the
site
$
\mathcal{C}/X$
as
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
hypercovering
-
variant
}
,
then
it
may
not
be
true
that
$
K$
defines
a
hypercovering
of
$
X$.
For
example
,
if
$
K_0
=
\{U_{0
,
i}\}_{i
\in
I_0}$
then
the
latter
condition
guarantees
$
\{U_{0
,
i
}
\to
X\}$
is
a
covering
of
$
\mathcal{C}$
whereas
the
former
condition
only
requires
$
\coprod
h_{U_{0
,
i}}^\
#
\to
h_X^\#$
to
be
a
surjective TYPE
map
of
sheaves
.
}
by
Hypercoverings
,
Lemma
\ref{hypercovering
-
lemma
-
hypercovering
-
F}.
This
means
that
every
single
result
proved
for
hypercoverings
in
Section
\ref{section
-
cohomological
-
descent
-
hypercoverings
}
has
an
immediate
analogue
in
the
situation
in
this
section
.
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
descent
-
sheaves
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
Then
\begin{enumerate
}
\item
$
a^{-1
}
:
\Sh(\mathcal{C}/X
)
\to
\Sh((\mathcal{C}/K)_{total})$
is
fully
faithful
with
essential
image
the
cartesian
sheaves
of
sets
,
\item
$
a^{-1
}
:
\textit{Ab}(\mathcal{C}/X
)
\to
\textit{Ab}((\mathcal{C}/K)_{total})$
is
fully
faithful
with
essential
image
the
cartesian
sheaves
of
abelian
groups
.
\end{enumerate
}
In
both
cases
$
a_*$
provides
the
quasi
-
inverse
functor
.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
over
-
object
}
and
\ref{remark
-
augmentation
-
over
-
object
}
and
the
discussion
in
the
introduction
to
this
section
this
follows
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
sheaves}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
descent
-
bounded
-
abelian
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
product
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
For
$
E
\in
D^+(\mathcal{C}/X)$
the
map
$
$
E
\longrightarrow
Ra_*a^{-1}E
$
$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
over
-
object
}
and
\ref{remark
-
augmentation
-
over
-
object
}
and
the
discussion
in
the
introduction
to
this
section
this
follows
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
abelian}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
hypercovering
-
X
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
Then
we
have
a
canonical
isomorphism
$
$
R\Gamma(X
,
E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
a^{-1}E
)
$
$
for
$
E
\in
D^+(\mathcal{C}/X)$.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
over
-
object
}
and
\ref{remark
-
augmentation
-
over
-
object
}
this
follows
from
Lemma
\ref{lemma
-
compare
-
cohomology
-
hypercovering}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
equivalence
-
bounded
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
Let
$
\mathcal{A
}
\subset
\textit{Ab}((\mathcal{C}/K)_{total})$
denote
the
weak
Serre
subcategory
of
cartesian
abelian
sheaves
.
Then
the
functor
$
a^{-1}$
defines
an
equivalence
$
$
D^+(\mathcal{C}/X
)
\longrightarrow
D_\mathcal{A}^+((\mathcal{C}/K)_{total
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
over
-
object
}
and
\ref{remark
-
augmentation
-
over
-
object
}
this
follows
from
Lemma
\ref{lemma
-
hypercovering
-
equivalence
-
bounded}.
\end{proof
}
\section{Cohomological
descent
for
hypercoverings
of
an
object
:
modules
}
\label{section
-
cohomological
-
descent
-
hypercoverings
-
X
-
modules
}
\noindent
In
this
section
we
assume
$
\mathcal{C}$
has
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
We
let
$
K$
be
a
hypercovering TYPE
of
$
X$
as
defined
in
Hypercoverings
,
Definition
\ref{hypercovering
-
definition
-
hypercovering}.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}$.
Set
$
\mathcal{O}_X
=
\mathcal{O}_\mathcal{C}|_{\mathcal{C}/X}$.
We
will
study
the
augmentation
$
$
a
:
(
\Sh((\mathcal{C}/K)_{total
}
)
,
\mathcal{O
}
)
\longrightarrow
(
\Sh(\mathcal{C}/X
)
,
\mathcal{O}_X
)
$
$
of
Remark
\ref{remark
-
augmentation
-
ringed
-
over
-
object}.
Observe
that
$
\mathcal{C}/X$
is
a
site
which
has
equalizers
and
fibre
products
and
that
$
K$
is
a
hypercovering
for
the
site
$
\mathcal{C}/X$.
Therefore
the
results
in
this
section
are
immediate
consequences
of
the
corresponding
results
in
Section
\ref{section
-
cohomological
-
descent
-
hypercoverings
-
modules}.
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
descent
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
With
notation
as
above
$
$
a^
*
:
\textit{Mod}(\mathcal{O}_X
)
\to
\textit{Mod}(\mathcal{O
}
)
$
$
is
fully
faithful
with
essential
image
the
cartesian
$
\mathcal{O}$-modules
.
The
functor
$
a_*$
provides
the
quasi
-
inverse
.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
ringed
-
over
-
object
}
and
\ref{remark
-
augmentation
-
ringed
-
over
-
object
}
and
the
discussion
in
the
introduction
to
this
section
this
follows
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
descent
-
bounded
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
For
$
E
\in
D^+(\mathcal{O}_X)$
the
map
$
$
E
\longrightarrow
Ra_*La^*E
$
$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
ringed
-
over
-
object
}
and
\ref{remark
-
augmentation
-
ringed
-
over
-
object
}
and
the
discussion
in
the
introduction
to
this
section
this
follows
from
Lemma
\ref{lemma
-
hypercovering
-
descent
-
bounded
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
hypercovering
-
X
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
Then
we
have
a
canonical
isomorphism
$
$
R\Gamma(X
,
E
)
=
R\Gamma((\mathcal{C}/K)_{total
}
,
La^*E
)
$
$
for
$
E
\in
D^+(\mathcal{O}_\mathcal{C})$.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
ringed
-
over
-
object
}
and
\ref{remark
-
augmentation
-
ringed
-
over
-
object
}
and
the
discussion
in
the
introduction
to
this
section
this
follows
from
Lemma
\ref{lemma
-
compare
-
cohomology
-
hypercovering
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
equivalence
-
bounded
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
K$
be
a
hypercovering TYPE
of
$
X$.
Let
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O})$
denote
the
weak
Serre
subcategory
of
cartesian
$
\mathcal{O}$-modules
.
Then
the
functor
$
La^*$
defines
an
equivalence
$
$
D^+(\mathcal{O}_X
)
\longrightarrow
D_\mathcal{A}^+(\mathcal{O
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
Via
Remarks
\ref{remark
-
semi
-
representable
-
ringed
-
over
-
object
}
and
\ref{remark
-
augmentation
-
ringed
-
over
-
object
}
and
the
discussion
in
the
introduction
to
this
section
this
follows
from
Lemma
\ref{lemma
-
hypercovering
-
equivalence
-
bounded
-
modules}.
\end{proof
}
\section{Hypercovering
by
a
simplicial
object
of
the
site
}
\label{section
-
hypercovering
}
\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
let
$
X
\in
\Ob(\mathcal{C})$.
In
this
section
we
elucidate
the
results
of
Section
\ref{section
-
cohomological
-
descent
-
hypercoverings
-
X
}
in
the
case
that
our
hypercovering
is
given
by
a
simplicial
object
of
the
site
.
Let
$
U$
be
a
simplicial TYPE
object
of
$
\mathcal{C}$.
As
usual
we
denote
$
U_n
=
U([n])$
and
$
f_\varphi
:
U_n
\to
U_m$
the
morphism
$
f_\varphi
=
U(\varphi)$
corresponding
to
$
\varphi
:
[
m
]
\to
[
n]$.
Assume
we
have
an
augmentation
$
$
a
:
U
\to
X
$
$
From
this
we
obtain
a
simplicial
site
$
(
\mathcal{C}/U)_{total}$
and
an
augmentation
morphism
$
$
a
:
\Sh((\mathcal{C}/U)_{total
}
)
\longrightarrow
\Sh(\mathcal{C}/X
)
$
$
by
thinking
of
$
U$
as
a
simiplical
semi
-
representable
object
of
$
\mathcal{C}/X$
whose
degree
$
n$
part
is
the
singleton
element
$
\{U_n
/
X\}$
and
applying
the
constructions
in
Remark
\ref{remark
-
augmentation
-
over
-
object}.
\medskip\noindent
An
object
of
the
site
$
(
\mathcal{C}/U)_{total}$
is
given
by
a
$
V
/
U_n$
and
a
morphism
$
(
\varphi
,
f
)
:
V
/
U_n
\to
W
/
U_m$
is
given
by
a
morphism
$
\varphi
:
[
m
]
\to
[
n]$
in
$
\Delta$
and
a
morphism
$
f
:
V
\to
W$
such
that
the
diagram
$
$
\xymatrix
{
V
\ar[r]_f
\ar[d
]
&
W
\ar[d
]
\\
U_n
\ar[r]^{f_\varphi
}
&
U_m
}
$
$
is
commutative
.
The
morphism
of
topoi
$
a$
is
given
by
the
cocontinuous
functor
$
V
/
U_n
\mapsto
V
/
X$.
That
's
all
folks
!
\medskip\noindent
Let
us
say
that
the
augmentation
$
a
:
U
\to
X$
is
a
{
\it
hypercovering
of
$
X$
in
$
\mathcal{C}$
}
if
the
following
hold
\begin{enumerate
}
\item
$
\{U_0
\to
X\}$
is
a
covering
of
$
\mathcal{C}$
,
\item
$
\{U_1
\to
U_0
\times_X
U_0\}$
is
a
covering
of
$
\mathcal{C}$
,
\item
$
\{U_{n
+
1
}
\to
(
\text{cosk}_n\text{sk}_n
U)_{n
+
1}\}$
is
a
covering
of
$
\mathcal{C}$
for
$
n
\geq
1$.
\end{enumerate
}
The
category
$
\mathcal{C}/X$
has
all
connected
finite
limits
,
hence
the
coskeleta
used
in
the
formulation
above
exist
.
Of
course
,
we
see
that
$
U$
is
a
hypercovering
of
$
X$
in
$
\mathcal{C}$
if
and
only
if
the
simplicial
semi
-
representable
object
$
\{U_n\}$
is
a
hypercovering
of
$
X$
in
the
sense
of
Section
\ref{section
-
cohomological
-
descent
-
hypercoverings
-
X}.
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
simple
-
descent
-
sheaves
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
product
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
a
:
U
\to
X$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$
as
defined
above
.
Then
\begin{enumerate
}
\item
$
a^{-1
}
:
\Sh(\mathcal{C}/X
)
\to
\Sh((\mathcal{C}/U)_{total})$
is
fully
faithful
with
essential
image
the
cartesian
sheaves
of
sets
,
\item
$
a^{-1
}
:
\textit{Ab}(\mathcal{C}/X
)
\to
\textit{Ab}((\mathcal{C}/U)_{total})$
is
fully
faithful
with
essential
image
the
cartesian
sheaves
of
abelian
groups
.
\end{enumerate
}
In
both
cases
$
a_*$
provides
the
quasi
-
inverse
functor
.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
hypercovering
-
X
-
descent
-
sheaves}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
simple
-
descent
-
bounded
-
abelian
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
product
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
a
:
U
\to
X$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$
as
defined
above
.
For
$
E
\in
D^+(\mathcal{C}/X)$
the
map
$
$
E
\longrightarrow
Ra_*a^{-1}E
$
$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
hypercovering
-
X
-
descent
-
bounded
-
abelian}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
hypercovering
-
X
-
simple
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
a
:
U
\to
X$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$
as
defined
above
.
Then
we
have
a
canonical
isomorphism
$
$
R\Gamma(X
,
E
)
=
R\Gamma((\mathcal{C}/U)_{total
}
,
a^{-1}E
)
$
$
for
$
E
\in
D^+(\mathcal{C}/X)$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
compare
-
cohomology
-
hypercovering
-
X}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
simple
-
equivalence
-
bounded
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
product
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
a
:
U
\to
X$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$
as
defined
above
.
Let
$
\mathcal{A
}
\subset
\textit{Ab}((\mathcal{C}/U)_{total})$
denote
the
weak
Serre
subcategory
of
cartesian
abelian
sheaves
.
Then
the
functor
$
a^{-1}$
defines
an
equivalence
$
$
D^+(\mathcal{C}/X
)
\longrightarrow
D_\mathcal{A}^+((\mathcal{C}/U)_{total
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
hypercovering
-
X
-
equivalence
-
bounded
}
\end{proof
}
\begin{lemma
}
\label{lemma
-
sr
-
when
-
fibre
-
products
}
Let
$
U$
be
a
simplicial TYPE
object
of
a
site
$
\mathcal{C}$
with
fibre
products
.
\begin{enumerate
}
\item
$
\mathcal{C}/U$
has
the
structure
of
a
simplicial
object
in
the
category
whose
objects
are
sites
and
whose
morphisms
are
morphisms
of
sites
,
\item
the
construction
of
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
applied
to
the
structure
in
(
1
)
reproduces
the
site
$
(
\mathcal{C}/U)_{total}$
above
,
\item
if
$
a
:
U
\to
X$
is
an
augmentation
,
then
$
a_0
:
\mathcal{C}/U_0
\to
\mathcal{C}/X$
is
an
augmentation
as
in
Remark
\ref{remark
-
augmentation
-
site
}
part
(
A
)
and
gives
the
same
morphism
of
topoi
$
a
:
\Sh((\mathcal{C}/U)_{total
}
)
\to
\Sh(\mathcal{C}/X)$
as
the
one
above
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Given
a
morphism
of
objects
$
V
\to
W$
of
$
\mathcal{C}$
the
localization
morphism
$
j
:
\mathcal{C}/V
\to
\mathcal{C}/W$
is
a
left
adjoint
to
the
base
change
functor
$
\mathcal{C}/W
\to
\mathcal{C}/V$.
The
base
change
functor
is
continuous
and
induces
the
same
morphism
of
topoi
as
$
j$.
See
Sites
,
Lemma
\ref{sites
-
lemma
-
relocalize
-
given
-
fibre
-
products}.
This
proves
(
1
)
.
\medskip\noindent
Part
(
2
)
holds
because
a
morphism
$
V
/
U_n
\to
W
/
U_m$
of
the
category
constructed
in
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
is
a
morphism
$
V
\to
W
\times_{U_m
,
f_\varphi
}
U_n$
over
$
U_n$
which
is
the
same
thing
as
a
morphism
$
f
:
V
\to
W$
over
the
morphism
$
f_\varphi
:
U_n
\to
U_m$
,
i.e.
,
the
same
thing
as
a
morphism
in
the
category
$
(
\mathcal{C}/U)_{total}$
defined
above
.
Equality
of
sets
of
coverings
is
immediate
from
the
definition
.
\medskip\noindent
We
omit
the
proof
of
(
3
)
.
\end{proof
}
\section{Hypercovering
by
a
simplicial
object
of
the
site
:
modules
}
\label{section
-
hypercovering
-
modules
}
\noindent
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
on
$
\mathcal{C}$.
Let
$
U
\to
X$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$
as
defined
in
Section
\ref{section
-
hypercovering}.
In
this
section
we
study
the
augmentation
$
$
a
:
(
\Sh((\mathcal{C}/U)_{total
}
)
,
\mathcal{O
}
)
\longrightarrow
(
\Sh(\mathcal{C}/X
)
,
\mathcal{O}_X
)
$
$
we
obtain
by
thinking
of
$
U$
as
a
simiplical
semi
-
representable
object
of
$
\mathcal{C}/X$
whose
degree
$
n$
part
is
the
singleton
element
$
\{U_n
/
X\}$
and
applying
the
constructions
in
Remark
\ref{remark
-
augmentation
-
ringed
-
over
-
object}.
Thus
all
the
results
in
this
section
are
immediate
consequences
of
the
corresponding
results
in
Section
\ref{section
-
cohomological
-
descent
-
hypercoverings
-
X
-
modules}.
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
simple
-
descent
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
U$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$.
With
notation
as
above
$
$
a^
*
:
\textit{Mod}(\mathcal{O}_X
)
\to
\textit{Mod}(\mathcal{O
}
)
$
$
is
fully
faithful
with
essential
image
the
cartesian
$
\mathcal{O}$-modules
.
The
functor
$
a_*$
provides
the
quasi
-
inverse
.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
hypercovering
-
X
-
descent
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
simple
-
descent
-
bounded
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
U$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$.
For
$
E
\in
D^+(\mathcal{O}_X)$
the
map
$
$
E
\longrightarrow
Ra_*La^*E
$
$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
hypercovering
-
X
-
descent
-
bounded
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
hypercovering
-
X
-
simple
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
U$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$.
Then
we
have
a
canonical
isomorphism
$
$
R\Gamma(X
,
E
)
=
R\Gamma((\mathcal{C}/U)_{total
}
,
La^*E
)
$
$
for
$
E
\in
D^+(\mathcal{O}_\mathcal{C})$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
compare
-
cohomology
-
hypercovering
-
X
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
hypercovering
-
X
-
simple
-
equivalence
-
bounded
-
modules
}
Let
$
\mathcal{C}$
be
a
site TYPE
with
fibre
products
and
$
X
\in
\Ob(\mathcal{C})$.
Let
$
\mathcal{O}_\mathcal{C}$
be
a
sheaf TYPE
of
rings
.
Let
$
U$
be
a
hypercovering TYPE
of
$
X$
in
$
\mathcal{C}$.
Let
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O})$
denote
the
weak
Serre
subcategory
of
cartesian
$
\mathcal{O}$-modules
.
Then
the
functor
$
La^*$
defines
an
equivalence
$
$
D^+(\mathcal{O}_X
)
\longrightarrow
D_\mathcal{A}^+(\mathcal{O
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
hypercovering
-
X
-
equivalence
-
bounded
-
modules}.
\end{proof
}
\section{Unbounded
cohomological
descent
for
hypercoverings
}
\label{section
-
unbounded
-
cohomological
-
descent
}
\noindent
In
this
section
we
discuss
unbounded
cohomological
descent
.
The
results
themselves
will
be
immediate
consequences
of
our
results
on
bounded
cohomological
descent
in
the
previous
sections
and
Lemmas
\ref{lemma
-
equivalence
-
unbounded
-
one
}
and/or
\ref{lemma
-
equivalence
-
unbounded
-
two
}
;
the
real
work
lies
in
setting
up
notation
and
choosing
appropriate
assumptions
.
Our
discussion
is
motivated
by
the
discussion
in
\cite{six
-
I
}
although
the
details
are
a
good
bit
different
.
\medskip\noindent
Let
$
(
\mathcal{C
}
,
\mathcal{O}_\mathcal{C})$
be
a
ringed TYPE
site
.
Assume
given
for
every
object
$
U$
of
$
\mathcal{C}$
a
weak
Serre
subcategory
$
\mathcal{A}_U
\subset
\textit{Mod}(\mathcal{O}_U)$
satisfying
the
following
properties
\begin{enumerate
}
\item
\label{item
-
restriction
}
given
a
morphism
$
U
\to
V$
of
$
\mathcal{C}$
the
restriction
functor
$
\textit{Mod}(\mathcal{O}_V
)
\to
\textit{Mod}(\mathcal{O}_U)$
sends
$
\mathcal{A}_V$
into
$
\mathcal{A}_U$
,
\item
\label{item
-
local
}
given
a
covering
$
\{U_i
\to
U\}_{i
\in
I}$
of
$
\mathcal{C}$
an
object
$
\mathcal{F}$
of
$
\textit{Mod}(\mathcal{O}_U)$
is
in
$
\mathcal{A}_U$
if
and
only
if
the
restriction
of
$
\mathcal{F}$
to
$
\mathcal{C}/U_i$
is
in
$
\mathcal{A}_{U_i}$
for
all
$
i
\in
I$.
\item
\label{item
-
bounded
-
dimension
}
there
exists
a
subset
$
\mathcal{B
}
\subset
\Ob(\mathcal{C})$
such
that
\begin{enumerate
}
\item
every
object
of
$
\mathcal{C}$
has
a
covering
whose
members
are
in
$
\mathcal{B}$
,
and
\item
for
every
$
V
\in
\mathcal{B}$
there
exists
an
integer
$
d_V$
and
a
cofinal
system
$
\text{Cov}_V$
of
coverings
of
$
V$
such
that
$
$
H^p(V_i
,
\mathcal{F
}
)
=
0
\text
{
for
}
\{V_i
\to
V\
}
\in
\text{Cov}_V,\
p
>
d_V
,
\text
{
and
}
\mathcal{F
}
\in
\Ob(\mathcal{A}_V
)
$
$
\end{enumerate
}
\end{enumerate
}
Note
that
we
require
this
to
be
true
for
$
\mathcal{F}$
in
$
\mathcal{A}_V$
and
not
just
for
``
global
''
objects
(
and
thus
it
is
stronger
than
the
condition
imposed
in
Cohomology
on
Sites
,
Situation
\ref{sites
-
cohomology
-
situation
-
olsson
-
laszlo
}
)
.
In
this
situation
,
there
is
a
weak
Serre
subcategory
$
\mathcal{A
}
\subset
\textit{Mod}(\mathcal{O}_\mathcal{C})$
consisting
of
objects
whose
restriction
to
$
\mathcal{C}/U$
is
in
$
\mathcal{A}_U$
for
all
$
U
\in
\Ob(\mathcal{C})$.
Moreover
,
there
are
derived
categories
$
D_\mathcal{A}(\mathcal{O}_\mathcal{C})$
and
$
D_{\mathcal{A}_U}(\mathcal{O}_U)$
and
the
restriction
functors
send
these
into
each
other
.
\begin{example
}
\label{example
-
quasi
-
coherent
-
spaces
-
etale
}
Let
$
S$
be
a
scheme TYPE
and
let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
\mathcal{C
}
=
X_{spaces
,
\etale}$
be
the
\'etale
site
on
the
category
of
algebraic
spaces
\'etale
over
$
X$
,
see
Properties
of
Spaces
,
Definition
\ref{spaces
-
properties
-
definition
-
spaces
-
etale
-
site}.
Denote
$
\mathcal{O}_\mathcal{C}$
the
structure
sheaf
,
i.e.
,
the
sheaf
given
by
the
rule
$
U
\mapsto
\Gamma(U
,
\mathcal{O}_U)$.
Denote
$
\mathcal{A}_U$
the
category
of
quasi
-
coherent
$
\mathcal{O}_U$-modules
.
Let
$
\mathcal{B
}
=
\Ob(\mathcal{C})$
and
for
$
V
\in
\mathcal{B}$
set
$
d_V
=
0
$
and
let
$
\text{Cov}_V$
denote
the
coverings
$
\{V_i
\to
V\}$
with
$
V_i$
affine
for
all
$
i$.
Then
the
assumptions
(
1
)
,
(
2
)
,
(
3
)
are
satisfied
.
See
Properties
of
Spaces
,
Lemmas
\ref{spaces
-
properties
-
lemma
-
pullback
-
quasi
-
coherent
}
and
\ref{spaces
-
properties
-
lemma
-
properties
-
quasi
-
coherent
}
for
properties
(
1
)
and
(
2
)
and
the
vanishing
in
(
3
)
follows
from
Cohomology
of
Schemes
,
Lemma
\ref{coherent
-
lemma
-
quasi
-
coherent
-
affine
-
cohomology
-
zero
}
and
the
discussion
in
Cohomology
of
Spaces
,
Section
\ref{spaces
-
cohomology
-
section
-
higher
-
direct
-
image}.
\end{example
}
\begin{example
}
\label{example
-
etale
}
Let
$
S$
be
one
of
the
following
types
of
schemes
\begin{enumerate
}
\item
the
spectrum
of
a
finite
field
,
\item
the
spectrum
of
a
separably
closed
field
,
\item
the
spectrum
of
a
strictly
henselian
Noetherian
local
ring
,
\item
the
spectrum
of
a
henselian
Noetherian
local
ring
with
finite
residue
field
,
\item
add
more
here
.
\end{enumerate
}
Let
$
\Lambda$
be
a
finite TYPE
ring
whose
order
is
invertible
on
$
S$.
Let
$
\mathcal{C
}
\subset
(
\Sch
/
S)_\etale$
be
the
full
subcategory
consisting
of
schemes
locally
of
finite
type
over
$
S$
endowed
with
the
\'etale
topology
.
Let
$
\mathcal{O}_\mathcal{C
}
=
\underline{\Lambda}$
be
the
constant
sheaf
.
Set
$
\mathcal{A}_U
=
\textit{Mod}(\mathcal{O}_U)$
,
in
other
words
,
we
consider
all
\'etale
sheaves
of
$
\Lambda$-modules
.
Let
$
\mathcal{B
}
\subset
\Ob(\mathcal{C})$
be
the
set
of
quasi
-
compact
objects
.
For
$
V
\in
\mathcal{B}$
set
$
$
d_V
=
1
+
2\dim(S
)
+
\sup\nolimits_{v
\in
V}(\text{trdeg}_{\kappa(s)}(\kappa(v
)
)
+
2
\dim
\mathcal{O}_{V
,
v
}
)
$
$
and
let
$
\text{Cov}_V$
denote
the
\'etale
coverings
$
\{V_i
\to
V\}$
with
$
V_i$
quasi
-
compact
for
all
$
i$.
Our
choice
of
bound
$
d_V$
comes
from
Gabber
's
theorem
on
cohomological
dimension
.
To
see
that
condition
(
3
)
holds
with
this
choice
,
use
\cite[Expos\'e
VIII
-
A
,
Corollary
1.2
and
Lemma
2.2]{Traveaux
}
plus
elementary
arguments
on
cohomological
dimensions
of
fields
.
We
add
$
1
$
to
the
formula
because
our
list
contains
cases
where
we
allow
$
S$
to
have
finite
residue
field
.
We
will
come
back
to
this
example
later
(
insert
future
reference
)
.
\end{example
}
\noindent
Let
$
(
\mathcal{C
}
,
\mathcal{O}_\mathcal{C})$
be
a
ringed TYPE
site
.
Assume
given
weak
Serre
subcategories
$
\mathcal{A}_U
\subset
\textit{Mod}(\mathcal{O}_U)$
satisfying
condition
(
\ref{item
-
restriction
}
)
.
Then
\begin{enumerate
}
\item
given
a
semi
-
representable
object
$
K
=
\{U_i\}_{i
\in
I}$
we
get
a
weak
Serre
subcategory
$
\mathcal{A}_K
\subset
\textit{Mod}(\mathcal{O}_K)$
by
taking
$
\prod
\mathcal{A}_{U_i
}
\subset
\prod
\textit{Mod}(\mathcal{O}_{U_i
}
)
=
\textit{Mod}(\mathcal{O}_K)$
,
and
\item
given
a
morphism
of
semi
-
representable
objects
$
f
:
K
\to
L$
the
pullback
map
$
f^
*
:
\textit{Mod}(\mathcal{O}_L
)
\to
\textit{Mod}(\mathcal{O}_L)$
sends
$
\mathcal{A}_L$
into
$
\mathcal{A}_K$.
\end{enumerate
}
See
Remark
\ref{remark
-
semi
-
representable
-
ringed
}
for
notation
and
explanation
.
In
particular
,
given
a
simplicial
semi
-
representable
object
$
K$
it
is
unambiguous
to
say
what
it
means
for
an
object
$
\mathcal{F}$
of
$
\textit{Mod}(\mathcal{O})$
as
in
Remark
\ref{remark
-
augmentation
-
ringed
}
to
have
restrictions
$
\mathcal{F}_n$
in
$
\mathcal{A}_{K_n}$
for
all
$
n$.
\begin{lemma
}
\label{lemma
-
hypercovering
-
equivalence
-
modules
}
Let
$
(
\mathcal{C
}
,
\mathcal{O}_\mathcal{C})$
be
a
ringed TYPE
site
.
Assume
given
weak
Serre
subcategories
$
\mathcal{A}_U
\subset
\textit{Mod}(\mathcal{O}_U)$
satisfying
conditions
(
\ref{item
-
restriction
}
)
,
(
\ref{item
-
local
}
)
,
and
(
\ref{item
-
bounded
-
dimension
}
)
above
.
Assume
$
\mathcal{C}$
has
equalizers
and
fibre
products
and
let
$
K$
be
a
hypercovering
.
Let
$
(
(
\mathcal{C}/K)_{total
}
,
\mathcal{O})$
be
as
in
Remark
\ref{remark
-
augmentation
-
ringed}.
Let
$
\mathcal{A}_{total
}
\subset
\textit{Mod}(\mathcal{O})$
denote
the
weak
Serre
subcategory
of
cartesian
$
\mathcal{O}$-modules
$
\mathcal{F}$
whose
restriction
$
\mathcal{F}_n$
is
in
$
\mathcal{A}_{K_n}$
for
all
$
n$
(
as
defined
above
)
.
Then
the
functor
$
La^*$
defines
an
equivalence
$
$
D_\mathcal{A}(\mathcal{O}_\mathcal{C
}
)
\longrightarrow
D_{\mathcal{A}_{total}}(\mathcal{O
}
)
$
$
with
quasi
-
inverse
$
Ra_*$.
\end{lemma
}
\begin{proof
}
The
cartesian
$
\mathcal{O}$-modules
form
a
weak
Serre
subcategory
by
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules
}
(
the
required
hypotheses
hold
by
the
discussion
in
Remark
\ref{remark
-
augmentation
-
ringed
}
)
.
Since
the
restriction
functor
$
g_n^
*
:
\textit{Mod}(\mathcal{O
}
)
\to
\textit{Mod}(\mathcal{O}_n)$
are
exact
,
it
follows
that
$
\mathcal{A}_{total}$
is
a
weak
Serre
subcategory
.
\medskip\noindent
Let
us
show
that
$
a^
*
:
\mathcal{A
}
\to
\mathcal{A}_{total}$
is
an
equivalence
of
categories
with
inverse
given
by
$
La_*$.
We
already
know
that
$
La_*a^*\mathcal{F
}
=
\mathcal{F}$
by
the
bounded
version
(
Lemma
\ref{lemma
-
hypercovering
-
equivalence
-
bounded
-
modules
}
)
.
It
is
clear
that
$
a^*\mathcal{F}$
is
in
$
\mathcal{A}_{total}$
for
$
\mathcal{F}$
in
$
\mathcal{A}$.
Conversely
,
assume
that
$
\mathcal{G
}
\in
\mathcal{A}_{total}$.
Because
$
\mathcal{G}$
is
cartesian
we
see
that
$
\mathcal{G
}
=
a^*\mathcal{F}$
for
some
$
\mathcal{O}_\mathcal{C}$-module
$
\mathcal{F}$
by
Lemma
\ref{lemma
-
hypercovering
-
descent
-
modules}.
We
want
to
show
that
$
\mathcal{F}$
is
in
$
\mathcal{A}$.
Take
$
U
\in
\Ob(\mathcal{C})$.
We
have
to
show
that
the
restriction
of
$
\mathcal{F}$
to
$
\mathcal{C}/U$
is
in
$
\mathcal{A}_U$.
As
usual
,
write
$
K_0
=
\{U_{0
,
i}\}_{i
\in
I_0}$.
Since
$
K$
is
a
hypercovering
,
the
map
$
\coprod_{i
\in
I_0
}
h_{U_{0
,
i
}
}
\to
*
$
becomes
surjective
after
sheafification
.
This
implies
there
is
a
covering
$
\{U_j
\to
U\}_{j
\in
J}$
and
a
map
$
\tau
:
J
\to
I_0
$
and
for
each
$
j
\in
J$
a
morphism
$
\varphi_j
:
U_j
\to
U_{0
,
\tau(j)}$.
Since
$
\mathcal{G}_0
=
a_0^*\mathcal{F}$
we
find
that
the
restriction
of
$
\mathcal{F}$
to
$
\mathcal{C}/U_j$
is
equal
to
the
restriction
of
the
$
\tau(j)$th
component
of
$
\mathcal{G}_0
$
to
$
\mathcal{C}/U_j$
via
the
morphism
$
\varphi_j
:
U_j
\to
U_{0
,
\tau(i)}$.
Hence
by
(
\ref{item
-
restriction
}
)
we
find
that
$
\mathcal{F}|_{\mathcal{C}/U_j}$
is
in
$
\mathcal{A}_{U_j}$
and
in
turn
by
(
\ref{item
-
local
}
)
we
find
that
$
\mathcal{F}|_{\mathcal{C}/U}$
is
in
$
\mathcal{A}_U$.
\medskip\noindent
In
particular
the
statement
of
the
lemma
makes
sense
.
The
lemma
now
follows
from
Lemma
\ref{lemma
-
equivalence
-
unbounded
-
one}.
Assumption
(
1
)
is
clear
(
see
Remark
\ref{remark
-
augmentation
-
ringed
}
)
.
Assumptions
(
2
)
and
(
3
)
we
proved
in
the
preceding
paragraph
.
Assumption
(
4
)
is
immediate
from
(
\ref{item
-
bounded
-
dimension
}
)
.
For
assumption
(
5
)
let
$
\mathcal{B}_{total}$
be
the
set
of
objects
$
U
/
U_{n
,
i}$
of
the
site
$
(
\mathcal{C}/K)_{total}$
such
that
$
U
\in
\mathcal{B}$
where
$
\mathcal{B}$
is
as
in
(
\ref{item
-
bounded
-
dimension
}
)
.
Here
we
use
the
description
of
the
site
$
(
\mathcal{C}/K)_{total}$
given
in
Section
\ref{section
-
simplicial
-
semi
-
representable}.
Moreover
,
we
set
$
\text{Cov}_{U
/
U_{n
,
i}}$
equal
to
$
\text{Cov}_U$
and
$
d_{U
/
U_{n
,
i}}$
equal
$
d_U$
where
$
\text{Cov}_U$
and
$
d_U$
are
given
to
us
by
(
\ref{item
-
bounded
-
dimension
}
)
.
Then
we
claim
that
condition
(
5
)
holds
with
these
choices
.
This
follows
immediately
from
Lemma
\ref{lemma
-
sanity
-
check
-
simplicial
-
semi
-
representable
}
and
the
fact
that
$
\mathcal{F
}
\in
\mathcal{A}_{total}$
implies
$
\mathcal{F}_n
\in
\mathcal{A}_{K_n}$
and
hence
$
\mathcal{F}_{n
,
i
}
\in
\mathcal{A}_{U_{n
,
i}}$.
(
The
reader
who
worries
about
the
difference
between
cohomology
of
abelian
sheaves
versus
cohomology
of
sheaves
of
modules
may
consult
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
modules
-
abelian
-
agree}.
)
\end{proof
}
\section{Glueing
complexes
}
\label{section
-
glueing
-
complexes
}
\noindent
This
section
is
the
continuation
of
Cohomology
,
Section
\ref{cohomology
-
section
-
glueing
-
complexes}.
The
goal
is
to
prove
a
slight
generalizaton
of
\cite[Theorem
3.2.4]{BBD}.
Our
method
will
be
a
tiny TYPE
bit
different
in
that
we
use
the
material
from
Sections
\ref{section
-
glueing
}
and
\ref{section
-
glueing
-
modules}.
We
will
also
reprove
the
unbounded
version
as
it
is
proved
in
\cite{six
-
I}.
\medskip\noindent
Here
is
the
situation
we
are
interested
in
.
\begin{situation
}
\label{situation
-
locally
-
given
}
Let
$
(
\mathcal{C
}
,
\mathcal{O}_\mathcal{C})$
be
a
ringed TYPE
site
.
We
are
given
\begin{enumerate
}
\item
a
category
$
\mathcal{B}$
and
a
functor
$
u
:
\mathcal{B
}
\to
\mathcal{C}$
,
\item
an
object
$
E_U$
in
$
D(\mathcal{O}_{u(U)})$
for
$
U
\in
\Ob(\mathcal{B})$
,
\item
an
isomorphism
$
\rho_a
:
E_U|_{\mathcal{C}/u(V
)
}
\to
E_V$
in
$
D(\mathcal{O}_{u(V)})$
for
$
a
:
V
\to
U$
in
$
\mathcal{B}$
\end{enumerate
}
such
that
whenever
we
have
composable
arrows
$
b
:
W
\to
V$
and
$
a
:
V
\to
U$
of
$
\mathcal{B}$
,
then
$
\rho_{a
\circ
b
}
=
\rho_b
\circ
\rho_a|_{\mathcal{C}/u(W)}$.
\end{situation
}
\noindent
We
wo
n't
be
able
to
prove
anything
about
this
without
making
more
assumptions
.
An
interesting
case
is
where
$
\mathcal{B}$
is
a
full
subcategory
such
that
every
object
of
$
\mathcal{C}$
has
a
covering
whose
members
are
objects
of
$
\mathcal{B}$
(
this
is
the
case
considered
in
\cite{BBD
}
)
.
For
us
it
is
important
to
allow
cases
where
this
is
not
the
case
;
the
main
alternative
case
is
where
we
have
a
morphism
of
sites
$
f
:
\mathcal{C
}
\to
\mathcal{D}$
and
$
\mathcal{B}$
is
a
full
subcategory
of
$
\mathcal{D}$
such
that
every
object
of
$
\mathcal{D}$
has
a
covering
whose
members
are
objects
of
$
\mathcal{B}$.
\medskip\noindent
In
Situation
\ref{situation
-
locally
-
given
}
a
{
\it
solution
}
will
be
a
pair TYPE
$
(
E
,
\rho_U)$
where
$
E$
is
an
object
of
$
D(\mathcal{O}_\mathcal{C})$
and
$
\rho_U
:
E|_{\mathcal{C}/u(U
)
}
\to
E_U$
for
$
U
\in
\Ob(\mathcal{B})$
are
isomorphisms
such
that
we
have
$
\rho_a
\circ
\rho_U|_{\mathcal{C}/u(V
)
}
=
\rho_V$
for
$
a
:
V
\to
U$
in
$
\mathcal{B}$.
\begin{lemma
}
\label{lemma
-
prepare
-
bbd
-
glueing
}
In
Situation
\ref{situation
-
locally
-
given}.
Assume
negative
self
-
exts
of
$
E_U$
in
$
D(\mathcal{O}_{u(U)})$
are
zero
.
Let
$
L$
be
a
simplicial TYPE
object
of
$
\text{SR}(\mathcal{B})$.
Consider
the
simplicial
object
$
K
=
u(L)$
of
$
\text{SR}(\mathcal{C})$
and
let
$
(
(
\mathcal{C}/K)_{total
}
,
\mathcal{O})$
be
as
in
Remark
\ref{remark
-
augmentation
-
ringed}.
There
exists
a
cartesian
object
$
E$
of
$
D(\mathcal{O})$
such
that
writing
$
L_n
=
\{U_{n
,
i}\}_{i
\in
I_n}$
the
restriction
of
$
E$
to
$
D(\mathcal{O}_{\mathcal{C}/u(U_{n
,
i})})$
is
$
E_{U_{n
,
i}}$
compatibly
(
see
proof
for
details
)
.
Moreover
,
$
E$
is
unique
up
to
unique
isomorphism
.
\end{lemma
}
\begin{proof
}
Recall
that
$
\Sh(\mathcal{C}/K_n
)
=
\prod_{i
\in
I_n
}
\Sh(\mathcal{C}/u(U_{n
,
i}))$
and
similarly
for
the
categories
of
modules
.
This
product
decomposition
is
also
inherited
by
the
derived
categories
of
sheaves
of
modules
.
Moreover
,
this
product
decomposition
is
compatible
with
the
morphisms
in
the
simplicial
semi
-
representable
object
$
K$.
See
Section
\ref{section
-
semi
-
representable}.
Hence
we
can
set
$
E_n
=
\prod_{i
\in
I_n
}
E_{U_{n
,
i}}$
(
``
formal
''
product
)
in
$
D(\mathcal{O}_n)$.
Taking
(
formal
)
products
of
the
maps
$
\rho_a$
of
Situation
\ref{situation
-
locally
-
given
}
we
obtain
isomorphisms
$
E_\varphi
:
f_\varphi^*E_n
\to
E_m$.
The
assumption
about
compostions
of
the
maps
$
\rho_a$
immediately
implies
that
$
(
E_n
,
E_\varphi)$
defines
a
simplicial
system
of
the
derived
category
of
modules
as
in
Definition
\ref{definition
-
cartesian
-
derived
-
modules}.
The
vanishing
of
negative
exts
assumed
in
the
lemma
implies
that
$
\Hom(E_n[t
]
,
E_n
)
=
0
$
for
$
n
\geq
0
$
and
$
t
>
0$.
Thus
by
Lemma
\ref{lemma
-
cartesian
-
module
-
derived
-
from
-
simplicial
}
we
obtain
$
E$.
Uniqueness
up
to
unique
isomorphism
follows
from
Lemmas
\ref{lemma
-
nullity
-
cartesian
-
modules
-
derived
}
and
\ref{lemma
-
hom
-
cartesian
-
modules
-
derived}.
\end{proof
}
\begin{lemma}[BBD
glueing
lemma
]
\label{lemma
-
bbd
-
glueing
}
In
Situation
\ref{situation
-
locally
-
given}.
Assume
\begin{enumerate
}
\item
$
\mathcal{C}$
has
equalizers
and
fibre
products
,
\item
there
is
a
morphism
of
sites
$
f
:
\mathcal{C
}
\to
\mathcal{D}$
given
by
a
continuous
functor
$
u
:
\mathcal{D
}
\to
\mathcal{C}$
such
that
\begin{enumerate
}
\item
$
\mathcal{D}$
has
equalizers
and
fibre
products
and
$
u$
commutes
with
them
,
\item
$
\mathcal{B}$
is
a
full
subcategory
of
$
\mathcal{D}$
and
$
u
:
\mathcal{B
}
\to
\mathcal{C}$
is
the
restriction
of
$
u$
,
\item
every
object
of
$
\mathcal{D}$
has
a
covering
whose
members
are
objects
of
$
\mathcal{B}$
,
\end{enumerate
}
\item
all
negative
self
-
exts
of
$
E_U$
in
$
D(\mathcal{O}_{u(U)})$
are
zero
,
and
\item
there
exists
a
$
t
\in
\mathbf{Z}$
such
that
$
H^i(E_U
)
=
0
$
for
$
i
<
t$
and
$
U
\in
\Ob(\mathcal{B})$.
\end{enumerate
}
Then
there
exists
a
solution
unique
up
to
unique
isomorphism
.
\end{lemma
}
\begin{proof
}
By
Hypercoverings
,
Lemma
\ref{hypercovering
-
lemma
-
hypercovering
-
site
}
there
exists
a
hypercovering
$
L$
for
the
site
$
\mathcal{D}$
such
that
$
L_n
=
\{U_{n
,
i}\}_{i
\in
I_n}$
with
$
U_{i
,
n
}
\in
\Ob(\mathcal{B})$.
Set
$
K
=
u(L)$.
Apply
Lemma
\ref{lemma
-
prepare
-
bbd
-
glueing
}
to
get
a
cartesian
object
$
E$
of
$
D(\mathcal{O})$
on
the
site
$
(
\mathcal{C}/K)_{total}$
restricting
to
$
E_{U_{n
,
i}}$
on
$
\mathcal{C}/u(U_{n
,
i})$
compatibly
.
The
assumption
on
$
t$
implies
that
$
E
\in
D^+(\mathcal{O})$.
By
Hypercoverings
,
Lemma
\ref{hypercovering
-
lemma
-
hypercovering
-
morphism
-
sites
}
we
see
that
$
K$
is
a
hypercovering
too
.
By
Lemma
\ref{lemma
-
hypercovering
-
equivalence
-
bounded
-
modules
}
we
find
that
$
E
=
a^*F$
for
some
$
F$
in
$
D^+(\mathcal{O}_\mathcal{C})$.
\medskip\noindent
To
prove
that
$
F$
is
a
solution
we
will
use
the
construction
of
$
L_0
$
and
$
L_1
$
given
in
the
proof
of
Hypercoverings
,
Lemma
\ref{hypercovering
-
lemma
-
hypercovering
-
site}.
(
This
is
a
bit
inelegant
but
there
does
not
seem
to
be
a
completely TYPE
straightforward
way
around
it
.
)
\medskip\noindent
Namely
,
we
have
$
I_0
=
\Ob(\mathcal{B})$
and
so
$
L_0
=
\{U\}_{U
\in
\Ob(\mathcal{B})}$.
Hence
the
isomorphism
$
a^*F
\to
E$
restricted
to
the
components
$
\mathcal{C}/u(U)$
of
$
\mathcal{C}/K_0
$
defines
isomorphisms
$
\rho_U
:
F|_{\mathcal{C}/u(U
)
}
\to
E_U$
for
$
U
\in
\Ob(\mathcal{B})$
by
our
choice
of
$
E$.
\medskip\noindent
To
prove
that
$
\rho_U$
satisfy
the
requirement
of
compatibility
with
the
maps
$
\rho_a$
of
Situation
\ref{situation
-
locally
-
given
}
we
use
that
$
I_1
$
contains
the
set
$
$
\Omega
=
\{(U
,
V
,
W
,
a
,
b
)
\mid
U
,
V
,
W
\in
\mathcal{B
}
,
a
:
U
\to
V
,
b
:
U
\to
W\
}
$
$
and
that
for
$
i
=
(
U
,
V
,
W
,
a
,
b)$
in
$
\Omega$
we
have
$
U_{1
,
i
}
=
U$.
Moreover
,
the
component
maps
$
f_{\delta^1_0
,
i}$
and
$
f_{\delta^1_1
,
i}$
of
the
two
morphisms
$
K_1
\to
K_0
$
are
the
morphisms
$
$
a
:
U
\to
V
\quad\text{and}\quad
b
:
U
\to
V
$
$
Hence
the
compatibility
mentioned
in
Lemma
\ref{lemma
-
prepare
-
bbd
-
glueing
}
gives
that
$
$
\rho_a
\circ
\rho_V|_{\mathcal{C}/u(U
)
}
=
\rho_U
\quad\text{and}\quad
\rho_b
\circ
\rho_W|_{\mathcal{C}/u(U
)
}
=
\rho_U
$
$
Taking
$
i
=
(
U
,
V
,
U
,
a
,
\text{id}_U
)
\in
\Omega$
for
example
,
we
find
that
we
have
the
desired
compatibility
.
The
uniqueness
of
$
F$
follows
from
the
uniqueness
of
$
E$
in
the
previous
lemma
(
small
detail
omitted
)
.
\end{proof
}
\begin{lemma}[Unbounded
BBD
glueing
lemma
]
\label{lemma
-
bbd
-
unbounded
-
glueing
}
In
Situation
\ref{situation
-
locally
-
given}.
Assume
\begin{enumerate
}
\item
$
\mathcal{C}$
has
equalizers
and
fibre
products
,
\item
there
is
a
morphism
of
sites
$
f
:
\mathcal{C
}
\to
\mathcal{D}$
given
by
a
continuous
functor
$
u
:
\mathcal{D
}
\to
\mathcal{C}$
such
that
\begin{enumerate
}
\item
$
\mathcal{D}$
has
equalizers
and
fibre
products
and
$
u$
commutes
with
them
,
\item
$
\mathcal{B}$
is
a
full
subcategory
of
$
\mathcal{D}$
and
$
u
:
\mathcal{B
}
\to
\mathcal{C}$
is
the
restriction
of
$
u$
,
\item
every
object
of
$
\mathcal{D}$
has
a
covering
whose
members
are
objects
of
$
\mathcal{B}$
,
\end{enumerate
}
\item
all
negative
self
-
exts
of
$
E_U$
in
$
D(\mathcal{O}_{u(U)})$
are
zero
,
and
\item
there
exist
weak
Serre
subcategories
$
\mathcal{A}_U
\subset
\textit{Mod}(\mathcal{O}_U)$
for
all
$
U
\in
\Ob(\mathcal{C})$
satisfying
conditions
(
\ref{item
-
restriction
}
)
,
(
\ref{item
-
local
}
)
,
and
(
\ref{item
-
bounded
-
dimension
}
)
,
\item
$
E_U
\in
D_{\mathcal{A}_U}(\mathcal{O}_U)$.
\end{enumerate
}
Then
there
exists
a
solution
unique
up
to
unique
isomorphism
.
\end{lemma
}
\begin{proof
}
The
proof
is
{
\bf
exactly
}
the
same
as
the
proof
of
Lemma
\ref{lemma
-
bbd
-
glueing}.
The
only
change
is
that
$
E$
is
an
object
of
$
D_{\mathcal{A}_{total}}(\mathcal{O})$
and
hence
we
use
Lemma
\ref{lemma
-
hypercovering
-
equivalence
-
modules
}
to
obtain
$
F$
with
$
E
=
a^*F$
instead
of
Lemma
\ref{lemma
-
hypercovering
-
equivalence
-
bounded
-
modules}.
\end{proof
}
\section{Proper
hypercoverings
in
topology
}
\label{section
-
proper
-
hypercovering
}
\noindent
Let
's
work
in
the
category
$
\textit{LC}$
of
Hausdorff
and
locally
quasi
-
compact
topological
spaces
and
continuous
maps
,
see
Cohomology
on
Sites
,
Section
\ref{sites
-
cohomology
-
section
-
cohomology
-
LC}.
Let
$
X$
be
an
object
of
$
\textit{LC}$
and
let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$.
Assume
we
have
an
augmentation
$
$
a
:
U
\to
X
$
$
We
say
that
$
U$
is
a
{
\it
proper
hypercovering
}
of
$
X$
if
\begin{enumerate
}
\item
$
U_0
\to
X$
is
a
proper
surjective
map
,
\item
$
U_1
\to
U_0
\times_X
U_0
$
is
a
proper
surjective
map
,
\item
$
U_{n
+
1
}
\to
(
\text{cosk}_n\text{sk}_n
U)_{n
+
1}$
is
a
proper
surjective
map
for
$
n
\geq
1$.
\end{enumerate
}
The
category
$
\textit{LC}$
has
all
finite
limits
,
hence
the
coskeleta
used
in
the
formulation
above
exist
.
$
$
\fbox{Principle
:
Proper
hypercoverings
can
be
used
to
compute
cohomology
.
}
$
$
A
key
idea
behind
the
proof
of
the
principle
is
to
find
a
topology
on
$
\textit{LC}$
which
is
stronger
than
the
usual
one
such
that
(
a
)
a
surjective
proper
map
defines
a
covering
,
and
(
b
)
cohomology
of
usual
sheaves
with
respect
to
this
stronger
topology
agrees
with
the
usual
cohomology
.
Properties
(
a
)
and
(
b
)
hold
for
the
qc
topology
,
see
Cohomology
on
Sites
,
Section
\ref{sites
-
cohomology
-
section
-
cohomology
-
LC}.
Once
we
have
(
a
)
and
(
b
)
we
deduce
the
principle
via
the
earlier
work
done
in
this
chapter
.
\begin{lemma
}
\label{lemma
-
compare
-
simplicial
-
objects
}
Let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$
and
let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
There
is
a
commutative
diagram
$
$
\xymatrix
{
\Sh((\textit{LC}_{qc}/U)_{total
}
)
\ar[r]_-h
\ar[d]_{a_{qc
}
}
&
\Sh(U_{Zar
}
)
\ar[d]^a
\\
\Sh(\textit{LC}_{qc}/X
)
\ar[r]^-{h_{-1
}
}
&
\Sh(X
)
}
$
$
where
the
left
vertical
arrow
is
defined
in
Section
\ref{section
-
hypercovering
}
and
the
right
vertical
arrow
is
defined
in
Lemma
\ref{lemma
-
augmentation}.
\end{lemma
}
\begin{proof
}
Write
$
\Sh(X
)
=
\Sh(X_{Zar})$.
Observe
that
both
$
(
\textit{LC}_{qc}/U)_{total}$
and
$
U_{Zar}$
fall
into
case
A
of
Situation
\ref{situation
-
simplicial
-
site}.
This
is
immediate
from
the
construction
of
$
U_{Zar}$
in
Section
\ref{section
-
simplicial
-
top
}
and
it
follows
from
Lemma
\ref{lemma
-
sr
-
when
-
fibre
-
products
}
for
$
(
\textit{LC}_{qc}/U)_{total}$.
Next
,
consider
the
functors
$
U_{n
,
Zar
}
\to
\textit{LC}_{qc}/U_n$
,
$
U
\mapsto
U
/
U_n$
and
$
X_{Zar
}
\to
\textit{LC}_{qc}/X$
,
$
U
\mapsto
U
/
X$.
We
have
seen
that
these
define
morphisms
of
sites
in
Cohomology
on
Sites
,
Section
\ref{sites
-
cohomology
-
section
-
cohomology
-
LC}.
Thus
we
obtain
a
morphism
of
simplicial
sites
compatible
with
augmentations
as
in
Remark
\ref{remark
-
morphism
-
augmentation
-
simplicial
-
sites
}
and
we
may
apply
Lemma
\ref{lemma
-
morphism
-
augmentation
-
simplicial
-
sites
}
to
conclude
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
descent
-
sheaves
-
for
-
proper
-
hypercovering
}
Let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$
and
let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
gives
a
proper
hypercovering
of
$
X$
,
then
$
$
a^{-1
}
:
\Sh(X
)
\to
\Sh(U_{Zar
}
)
\quad\text{and}\quad
a^{-1
}
:
\textit{Ab}(X
)
\to
\textit{Ab}(U_{Zar
}
)
$
$
are
fully
faithful
with
essential
image
the
cartesian
sheaves
and
quasi
-
inverse
given
by
$
a_*$.
Here
$
a
:
\Sh(U_{Zar
}
)
\to
\Sh(X)$
is
as
in
Lemma
\ref{lemma
-
augmentation}.
\end{lemma
}
\begin{proof
}
We
will
prove
the
statement
for
sheaves
of
sets
.
It
will
be
an
TYPE
almost
formal
consequence
of
results
already
established
.
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects}.
By
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
describe
-
pullback
-
pi
}
the
functor
$
(
h_{-1})^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
h_{-1
,
*
}
$
.
The
same
holds
true
for
the
components
$
h_n$
of
$
h$.
By
the
description
of
the
functors
$
h^{-1}$
and
$
h_*$
of
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
we
conclude
that
$
h^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
h_*$.
Observe
that
$
U$
is
a
hypercovering
of
$
X$
in
$
\textit{LC}_{qc}$
(
as
defined
in
Section
\ref{section
-
hypercovering
}
)
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
proper
-
surjective
-
is
-
qc
-
covering}.
By
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
sheaves
}
we
see
that
$
a_{qc}^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
a_{qc
,
*
}
$
and
with
essential
image
the
cartesian
sheaves
on
$
(
\textit{LC}_{qc}/U)_{total}$.
A
formal
argument
(
chasing
around
the
diagram
)
now
shows
that
$
a^{-1}$
is
fully
faithful
.
\medskip\noindent
Finally
,
suppose
that
$
\mathcal{G}$
is
a
cartesian
sheaf
on
$
U_{Zar}$.
Then
$
h^{-1}\mathcal{G}$
is
a
cartesian
sheaf
on
$
\textit{LC}_{qc}/U$.
Hence
$
h^{-1}\mathcal{G
}
=
a_{qc}^{-1}\mathcal{H}$
for
some
sheaf
$
\mathcal{H}$
on
$
\textit{LC}_{qc}/X$.
We
compute
\begin{align
*
}
(
h_{-1})^{-1}(a_*\mathcal{G
}
)
&
=
(
h_{-1})^{-1
}
\text{Eq
}
(
\xymatrix
{
a_{0
,
*
}
\mathcal{G}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{1
,
*
}
\mathcal{G}_1
}
)
\\
&
=
\text{Eq
}
(
\xymatrix
{
(
h_{-1})^{-1}a_{0
,
*
}
\mathcal{G}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
(
h_{-1})^{-1}a_{1
,
*
}
\mathcal{G}_1
}
)
\\
&
=
\text{Eq
}
(
\xymatrix
{
a_{qc
,
0
,
*
}
h_0^{-1}\mathcal{G}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{qc
,
1
,
*
}
h_1^{-1}\mathcal{G}_1
}
)
\\
&
=
\text{Eq
}
(
\xymatrix
{
a_{qc
,
0
,
*
}
a_{qc
,
0}^{-1}\mathcal{H
}
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{qc
,
1
,
*
}
a_{qc
,
1}^{-1}\mathcal{H
}
}
)
\\
&
=
a_{qc
,
*
}
a_{qc}^{-1}\mathcal{H
}
\\
&
=
\mathcal{H
}
\end{align
*
}
Here
the
first
equality
follows
from
Lemma
\ref{lemma
-
augmentation
}
,
the
second
equality
follows
as
$
(
h_{-1})^{-1}$
is
an
exact
functor
,
the
third
equality
follows
from
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
push
-
pull
-
LC
}
(
here
we
use
that
$
a_0
:
U_0
\to
X$
and
$
a_1
:
U_1
\to
X$
are
proper
)
,
the
fourth
follows
from
$
a_{qc}^{-1}\mathcal{H
}
=
h^{-1}\mathcal{G}$
,
the
fifth
from
Lemma
\ref{lemma
-
augmentation
-
site
}
,
and
the
sixth
we
've
seen
above
.
Since
$
a_{qc}^{-1}\mathcal{H
}
=
h^{-1}\mathcal{G}$
we
deduce
that
$
h^{-1}\mathcal{G
}
\cong
h^{-1}a^{-1}a_*\mathcal{G}$
which
ends
the
proof
by
fully
faithfulness
of
$
h^{-1}$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
for
-
proper
-
hypercovering
}
Let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$
and
let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
gives
a
proper
hypercovering
of
$
X$
,
then
for
$
K
\in
D^+(X)$
$
$
K
\to
Ra_*(a^{-1}K
)
$
$
is
an
isomorphism
where
$
a
:
\Sh(U_{Zar
}
)
\to
\Sh(X)$
is
as
in
Lemma
\ref{lemma
-
augmentation}.
\end{lemma
}
\begin{proof
}
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects}.
Observe
that
$
Rh_{n
,
*
}
h_n^{-1}$
is
the
identity
functor
on
$
D^+(U_n)$
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomological
-
descent
-
LC}.
Hence
$
Rh_*h^{-1}$
is
the
identity
functor
on
$
D^+(U_{Zar})$
by
Lemma
\ref{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites}.
We
have
\begin{align
*
}
Ra_*(a^{-1}K
)
&
=
Ra_*Rh_*h^{-1}a^{-1}K
\\
&
=
Rh_{-1
,
*
}
Ra_{qc
,
*
}
a_{qc}^{-1}(h_{-1})^{-1}K
\\
&
=
Rh_{-1
,
*
}
(
h_{-1})^{-1}K
\\
&
=
K
\end{align
*
}
The
first
equality
by
the
discussion
above
,
the
second
equality
because
of
the
commutativity
of
the
diagram
in
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
}
,
the
third
equality
by
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
bounded
-
abelian
}
(
$
U$
is
a
hypercovering
of
$
X$
in
$
\textit{LC}_{qc}$
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
proper
-
surjective
-
is
-
qc
-
covering
}
)
,
and
the
last
equality
by
the
already
used
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomological
-
descent
-
LC}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compute
-
via
-
proper
-
hypercovering
}
Let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$
and
let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
U$
is
a
proper
hypercovering
of
$
X$
,
then
$
$
R\Gamma(X
,
K
)
=
R\Gamma(U_{Zar
}
,
a^{-1}K
)
$
$
for
$
K
\in
D^+(X)$
where
$
a
:
\Sh(U_{Zar
}
)
\to
\Sh(X)$
is
as
in
Lemma
\ref{lemma
-
augmentation}.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
cohomological
-
descent
-
for
-
proper
-
hypercovering
}
because
$
R\Gamma(U_{Zar
}
,
-
)
=
R\Gamma(X
,
-
)
\circ
Ra_*$
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
proper
-
hypercovering
-
equivalence
-
bounded
}
Let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$
and
let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{A
}
\subset
\textit{Ab}(U_{Zar})$
denote
the
weak
Serre
subcategory
of
cartesian
abelian
sheaves
.
If
$
U$
is
a
proper
hypercovering
of
$
X$
,
then
the
functor
$
a^{-1}$
defines
an
equivalence
$
$
D^+(X
)
\longrightarrow
D_\mathcal{A}^+(U_{Zar
}
)
$
$
with
quasi
-
inverse
$
Ra_*$
where
$
a
:
\Sh(U_{Zar
}
)
\to
\Sh(X)$
is
as
in
Lemma
\ref{lemma
-
augmentation}.
\end{lemma
}
\begin{proof
}
Observe
that
$
\mathcal{A}$
is
a
weak
Serre
subcategory
by
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules}.
The
equivalence
is
a
formal
consequence
of
the
results
obtained
so
far
.
Use
Lemmas
\ref{lemma
-
equivalence
-
bounded
}
,
\ref{lemma
-
descent
-
sheaves
-
for
-
proper
-
hypercovering
}
,
and
\ref{lemma
-
cohomological
-
descent
-
for
-
proper
-
hypercovering}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
spectral
-
sequence
-
proper
-
hypercovering
}
Let
$
U$
be
a
simplicial TYPE
object
of
$
\textit{LC}$
and
let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{F}$
be
an
abelian TYPE
sheaf
on
$
X$.
Let
$
\mathcal{F}_n$
be
the
pullback
to
$
U_n$.
If
$
U$
is
a
proper
hypercovering
of
$
X$
,
then
there
exists
a
canonical
spectral
sequence
$
$
E_1^{p
,
q
}
=
H^q(U_p
,
\mathcal{F}_p
)
$
$
converging
to
$
H^{p
+
q}(X
,
\mathcal{F})$.
\end{lemma
}
\begin{proof
}
Immediate
consequence
of
Lemmas
\ref{lemma
-
compute
-
via
-
proper
-
hypercovering
}
and
\ref{lemma
-
simplicial
-
sheaf
-
cohomology}.
\end{proof
}
\section{Simplicial
schemes
}
\label{section
-
simplicial
}
\noindent
A
{
\it
simplicial
scheme
}
is
a
simplicial
object
in
the
category
of
schemes
,
see
Simplicial
,
Definition
\ref{simplicial
-
definition
-
simplicial
-
object}.
Recall
that
a
simplicial
scheme
looks
like
$
$
\xymatrix
{
X_2
\ar@<2ex>[r
]
\ar@<0ex>[r
]
\ar@<-2ex>[r
]
&
X_1
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
\ar@<1ex>[l
]
\ar@<-1ex>[l
]
&
X_0
\ar@<0ex>[l
]
}
$
$
Here
there
are
two
morphisms
$
d^1_0
,
d^1_1
:
X_1
\to
X_0
$
and
a
single
morphism
$
s^0_0
:
X_0
\to
X_1
$
,
etc
.
These
morphisms
satisfy
some
required
relations
such
as
$
d^1_0
\circ
s^0_0
=
\text{id}_{X_0
}
=
d^1_1
\circ
s^0_0
$
,
see
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
characterize
-
simplicial
-
object}.
It
is
useful
to
think
of
$
d^n_i
:
X_n
\to
X_{n
-
1}$
as
the
``
projection
forgetting
the
$
i$th
coordinate
''
and
to
think
of
$
s^n_j
:
X_n
\to
X_{n
+
1}$
as
the
``
diagonal
map
repeating
the
$
j$th
coordinate
''
.
\medskip\noindent
A
{
\it
morphism
of
simplicial
schemes
}
$
h
:
X
\to
Y$
is
the
same
thing
as
a
morphism
of
simplicial
objects
in
the
category
of
schemes
,
see
Simplicial
,
Definition
\ref{simplicial
-
definition
-
simplicial
-
object}.
Thus
$
h$
consists
of
morphisms
of
schemes
$
h_n
:
X_n
\to
Y_n$
such
that
$
h_{n
-
1
}
\circ
d^n_j
=
d^n_j
\circ
h_n$
and
$
h_{n
+
1
}
\circ
s^n_j
=
s^n_j
\circ
h_n$
whenever
this
makes
sense
.
\medskip\noindent
An
{
\it
augmentation
}
of
a
simplicial
scheme
$
X$
is
a
morphism
of
schemes
$
a_0
:
X_0
\to
S$
such
that
$
a_0
\circ
d^1_0
=
a_0
\circ
d^1_1$.
See
Simplicial
,
Section
\ref{simplicial
-
section
-
augmentation}.
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
scheme
.
The
construction
of
Section
\ref{section
-
simplicial
-
top
}
applied
to
the
underlying
simplicial
topological
space
gives
a
site
$
X_{Zar}$.
On
the
other
hand
,
for
every
$
n$
we
have
the
small
Zariski
site
$
X_{n
,
Zar}$
(
Topologies
,
Definition
\ref{topologies
-
definition
-
big
-
small
-
Zariski
}
)
and
for
every
morphism
$
\varphi
:
[
m
]
\to
[
n]$
we
have
a
morphism
of
sites
$
f_\varphi
=
X(\varphi)_{small
}
:
X_{n
,
Zar
}
\to
X_{m
,
Zar}$
,
associated
to
the
morphism
of
schemes
$
X(\varphi
)
:
X_n
\to
X_m$
(
Topologies
,
Lemma
\ref{topologies
-
lemma
-
morphism
-
big
-
small
}
)
.
This
gives
a
simplicial
object
$
\mathcal{C}$
in
the
category
of
sites
.
In
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
we
constructed
an
associated
site
$
\mathcal{C}_{total}$.
Assigning
to
an
open
immersion
its
image
defines
an
equivalence
$
\mathcal{C}_{total
}
\to
X_{Zar}$
which
identifies
sheaves
,
i.e.
,
$
\Sh(\mathcal{C}_{total
}
)
=
\Sh(X_{Zar})$.
The
difference
between
$
\mathcal{C}_{total}$
and
$
X_{Zar}$
is
similar
to
the
difference
between
the
small
Zariski
site
$
S_{Zar}$
and
the
underlying
topological
space
of
$
S$.
We
will
silently
identify
these
sites
in
what
follows
.
\medskip\noindent
Let
$
X_{Zar}$
be
the
site
associated
to
a
simplicial
scheme
$
X$.
There
is
a
sheaf
of
rings
$
\mathcal{O}$
on
$
X_{Zar}$
whose
restriction
to
$
X_n$
is
the
structure
sheaf
$
\mathcal{O}_{X_n}$.
This
follows
from
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
}
or
from
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site}.
We
will
say
{
\it
$
\mathcal{O}$
is
the
structure
sheaf
of
the
simplicial
scheme
$
X$}.
At
this
point
all
the
material
developed
for
simplicial
(
ringed
)
sites
applies
,
see
Sections
\ref{section
-
simplicial
-
sites
}
,
\ref{section
-
augmentation
-
simplicial
-
sites
}
,
\ref{section
-
morphism
-
simplicial
-
sites
}
,
\ref{section
-
simplicial
-
sites
-
modules
}
,
\ref{section
-
cohomology
-
simplicial
-
sites
}
,
\ref{section
-
cohomology
-
augmentation
-
simplicial
-
sites
}
,
\ref{section
-
cohomology
-
simplicial
-
sites
-
modules
}
,
\ref{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites
}
,
\ref{section
-
cartesian
}
,
\ref{section
-
glueing
}
,
and
\ref{section
-
glueing
-
modules}.
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
scheme
with
structure
sheaf
$
\mathcal{O}$.
As
on
any
ringed
topos
,
there
is
a
notion
of
a
{
\it
quasi
-
coherent
$
\mathcal{O}$-module
on
$
X_{Zar}$
}
,
see
Modules
on
Sites
,
Definition
\ref{sites
-
modules
-
definition
-
site
-
local}.
However
,
a
quasi
-
coherent
$
\mathcal{O}$-module
on
$
X_{Zar}$
is
just
a
cartesian
$
\mathcal{O}$-module
$
\mathcal{F}$
whose
restrictions
$
\mathcal{F}_n$
are
quasi
-
coherent
on
$
X_n$
,
see
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
\medskip\noindent
Let
$
h
:
X
\to
Y$
be
a
morphism
of
simplicial
schemes
.
Either
by
Lemma
\ref{lemma
-
simplicial
-
space
-
site
-
functorial
}
or
by
(
the
proof
of
)
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
we
obtain
a
morphism
of
sites
$
h_{Zar
}
:
X_{Zar
}
\to
Y_{Zar}$.
Recall
that
$
h_{Zar}^{-1}$
and
$
h_{Zar
,
*
}
$
have
a
simple
description
in
terms
of
the
components
,
see
Lemma
\ref{lemma
-
describe
-
functoriality
}
or
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites}.
Let
$
\mathcal{O}_X$
,
resp.\
$
\mathcal{O}_Y$
denote
the
structure
sheaf
of
$
X$
,
resp.\
$
Y$.
We
define
$
h_{Zar}^\sharp
:
h_{Zar
,
*
}
\mathcal{O}_X
\to
\mathcal{O}_Y$
to
be
the
map
of
sheaves
of
rings
on
$
Y_{Zar}$
given
by
$
h_n^\sharp
:
h_{n
,
*
}
\mathcal{O}_{X_n
}
\to
\mathcal{O}_{Y_n}$
on
$
Y_n$.
We
obtain
a
morphism
of
ringed
sites
$
$
h_{Zar
}
:
(
X_{Zar
}
,
\mathcal{O}_X
)
\longrightarrow
(
Y_{Zar
}
,
\mathcal{O}_Y
)
$
$
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
scheme
with
structure
sheaf
$
\mathcal{O}$.
Let
$
S$
be
a
scheme TYPE
and
let
$
a_0
:
X_0
\to
S$
be
an
augmentation TYPE
of
$
X$.
Either
by
Lemma
\ref{lemma
-
augmentation
}
or
by
Lemma
\ref{lemma
-
augmentation
-
site
}
we
obtain
a
corresponding
morphism
of
topoi
$
a
:
\Sh(X_{Zar
}
)
\to
\Sh(S)$.
Observe
that
$
a^{-1}\mathcal{G}$
is
the
sheaf
on
$
X_{Zar}$
with
components
$
a_n^{-1}\mathcal{G}$.
Hence
we
can
use
the
maps
$
a_n^\sharp
:
a_n^{-1}\mathcal{O}_S
\to
\mathcal{O}_{X_n}$
to
define
a
map
$
a^\sharp
:
a^{-1}\mathcal{O}_S
\to
\mathcal{O}$
,
or
equivalently
by
adjunction
a
map
$
a^\sharp
:
\mathcal{O}_S
\to
a_*\mathcal{O}$
(
which
as
usual
has
the
same
name
)
.
This
puts
us
in
the
situation
discussed
in
Section
\ref{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites}.
Therefore
we
obtain
a
morphism
of
ringed
topoi
$
$
a
:
(
\Sh(X_{Zar
}
)
,
\mathcal{O
}
)
\longrightarrow
(
\Sh(S
)
,
\mathcal{O}_S
)
$
$
\medskip\noindent
A
final
observation
is
the
following
.
Suppose
we
are
given
a
morphism
$
h
:
X
\to
Y$
of
simplicial
schemes
$
X$
and
$
Y$
with
structure
sheaves
$
\mathcal{O}_X$
,
$
\mathcal{O}_Y$
,
augmentations
$
a_0
:
X_0
\to
X_{-1}$
,
$
b_0
:
Y_0
\to
Y_{-1}$
and
a
morphism
$
h_{-1
}
:
X_{-1
}
\to
Y_{-1}$
such
that
$
$
\xymatrix
{
X_0
\ar[r]_{h_0
}
\ar[d]_{a_0
}
&
Y_0
\ar[d]^{b_0
}
\\
X_{-1
}
\ar[r]^{h_{-1
}
}
&
Y_{-1
}
}
$
$
commutes
.
Then
from
the
constructions
elucidated
above
we
obtain
a
commutative
diagram
of
morphisms
of
ringed
topoi
as
follows
$
$
\xymatrix
{
(
\Sh(X_{Zar
}
)
,
\mathcal{O}_X
)
\ar[r]_{h_{Zar
}
}
\ar[d]_a
&
(
\Sh(Y_{Zar
}
)
,
\mathcal{O}_Y
)
\ar[d]^b
\\
(
\Sh(X_{-1
}
)
,
\mathcal{O}_{X_{-1
}
}
)
\ar[r]^{h_{-1
}
}
&
(
\Sh(Y_{-1
}
)
,
\mathcal{O}_{Y_{-1
}
}
)
}
$
$
\section{Descent
in
terms
of
simplicial
schemes
}
\label{section
-
simplicial
-
descent
}
\noindent
Cartesian
morphisms
are
defined
as
follows
.
\begin{definition
}
\label{definition
-
cartesian
-
morphism
}
Let
$
a
:
Y
\to
X$
be
a
morphism
of
simplicial
schemes
.
We
say
$
a$
is
{
\it
cartesian
}
,
or
that
{
\it
$
Y$
is
cartesian
over
$
X$
}
,
if
for
every
morphism
$
\varphi
:
[
n
]
\to
[
m]$
of
$
\Delta$
the
corresponding
diagram
$
$
\xymatrix
{
Y_m
\ar[r]_a
\ar[d]_{Y(\varphi
)
}
&
X_m
\ar[d]^{X(\varphi)}\\
Y_n
\ar[r]^{a
}
&
X_n
}
$
$
is
a
fibre
square
in
the
category
of
schemes
.
\end{definition
}
\noindent
Cartesian
morphisms
are
related
to
descent
data
.
First
we
prove
a
general
lemma
describing
the
category
of
cartesian
simplicial
schemes
over
a
fixed
simplicial
scheme
.
In
this
lemma
we
denote
$
f^
*
:
\Sch
/
X
\to
\Sch
/
Y$
the
base
change
functor
associated
to
a
morphism
of
schemes
$
f
:
Y
\to
X$.
\begin{lemma
}
\label{lemma
-
characterize
-
cartesian
-
schemes
}
Let
$
X$
be
a
simplicial TYPE
scheme
.
The
category
of
simplicial
schemes
cartesian
over
$
X$
is
equivalent
to
the
category
of
pairs
$
(
V
,
\varphi)$
where
$
V$
is
a
scheme
over
$
X_0
$
and
$
$
\varphi
:
V
\times_{X_0
,
d^1_1
}
X_1
\longrightarrow
X_1
\times_{d^1_0
,
X_0
}
V
$
$
is
an
isomorphism
over
$
X_1
$
such
that
$
(
s_0
^
0)^*\varphi
=
\text{id}_V$
and
such
that
$
$
(
d^2_1)^*\varphi
=
(
d^2_0)^*\varphi
\circ
(
d^2_2)^*\varphi
$
$
as
morphisms
of
schemes
over
$
X_2$.
\end{lemma
}
\begin{proof
}
The
statement
of
the
displayed
equality
makes
sense
because
$
d^1_1
\circ
d^2_2
=
d^1_1
\circ
d^2_1
$
,
$
d^1_1
\circ
d^2_0
=
d^1_0
\circ
d^2_2
$
,
and
$
d^1_0
\circ
d^2_0
=
d^1_0
\circ
d^2_1
$
as
morphisms
$
X_2
\to
X_0
$
,
see
Simplicial
,
Remark
\ref{simplicial
-
remark
-
relations
}
hence
we
can
picture
these
maps
as
follows
$
$
\xymatrix
{
&
X_2
\times_{d^1_1
\circ
d^2_0
,
X_0
}
V
\ar[r]_-{(d^2_0)^*\varphi
}
&
X_2
\times_{d^1_0
\circ
d^2_0
,
X_0
}
V
\ar@{=}[rd
]
&
\\
X_2
\times_{d^1_0
\circ
d^2_2
,
X_0
}
V
\ar@{=}[ru
]
&
&
&
X_2
\times_{d^1_0
\circ
d^2_1
,
X_0
}
V
\\
&
X_2
\times_{d^1_1
\circ
d^2_2
,
X_0
}
V
\ar[lu]^{(d^2_2)^*\varphi
}
\ar@{=}[r
]
&
X_2
\times_{d^1_1
\circ
d^2_1
,
X_0
}
V
\ar[ru]_{(d^2_1)^*\varphi
}
}
$
$
and
the
condition
signifies
the
diagram
is
commutative
.
It
is
clear
that
given
a
simplicial
scheme
$
Y$
cartesian
over
$
X$
we
can
set
$
V
=
Y_0
$
and
$
\varphi$
equal
to
the
composition
$
$
V
\times_{X_0
,
d^1_1
}
X_1
=
Y_0
\times_{X_0
,
d^1_1
}
X_1
=
Y_1
=
X_1
\times_{X_0
,
d^1_0
}
Y_0
=
X_1
\times_{X_0
,
d^1_0
}
V
$
$
of
identifications
given
by
the
cartesian
structure
.
To
prove
this
functor
is
an
equivalence
we
construct
a
quasi
-
inverse
.
The
construction
of
the
quasi
-
inverse
is
analogous
to
the
construction
discussed
in
Descent
,
Section
\ref{descent
-
section
-
descent
-
modules
}
from
which
we
borrow
the
notation
$
\tau^n_i
:
[
0
]
\to
[
n]$
,
$
0
\mapsto
i$
and
$
\tau^n_{ij
}
:
[
1
]
\to
[
n]$
,
$
0
\mapsto
i$
,
$
1
\mapsto
j$.
Namely
,
given
a
pair
$
(
V
,
\varphi)$
as
in
the
lemma
we
set
$
Y_n
=
X_n
\times_{X(\tau^n_n
)
,
X_0
}
V$.
Then
given
$
\beta
:
[
n
]
\to
[
m]$
we
define
$
V(\beta
)
:
Y_m
\to
Y_n$
as
the
pullback
by
$
X(\tau^m_{\beta(n)m})$
of
the
map
$
\varphi$
postcomposed
by
the
projection
$
X_m
\times_{X(\beta
)
,
X_n
}
Y_n
\to
Y_n$.
This
makes
sense
because
$
$
X_m
\times_{X(\tau^m_{\beta(n)m
}
)
,
X_1
}
X_1
\times_{d^1_1
,
X_0
}
V
=
X_m
\times_{X(\tau^m_m
)
,
X_0
}
V
=
Y_m
$
$
and
$
$
X_m
\times_{X(\tau^m_{\beta(n)m
}
)
,
X_1
}
X_1
\times_{d^1_0
,
X_0
}
V
=
X_m
\times_{X(\tau^m_{\beta(n
)
}
)
,
X_0
}
V
=
X_m
\times_{X(\beta
)
,
X_n
}
Y_n
.
$
$
We
omit
the
verification
that
the
commutativity
of
the
displayed
diagram
above
implies
the
maps
compose
correctly
.
We
also
omit
the
verification
that
the
two
functors
are
quasi
-
inverse
to
each
other
.
\end{proof
}
\begin{definition
}
\label{definition
-
fibre
-
products
-
simplicial
-
scheme
}
Let
$
f
:
X
\to
S$
be
a
morphism
of
schemes
.
The
{
\it
simplicial
scheme
associated
to
$
f$
}
,
denoted
$
(
X
/
S)_\bullet$
,
is
the
functor
$
\Delta^{opp
}
\to
\Sch$
,
$
[
n
]
\mapsto
X
\times_S
\ldots
\times_S
X$
described
in
Simplicial
,
Example
\ref{simplicial
-
example
-
fibre
-
products
-
simplicial
-
object}.
\end{definition
}
\noindent
Thus
$
(
X
/
S)_n$
is
the
$
(
n
+
1)$-fold
fibre
product
of
$
X$
over
$
S$.
The
morphism
$
d^1_0
:
X
\times_S
X
\to
X$
is
the
map
$
(
x_0
,
x_1
)
\mapsto
x_1
$
and
the
morphism
$
d^1_1
$
is
the
other
projection
.
The
morphism
$
s^0_0
$
is
the
diagonal
morphism
$
X
\to
X
\times_S
X$.
\begin{lemma
}
\label{lemma
-
cartesian
-
over
}
Let
$
f
:
X
\to
S$
be
a
morphism
of
schemes
.
Let
$
\pi
:
Y
\to
(
X
/
S)_\bullet$
be
a
cartesian TYPE
morphism
of
simplicial
schemes
.
Set
$
V
=
Y_0
$
considered
as
a
scheme
over
$
X$.
The
morphisms
$
d^1_0
,
d^1_1
:
Y_1
\to
Y_0
$
and
the
morphism
$
\pi_1
:
Y_1
\to
X
\times_S
X$
induce
isomorphisms
$
$
\xymatrix
{
V
\times_S
X
&
&
Y_1
\ar[ll]_-{(d^1_1
,
\text{pr}_1
\circ
\pi_1
)
}
\ar[rr]^-{(\text{pr}_0
\circ
\pi_1
,
d^1_0
)
}
&
&
X
\times_S
V.
}
$
$
Denote
$
\varphi
:
V
\times_S
X
\to
X
\times_S
V$
the
resulting
isomorphism
.
Then
the
pair
$
(
V
,
\varphi)$
is
a
descent
datum
relative
to
$
X
\to
S$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
(
part
of
)
Lemma
\ref{lemma
-
characterize
-
cartesian
-
schemes
}
as
the
displayed
equation
of
that
lemma
is
equivalent
to
the
cocycle
condition
of
Descent
,
Definition
\ref{descent
-
definition
-
descent
-
datum}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cartesian
-
equivalent
-
descent
-
datum
}
Let
$
f
:
X
\to
S$
be
a
morphism
of
schemes
.
The
construction
$
$
\begin{matrix
}
\text{category
of
cartesian
}
\\
\text{schemes
over
}
(
X
/
S)_\bullet
\end{matrix
}
\longrightarrow
\begin{matrix
}
\text
{
category
of
descent
data
}
\\
\text
{
relative
to
}
X
/
S
\end{matrix
}
$
$
of
Lemma
\ref{lemma
-
cartesian
-
over
}
is
an
equivalence
of
categories
.
\end{lemma
}
\begin{proof
}
The
functor
from
left
to
right
is
given
in
Lemma
\ref{lemma
-
cartesian
-
over}.
Hence
this
is
a
special
case
of
Lemma
\ref{lemma
-
characterize
-
cartesian
-
schemes}.
\end{proof
}
\noindent
We
may
reinterpret
the
pullback
of
Descent
,
Lemma
\ref{descent
-
lemma
-
pullback
}
as
follows
.
Suppose
given
a
morphism
of
simplicial
schemes
$
f
:
X
'
\to
X$
and
a
cartesian
morphism
of
simplicial
schemes
$
Y
\to
X$.
Then
the
fibre
product
(
viewed
as
a
``
pullback
''
)
$
$
f^*Y
=
Y
\times_X
X
'
$
$
of
simplicial
schemes
is
a
simplicial
scheme
cartesian
over
$
X'$.
Suppose
given
a
commutative
diagram
of
morphisms
of
schemes
$
$
\xymatrix
{
X
'
\ar[r]_f
\ar[d
]
&
X
\ar[d
]
\\
S
'
\ar[r
]
&
S.
}
$
$
This
gives
rise
to
a
morphism
of
simplicial
schemes
$
$
f_\bullet
:
(
X'/S')_\bullet
\longrightarrow
(
X
/
S)_\bullet
.
$
$
We
claim
that
the
``
pullback
''
$
f_\bullet^*$
along
the
morphism
$
f_\bullet
:
(
X'/S')_\bullet
\to
(
X
/
S)_\bullet$
corresponds
via
Lemma
\ref{lemma
-
cartesian
-
equivalent
-
descent
-
datum
}
with
the
pullback
defined
in
terms
of
descent
data
in
the
aforementioned
Descent
,
Lemma
\ref{descent
-
lemma
-
pullback}.
\section{Quasi
-
coherent
modules
on
simplicial
schemes
}
\label{section
-
modules
-
simplicial
}
\begin{lemma
}
\label{lemma
-
pullback
-
cartesian
-
module
}
Let
$
f
:
V
\to
U$
be
a
morphism
of
simplicial
schemes
.
Given
a
quasi
-
coherent
module
$
\mathcal{F}$
on
$
U_{Zar}$
the
pullback
$
f^*\mathcal{F}$
is
a
quasi
-
coherent
module
on
$
V_{Zar}$.
\end{lemma
}
\begin{proof
}
Recall
that
$
\mathcal{F}$
is
cartesian
with
$
\mathcal{F}_n$
quasi
-
coherent
,
see
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
By
Lemma
\ref{lemma
-
describe
-
functoriality
}
we
see
that
$
(
f^*\mathcal{F})_n
=
f_n^*\mathcal{F}_n$
(
some
details
omitted
)
.
Hence
$
(
f^*\mathcal{F})_n$
is
quasi
-
coherent
.
The
same
fact
and
the
cartesian
property
for
$
\mathcal{F}$
imply
the
cartesian
property
for
$
f^*\mathcal{F}$.
Thus
$
\mathcal{F}$
is
quasi
-
coherent
by
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf
}
again
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
pushforward
-
cartesian
-
module
}
Let
$
f
:
V
\to
U$
be
a
cartesian TYPE
morphism
of
simplicial
schemes
.
Assume
the
morphisms
$
d^n_j
:
U_n
\to
U_{n
-
1}$
are
flat
and
the
morphisms
$
V_n
\to
U_n$
are
quasi
-
compact
and
quasi
-
separated
.
For
a
quasi
-
coherent
module
$
\mathcal{G}$
on
$
V_{Zar}$
the
pushforward
$
f_*\mathcal{G}$
is
a
quasi
-
coherent
module
on
$
U_{Zar}$.
\end{lemma
}
\begin{proof
}
If
$
\mathcal{F
}
=
f
_
*
\mathcal{G}$
,
then
$
\mathcal{F}_n
=
f_{n
,
*
}
\mathcal{G}_n$
by
Lemma
\ref{lemma
-
describe
-
functoriality}.
The
maps
$
\mathcal{F}(\varphi)$
are
defined
using
the
base
change
maps
,
see
Cohomology
,
Section
\ref{cohomology
-
section
-
base
-
change
-
map}.
The
sheaves
$
\mathcal{F}_n$
are
quasi
-
coherent
by
Schemes
,
Lemma
\ref{schemes
-
lemma
-
push
-
forward
-
quasi
-
coherent
}
and
the
fact
that
$
\mathcal{G}_n$
is
quasi
-
coherent
by
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
The
base
change
maps
along
the
degeneracies
$
d^n_j$
are
isomorphisms
by
Cohomology
of
Schemes
,
Lemma
\ref{coherent
-
lemma
-
flat
-
base
-
change
-
cohomology
}
and
the
fact
that
$
\mathcal{G}$
is
cartesian
by
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
Hence
$
\mathcal{F}$
is
cartesian
by
Lemma
\ref{lemma
-
check
-
cartesian
-
module}.
Thus
$
\mathcal{F}$
is
quasi
-
coherent
by
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
adjoint
-
functors
-
cartesian
-
modules
}
Let
$
f
:
V
\to
U$
be
a
cartesian TYPE
morphism
of
simplicial
schemes
.
Assume
the
morphisms
$
d^n_j
:
U_n
\to
U_{n
-
1}$
are
flat
and
the
morphisms
$
V_n
\to
U_n$
are
quasi
-
compact
and
quasi
-
separated
.
Then
$
f^*$
and
$
f_*$
form
an
adjoint
pair
of
functors
between
the
categories
of
quasi
-
coherent
modules
on
$
U_{Zar}$
and
$
V_{Zar}$.
\end{lemma
}
\begin{proof
}
We
have
seen
in
Lemmas
\ref{lemma
-
pullback
-
cartesian
-
module
}
and
\ref{lemma
-
pushforward
-
cartesian
-
module
}
that
the
statement
makes
sense
.
The
adjointness
property
follows
immediately
from
the
fact
that
each
$
f_n^*$
is
adjoint
to
$
f_{n
,
*
}
$
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cartesian
-
modules
-
with
-
section
}
Let
$
f
:
X
\to
S$
be
a
morphism
of
schemes
which
has
a
section\footnote{In
fact
,
it
would
be
enough
to
assume
that
$
f$
has
fpqc
locally
on
$
S$
a
section
,
since
we
have
descent
of
quasi
-
coherent
modules
by
Descent
,
Section
\ref{descent
-
section
-
fpqc
-
descent
-
quasi
-
coherent}.}.
Let
$
(
X
/
S)_\bullet$
be
the
simplicial
scheme
associated
to
$
X
\to
S$
,
see
Definition
\ref{definition
-
fibre
-
products
-
simplicial
-
scheme}.
Then
pullback
defines
an
equivalence
between
the
category
of
quasi
-
coherent
$
\mathcal{O}_S$-modules
and
the
category
of
quasi
-
coherent
modules
on
$
(
(
X
/
S)_\bullet)_{Zar}$.
\end{lemma
}
\begin{proof
}
Let
$
\sigma
:
S
\to
X$
be
a
section TYPE
of
$
f$.
Let
$
(
\mathcal{F
}
,
\alpha)$
be
a
pair TYPE
as
in
Lemma
\ref{lemma
-
characterize
-
cartesian
-
modules}.
Set
$
\mathcal{G
}
=
\sigma^*\mathcal{F}$.
Consider
the
diagram
$
$
\xymatrix
{
X
\ar[r]_-{(\sigma
\circ
f
,
1
)
}
\ar[d]_f
&
X
\times_S
X
\ar[d]^{\text{pr}_0
}
\ar[r]_-{\text{pr}_1
}
&
X
\\
S
\ar[r]^\sigma
&
X
}
$
$
Note
that
$
\text{pr}_0
=
d^1_1
$
and
$
\text{pr}_1
=
d^1_0$.
Hence
we
see
that
$
(
\sigma
\circ
f
,
1)^*\alpha$
defines
an
isomorphism
$
$
f^*\mathcal{G
}
=
(
\sigma
\circ
f
,
1)^*\text{pr}_0^*\mathcal{F
}
\longrightarrow
(
\sigma
\circ
f
,
1)^*\text{pr}_1^*\mathcal{F
}
=
\mathcal{F
}
$
$
We
omit
the
verification
that
this
isomorphism
is
compatible
with
$
\alpha$
and
the
canonical
isomorphism
$
\text{pr}_0^*f^*\mathcal{G
}
\to
\text{pr}_1^*f^*\mathcal{G}$.
\end{proof
}
\section{Groupoids
and
simplicial
schemes
}
\label{section
-
groupoids
-
simplicial
}
\noindent
Given
a
groupoid
in
schemes
we
can
build
a
simplicial
scheme
.
It
will
turn
out
that
the
category
of
quasi
-
coherent
sheaves
on
a
groupoid
is
equivalent
to
the
category
of
cartesian
quasi
-
coherent
sheaves
on
the
associated
simplicial
scheme
.
\begin{lemma
}
\label{lemma
-
groupoid
-
simplicial
}
Let
$
(
U
,
R
,
s
,
t
,
c
,
e
,
i)$
be
a
groupoid TYPE
scheme
over
$
S$.
There
exists
a
simplicial
scheme
$
X$
over
$
S$
with
the
following
properties
\begin{enumerate
}
\item
$
X_0
=
U$
,
$
X_1
=
R$
,
$
X_2
=
R
\times_{s
,
U
,
t
}
R$
,
\item
$
s_0
^
0
=
e
:
X_0
\to
X_1
$
,
\item
$
d^1_0
=
s
:
X_1
\to
X_0
$
,
$
d^1_1
=
t
:
X_1
\to
X_0
$
,
\item
$
s_0
^
1
=
(
e
\circ
t
,
1
)
:
X_1
\to
X_2
$
,
$
s_1
^
1
=
(
1
,
e
\circ
t
)
:
X_1
\to
X_2
$
,
\item
$
d^2_0
=
\text{pr}_1
:
X_2
\to
X_1
$
,
$
d^2_1
=
c
:
X_2
\to
X_1
$
,
$
d^2_2
=
\text{pr}_0
$
,
and
\item
$
X
=
\text{cosk}_2
\text{sk}_2
X$.
\end{enumerate
}
For
all
$
n$
we
have
$
X_n
=
R
\times_{s
,
U
,
t
}
\ldots
\times_{s
,
U
,
t
}
R$
with
$
n$
factors
.
The
map
$
d^n_j
:
X_n
\to
X_{n
-
1}$
is
given
on
functors
of
points
by
$
$
(
r_1
,
\ldots
,
r_n
)
\longmapsto
(
r_1
,
\ldots
,
c(r_j
,
r_{j
+
1
}
)
,
\ldots
,
r_n
)
$
$
for
$
1
\leq
j
\leq
n
-
1
$
whereas
$
d^n_0(r_1
,
\ldots
,
r_n
)
=
(
r_2
,
\ldots
,
r_n)$
and
$
d^n_n(r_1
,
\ldots
,
r_n
)
=
(
r_1
,
\ldots
,
r_{n
-
1})$.
\end{lemma
}
\begin{proof
}
We
only
have
to
verify
that
the
rules
prescribed
in
(
1
)
,
(
2
)
,
(
3
)
,
(
4
)
,
(
5
)
define
a
$
2$-truncated
simplicial
scheme
$
U'$
over
$
S$
,
since
then
(
6
)
allows
us
to
set
$
X
=
\text{cosk}_2
U'$
,
see
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
existence
-
cosk}.
Using
the
functor
of
points
approach
,
all
we
have
to
verify
is
that
if
$
(
\text{Ob
}
,
\text{Arrows
}
,
s
,
t
,
c
,
e
,
i)$
is
a
groupoid
,
then
$
$
\xymatrix
{
\text{Arrows
}
\times_{s
,
\text{Ob
}
,
t
}
\text{Arrows
}
\ar@<8ex>[d]^{\text{pr}_0
}
\ar@<0ex>[d]_c
\ar@<-8ex>[d]_{\text{pr}_1
}
\\
\text{Arrows
}
\ar@<4ex>[d]^t
\ar@<-4ex>[d]_s
\ar@<4ex>[u]^{1
,
e
}
\ar@<-4ex>[u]_{e
,
1
}
\\
\text{Ob
}
\ar@<0ex>[u]_e
}
$
$
is
a
$
2$-truncated
simplicial
set
.
We
omit
the
details
.
\medskip\noindent
Finally
,
the
description
of
$
X_n$
for
$
n
>
2
$
follows
by
induction
from
the
description
of
$
X_0
$
,
$
X_1
$
,
$
X_2
$
,
and
Simplicial
,
Remark
\ref{simplicial
-
remark
-
inductive
-
coskeleton
}
and
Lemma
\ref{simplicial
-
lemma
-
work
-
out}.
Alternately
,
one
shows
that
$
\text{cosk}_2
$
applied
to
the
$
2$-truncated
simplicial
set
displayed
above
gives
a
simplicial
set
whose
$
n$th
term
equals
$
\text{Arrows
}
\times_{s
,
\text{Ob
}
,
t
}
\ldots
\times_{s
,
\text{Ob
}
,
t
}
\text{Arrows}$
with
$
n$
factors
and
degeneracy
maps
as
given
in
the
lemma
.
Some
details
omitted
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
quasi
-
coherent
-
groupoid
-
simplicial
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
(
U
,
R
,
s
,
t
,
c)$
be
a
groupoid TYPE
scheme
over
$
S$.
Let
$
X$
be
the
simplicial
scheme
over
$
S$
constructed
in
Lemma
\ref{lemma
-
groupoid
-
simplicial}.
Then
the
category
of
quasi
-
coherent
modules
on
$
(
U
,
R
,
s
,
t
,
c)$
is
equivalent
to
the
category
of
quasi
-
coherent
modules
on
$
X_{Zar}$.
\end{lemma
}
\begin{proof
}
This
is
clear
from
Lemmas
\ref{lemma
-
quasi
-
coherent
-
sheaf
}
and
\ref{lemma
-
characterize
-
cartesian
-
modules
}
and
Groupoids
,
Definition
\ref{groupoids
-
definition
-
groupoid
-
module}.
\end{proof
}
\noindent
In
the
following
lemma
we
will
use
the
concept
of
a
cartesian
morphism
$
V
\to
U$
of
simplicial
schemes
as
defined
in
Definition
\ref{definition
-
cartesian
-
morphism}.
\begin{lemma
}
\label{lemma
-
quasi
-
coherent
-
groupoid
-
R
-
cartesian
}
Let
$
(
U
,
R
,
s
,
t
,
c)$
be
a
groupoid TYPE
scheme
over
a
scheme
$
S$.
Let
$
X$
be
the
simplicial
scheme
over
$
S$
constructed
in
Lemma
\ref{lemma
-
groupoid
-
simplicial}.
Let
$
(
R
/
U)_\bullet$
be
the
simplicial
scheme
associated
to
$
s
:
R
\to
U$
,
see
Definition
\ref{definition
-
fibre
-
products
-
simplicial
-
scheme}.
There
exists
a
cartesian
morphism
$
t_\bullet
:
(
R
/
U)_\bullet
\to
X$
of
simplicial
schemes
with
low
degree
morphisms
given
by
$
$
\xymatrix
{
R
\times_{s
,
U
,
s
}
R
\times_{s
,
U
,
s
}
R
\ar@<3ex>[r]_-{\text{pr}_{12
}
}
\ar@<0ex>[r]_-{\text{pr}_{02
}
}
\ar@<-3ex>[r]_-{\text{pr}_{01
}
}
\ar[dd]_{(r_0
,
r_1
,
r_2
)
\mapsto
(
r_0
\circ
r_1^{-1
}
,
r_1
\circ
r_2^{-1
}
)
}
&
R
\times_{s
,
U
,
s
}
R
\ar@<1ex>[r]_-{\text{pr}_1
}
\ar@<-2ex>[r]_-{\text{pr}_0
}
\ar[dd]_{(r_0
,
r_1
)
\mapsto
r_0
\circ
r_1^{-1
}
}
&
R
\ar[dd]^t
\\
\\
R
\times_{s
,
U
,
t
}
R
\ar@<3ex>[r]_{\text{pr}_1
}
\ar@<0ex>[r]_c
\ar@<-3ex>[r]_{\text{pr}_0
}
&
R
\ar@<1ex>[r]_s
\ar@<-2ex>[r]_t
&
U
}
$
$
\end{lemma
}
\begin{proof
}
For
arbitrary
$
n$
we
define
$
(
R
/
U)_\bullet
\to
X_n$
by
the
rule
$
$
(
r_0
,
\ldots
,
r_n
)
\longrightarrow
(
r_0
\circ
r_1^{-1
}
,
\ldots
,
r_{n
-
1
}
\circ
r_n^{-1
}
)
$
$
Compatibility
with
degeneracy
maps
is
clear
from
the
description
of
the
degeneracies
in
Lemma
\ref{lemma
-
groupoid
-
simplicial}.
We
omit
the
verification
that
the
maps
respect
the
morphisms
$
s^n_j$.
Groupoids
,
Lemma
\ref{groupoids
-
lemma
-
diagram
-
pull
}
(
with
the
roles
of
$
s$
and
$
t$
reversed
)
shows
that
the
two
right
squares
are
cartesian
.
In
exactly
the
same
manner
one
shows
all
the
other
squares
are
cartesian
too
.
Hence
the
morphism
is
cartesian
.
\end{proof
}
\section{Descent
data
give
equivalence
relations
}
\label{section
-
equivalence
-
relation
}
\noindent
In
Section
\ref{section
-
simplicial
-
descent
}
we
saw
how
descent
data
relative
to
$
X
\to
S$
can
be
formulated
in
terms
of
cartesian
simplicial
schemes
over
$
(
X
/
S)_\bullet$.
Here
we
link
this
to
equivalence
relations
as
follows
.
\begin{lemma
}
\label{lemma
-
equivalence
-
relation
}
Let
$
f
:
X
\to
S$
be
a
morphism
of
schemes
.
Let
$
\pi
:
Y
\to
(
X
/
S)_\bullet$
be
a
cartesian TYPE
morphism
of
simplicial
schemes
,
see
Definitions
\ref{definition
-
cartesian
-
morphism
}
and
\ref{definition
-
fibre
-
products
-
simplicial
-
scheme}.
Then
the
morphism
$
$
j
=
(
d^1_1
,
d^1_0
)
:
Y_1
\to
Y_0
\times_S
Y_0
$
$
defines
an
equivalence
relation
on
$
Y_0
$
over
$
S$
,
see
Groupoids
,
Definition
\ref{groupoids
-
definition
-
equivalence
-
relation}.
\end{lemma
}
\begin{proof
}
Note
that
$
j$
is
a
monomorphism
.
Namely
the
composition
$
Y_1
\to
Y_0
\times_S
Y_0
\to
Y_0
\times_S
X$
is
an
isomorphism
as
$
\pi$
is
cartesian
.
\medskip\noindent
Consider
the
morphism
$
$
(
d^2_2
,
d^2_0
)
:
Y_2
\to
Y_1
\times_{d^1_0
,
Y_0
,
d^1_1
}
Y_1
.
$
$
This
works
because
$
d_0
\circ
d_2
=
d_1
\circ
d_0
$
,
see
Simplicial
,
Remark
\ref{simplicial
-
remark
-
relations}.
Also
,
it
is
a
morphism
over
$
(
X
/
S)_2$.
It
is
an
isomorphism
because
$
Y
\to
(
X
/
S)_\bullet$
is
cartesian
.
Note
for
example
that
the
right
hand
side
is
isomorphic
to
$
Y_0
\times_{\pi_0
,
X
,
\text{pr}_1
}
(
X
\times_S
X
\times_S
X
)
=
X
\times_S
Y_0
\times_S
X$
because
$
\pi$
is
cartesian
.
Details
omitted
.
\medskip\noindent
As
in
Groupoids
,
Definition
\ref{groupoids
-
definition
-
equivalence
-
relation
}
we
denote
$
t
=
\text{pr}_0
\circ
j
=
d^1_1
$
and
$
s
=
\text{pr}_1
\circ
j
=
d^1_0$.
The
isomorphism
above
,
combined
with
the
morphism
$
d^2_1
:
Y_2
\to
Y_1
$
give
us
a
composition
morphism
$
$
c
:
Y_1
\times_{s
,
Y_0
,
t
}
Y_1
\longrightarrow
Y_1
$
$
over
$
Y_0
\times_S
Y_0$.
This
immediately
implies
that
for
any
scheme
$
T
/
S$
the
relation
$
Y_1(T
)
\subset
Y_0(T
)
\times
Y_0(T)$
is
transitive
.
\medskip\noindent
Reflexivity
follows
from
the
fact
that
the
restriction
of
the
morphism
$
j$
to
the
diagonal
$
\Delta
:
X
\to
X
\times_S
X$
is
an
isomorphism
(
again
use
the
cartesian
property
of
$
\pi$
)
.
\medskip\noindent
To
see
symmetry
we
consider
the
morphism
$
$
(
d^2_2
,
d^2_1
)
:
Y_2
\to
Y_1
\times_{d^1_1
,
Y_0
,
d^1_1
}
Y_1
.
$
$
This
works
because
$
d_1
\circ
d_2
=
d_1
\circ
d_1
$
,
see
Simplicial
,
Remark
\ref{simplicial
-
remark
-
relations}.
It
is
an
isomorphism
because
$
Y
\to
(
X
/
S)_\bullet$
is
cartesian
.
Note
for
example
that
the
right
hand
side
is
isomorphic
to
$
Y_0
\times_{\pi_0
,
X
,
\text{pr}_0
}
(
X
\times_S
X
\times_S
X
)
=
Y_0
\times_S
X
\times_S
X$
because
$
\pi$
is
cartesian
.
Details
omitted
.
\medskip\noindent
Let
$
T
/
S$
be
a
scheme TYPE
. TYPE
Let
$
a
\sim
b$
for
$
a
,
b
\in
Y_0(T)$
be
synonymous
with
$
(
a
,
b
)
\in
Y_1(T)$.
The
isomorphism
$
(
d^2_2
,
d^2_1)$
above
implies
that
if
$
a
\sim
b$
and
$
a
\sim
c$
,
then
$
b
\sim
c$.
Combined
with
reflexivity
this
shows
that
$
\sim$
is
an
equivalence
relation
.
\end{proof
}
\section{An
example
case
}
\label{section
-
example
}
\noindent
In
this
section
we
show
that
disjoint
unions
of
spectra
of
Artinian
rings
can
be
descended
along
a
quasi
-
compact
surjective
flat
morphism
of
schemes
.
\begin{lemma
}
\label{lemma
-
equivalence
-
classes
-
points
}
Let
$
X
\to
S$
be
a
morphism
of
schemes
.
Suppose
$
Y
\to
(
X
/
S)_\bullet$
is
a
cartesian
morphism
of
simplicial
schemes
.
For
$
y
\in
Y_0
$
a
point
define
$
$
T_y
=
\{y
'
\in
Y_0
\mid
\exists\
y_1
\in
Y_1
:
d^1_1(y_1
)
=
y
,
d^1_0(y_1
)
=
y'\
}
$
$
as
a
subset
of
$
Y_0$.
Then
$
y
\in
T_y$
and
$
T_y
\cap
T_{y
'
}
\not
=
\emptyset
\Rightarrow
T_y
=
T_{y'}$.
\end{lemma
}
\begin{proof
}
Combine
Lemma
\ref{lemma
-
equivalence
-
relation
}
and
Groupoids
,
Lemma
\ref{groupoids
-
lemma
-
pre
-
equivalence
-
equivalence
-
relation
-
points}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
quasi
-
compact
}
Let
$
X
\to
S$
be
a
morphism
of
schemes
.
Suppose
$
Y
\to
(
X
/
S)_\bullet$
is
a
cartesian
morphism
of
simplicial
schemes
.
Let
$
y
\in
Y_0
$
be
a
point TYPE
. TYPE
If
$
X
\to
S$
is
quasi
-
compact
,
then
$
$
T_y
=
\{y
'
\in
Y_0
\mid
\exists\
y_1
\in
Y_1
:
d^1_1(y_1
)
=
y
,
d^1_0(y_1
)
=
y'\
}
$
$
is
a
quasi
-
compact
subset
of
$
Y_0$.
\end{lemma
}
\begin{proof
}
Let
$
F_y$
be
the
scheme
theoretic
fibre
of
$
d^1_1
:
Y_1
\to
Y_0
$
at
$
y$.
Then
we
see
that
$
T_y$
is
the
image
of
the
morphism
$
$
\xymatrix
{
F_y
\ar[r
]
\ar[d
]
&
Y_1
\ar[r]^{d^1_0
}
\ar[d]^{d^1_1
}
&
Y_0
\\
y
\ar[r
]
&
Y_0
&
}
$
$
Note
that
$
F_y$
is
quasi
-
compact
.
This
proves
the
lemma
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
descent
-
disjoint
-
union
-
Artinian
-
along
-
fields
}
Let
$
X
\to
S$
be
a
quasi TYPE
-
compact
flat
surjective
morphism
.
Let
$
(
V
,
\varphi)$
be
a
descent TYPE
datum
relative
to
$
X
\to
S$.
If
$
V$
is
a
disjoint
union
of
spectra
of
Artinian
rings
,
then
$
(
V
,
\varphi)$
is
effective
.
\end{lemma
}
\begin{proof
}
Let
$
Y
\to
(
X
/
S)_\bullet$
be
the
cartesian
morphism
of
simplicial
schemes
corresponding
to
$
(
V
,
\varphi)$
by
Lemma
\ref{lemma
-
cartesian
-
equivalent
-
descent
-
datum}.
Observe
that
$
Y_0
=
V$.
Write
$
V
=
\coprod_{i
\in
I
}
\Spec(A_i)$
with
each
$
A_i$
local
Artinian
.
Moreover
,
let
$
v_i
\in
V$
be
the
unique
closed
point
of
$
\Spec(A_i)$
for
all
$
i
\in
I$.
Write
$
i
\sim
j$
if
and
only
if
$
v_i
\in
T_{v_j}$
with
notation
as
in
Lemma
\ref{lemma
-
equivalence
-
classes
-
points
}
above
.
By
Lemmas
\ref{lemma
-
equivalence
-
classes
-
points
}
and
\ref{lemma
-
quasi
-
compact
}
this
is
an
equivalence
relation
with
finite
equivalence
classes
.
Let
$
\overline{I
}
=
I/\sim$.
Then
we
can
write
$
V
=
\coprod_{\overline{i
}
\in
\overline{I
}
}
V_{\overline{i}}$
with
$
V_{\overline{i
}
}
=
\coprod_{i
\in
\overline{i
}
}
\Spec(A_i)$.
By
construction
we
see
that
$
\varphi
:
V
\times_S
X
\to
X
\times_S
V$
maps
the
open
and
closed
subspaces
$
V_{\overline{i
}
}
\times_S
X$
into
the
open
and
closed
subspaces
$
X
\times_S
V_{\overline{i}}$.
In
other
words
,
we
get
descent
data
$
(
V_{\overline{i
}
}
,
\varphi_{\overline{i}})$
,
and
$
(
V
,
\varphi)$
is
the
coproduct
of
them
in
the
category
of
descent
data
.
Since
each
of
the
$
V_{\overline{i}}$
is
a
finite
union
of
spectra
of
Artinian
local
rings
the
morphism
$
V_{\overline{i
}
}
\to
X$
is
affine
,
see
Morphisms
,
Lemma
\ref{morphisms
-
lemma
-
Artinian
-
affine}.
Since
$
\{X
\to
S\}$
is
an
fpqc
covering
we
see
that
all
the
descent
data
$
(
V_{\overline{i
}
}
,
\varphi_{\overline{i}})$
are
effective
by
Descent
,
Lemma
\ref{descent
-
lemma
-
affine}.
\end{proof
}
\noindent
To
be
sure
,
the
lemma
above
has
very
limited
applicability
!
\section{Simplicial
algebraic
spaces
}
\label{section
-
simplicial
-
algebraic
-
spaces
}
\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
A
{
\it
simplicial
algebraic
space
}
is
a
simplicial
object
in
the
category
of
algebraic
spaces
over
$
S$
,
see
Simplicial
,
Definition
\ref{simplicial
-
definition
-
simplicial
-
object}.
Recall
that
a
simplicial
algebraic
space
looks
like
$
$
\xymatrix
{
X_2
\ar@<2ex>[r
]
\ar@<0ex>[r
]
\ar@<-2ex>[r
]
&
X_1
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
\ar@<1ex>[l
]
\ar@<-1ex>[l
]
&
X_0
\ar@<0ex>[l
]
}
$
$
Here
there
are
two
morphisms
$
d^1_0
,
d^1_1
:
X_1
\to
X_0
$
and
a
single
morphism
$
s^0_0
:
X_0
\to
X_1
$
,
etc
.
These
morphisms
satisfy
some
required
relations
such
as
$
d^1_0
\circ
s^0_0
=
\text{id}_{X_0
}
=
d^1_1
\circ
s^0_0
$
,
see
Simplicial
,
Lemma
\ref{simplicial
-
lemma
-
characterize
-
simplicial
-
object}.
It
is
useful
to
think
of
$
d^n_i
:
X_n
\to
X_{n
-
1}$
as
the
``
projection
forgetting
the
$
i$th
coordinate
''
and
to
think
of
$
s^n_j
:
X_n
\to
X_{n
+
1}$
as
the
``
diagonal
map
repeating
the
$
j$th
coordinate
''
.
\medskip\noindent
A
{
\it
morphism
of
simplicial
algebraic
spaces
}
$
h
:
X
\to
Y$
is
the
same
thing
as
a
morphism
of
simplicial
objects
in
the
category
of
algebraic
spaces
over
$
S$
,
see
Simplicial
,
Definition
\ref{simplicial
-
definition
-
simplicial
-
object}.
Thus
$
h$
consists
of
morphisms
of
algebraic
spaces
$
h_n
:
X_n
\to
Y_n$
such
that
$
h_{n
-
1
}
\circ
d^n_j
=
d^n_j
\circ
h_n$
and
$
h_{n
+
1
}
\circ
s^n_j
=
s^n_j
\circ
h_n$
whenever
this
makes
sense
.
\medskip\noindent
An
{
\it
augmentation
}
$
a
:
X
\to
X_{-1}$
of
a
simplicial
algebraic
space
$
X$
is
given
by
a
morphism
of
algebraic
spaces
$
a_0
:
X_0
\to
X_{-1}$
such
that
$
a_0
\circ
d^1_0
=
a_0
\circ
d^1_1$.
See
Simplicial
,
Section
\ref{simplicial
-
section
-
augmentation}.
In
this
situation
we
always
indicate
$
a_n
:
X_n
\to
X_{-1}$
the
induced
morphisms
for
$
n
\geq
0$.
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
algebraic
space
.
For
every
$
n$
we
have
the
site
$
X_{n
,
spaces
,
\etale}$
(
Properties
of
Spaces
,
Definition
\ref{spaces
-
properties
-
definition
-
spaces
-
etale
-
site
}
)
and
for
every
morphism
$
\varphi
:
[
m
]
\to
[
n]$
we
have
a
morphism
of
sites
$
$
f_\varphi
=
X(\varphi)_{spaces
,
\etale
}
:
X_{n
,
spaces
,
\etale
}
\to
X_{m
,
spaces
,
\etale
}
,
$
$
associated
to
the
morphism
of
algebraic
spaces
$
X(\varphi
)
:
X_n
\to
X_m$
(
Properties
of
Spaces
,
Lemma
\ref{spaces
-
properties
-
lemma
-
functoriality
-
etale
-
site
}
)
.
This
gives
a
simplicial
object
in
the
category
of
sites
.
In
Lemma
\ref{lemma
-
simplicial
-
site
-
site
}
we
constructed
an
associated
site
which
we
denote
$
X_{spaces
,
\etale}$.
An
object
of
the
site
$
X_{spaces
,
\etale}$
is
a
an
algebraic
space
$
U$
\'etale
over
$
X_n$
for
some
$
n$
and
a
morphism
$
(
\varphi
,
f
)
:
U
/
X_n
\to
V
/
X_m$
is
given
by
a
morphism
$
\varphi
:
[
m
]
\to
[
n]$
in
$
\Delta$
and
a
morphism
$
f
:
U
\to
V$
of
algebraic
spaces
such
that
the
diagram
$
$
\xymatrix
{
U
\ar[r]_f
\ar[d
]
&
V
\ar[d
]
\\
X_n
\ar[r]^{f_\varphi
}
&
X_m
}
$
$
is
commutative
.
Consider
the
full
subcategories
$
$
X_{affine
,
\etale
}
\subset
X_\etale
\subset
X_{spaces
,
\etale
}
$
$
whose
objects
are
$
U
/
X_n$
with
$
U$
affine
,
respectively
a
scheme
.
Endowing
these
categories
with
their
natural
topologies
(
see
Properties
of
Spaces
,
Lemma
\ref{spaces
-
properties
-
lemma
-
alternative
}
,
Definition
\ref{spaces
-
properties
-
definition
-
etale
-
site
}
,
and
Lemma
\ref{spaces
-
properties
-
lemma
-
compare
-
etale
-
sites
}
)
these
inclusion
functors
define
equivalences
of
topoi
$
$
\Sh(X_{affine
,
\etale
}
)
=
\Sh(X_\etale
)
=
\Sh(X_{spaces
,
\etale
}
)
$
$
In
the
following
we
will
silently
identify
these
topoi
.
We
will
say
that
$
X_\etale$
is
the
{
\it
small
\'etale
site
of
$
X$
}
and
its
topos
is
the
{
\it
small
\'etale
topos
of
$
X$}.
\medskip\noindent
Let
$
X_\etale$
be
the
small
\'etale
site
of
a
simplicial
algebraic
space
$
X$.
There
is
a
sheaf
of
rings
$
\mathcal{O}$
on
$
X_\etale$
whose
restriction
to
$
X_n$
is
the
structure
sheaf
$
\mathcal{O}_{X_n}$.
This
follows
from
Lemma
\ref{lemma
-
describe
-
sheaves
-
simplicial
-
site
-
site}.
We
will
say
{
\it
$
\mathcal{O}$
is
the
structure
sheaf
of
the
simplicial
algebraic
space
$
X$}.
At
this
point
all
the
material
developed
for
simplicial
(
ringed
)
sites
applies
,
see
Sections
\ref{section
-
simplicial
-
sites
}
,
\ref{section
-
augmentation
-
simplicial
-
sites
}
,
\ref{section
-
morphism
-
simplicial
-
sites
}
,
\ref{section
-
simplicial
-
sites
-
modules
}
,
\ref{section
-
cohomology
-
simplicial
-
sites
}
,
\ref{section
-
cohomology
-
augmentation
-
simplicial
-
sites
}
,
\ref{section
-
cohomology
-
simplicial
-
sites
-
modules
}
,
\ref{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites
}
,
\ref{section
-
cartesian
}
,
\ref{section
-
glueing
}
,
and
\ref{section
-
glueing
-
modules}.
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
algebraic
space
with
structure
sheaf
$
\mathcal{O}$.
As
on
any
ringed
topos
,
there
is
a
notion
of
a
{
\it
quasi
-
coherent
$
\mathcal{O}$-module
on
$
X_\etale$
}
,
see
Modules
on
Sites
,
Definition
\ref{sites
-
modules
-
definition
-
site
-
local}.
However
,
a
quasi
-
coherent
$
\mathcal{O}$-module
on
$
X_\etale$
is
just
a
cartesian
$
\mathcal{O}$-module
$
\mathcal{F}$
whose
restrictions
$
\mathcal{F}_n$
are
quasi
-
coherent
on
$
X_n$
,
see
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
\medskip\noindent
Let
$
h
:
X
\to
Y$
be
a
morphism
of
simplicial
algebraic
spaces
over
$
S$.
By
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
applied
to
the
morphisms
of
sites
$
(
h_n)_{spaces
,
\etale
}
:
X_{spaces
,
\etale
}
\to
Y_{spaces
,
\etale}$
(
Properties
of
Spaces
,
Lemma
\ref{spaces
-
properties
-
lemma
-
functoriality
-
etale
-
site
}
)
we
obtain
a
morphism
of
small
\'etale
topoi
$
h_\etale
:
\Sh(X_\etale
)
\to
\Sh(Y_\etale)$.
Recall
that
$
h_\etale^{-1}$
and
$
h_{\etale
,
*
}
$
have
a
simple
description
in
terms
of
the
components
,
see
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites}.
Let
$
\mathcal{O}_X$
,
resp.\
$
\mathcal{O}_Y$
denote
the
structure
sheaf
of
$
X$
,
resp.\
$
Y$.
We
define
$
h_\etale^\sharp
:
h_{\etale
,
*
}
\mathcal{O}_X
\to
\mathcal{O}_Y$
to
be
the
map
of
sheaves
of
rings
on
$
Y_\etale$
given
by
$
h_n^\sharp
:
h_{n
,
*
}
\mathcal{O}_{X_n
}
\to
\mathcal{O}_{Y_n}$
on
$
Y_n$.
We
obtain
a
morphism
of
ringed
topoi
$
$
h_\etale
:
(
\Sh(X_\etale
)
,
\mathcal{O}_X
)
\longrightarrow
(
\Sh(Y_\etale
)
,
\mathcal{O}_Y
)
$
$
\medskip\noindent
Let
$
X$
be
a
simplicial TYPE
algebraic
space
with
structure
sheaf
$
\mathcal{O}$.
Let
$
X_{-1}$
be
an
algebraic TYPE
space
over
$
S$
and
let
$
a_0
:
X_0
\to
X_{-1}$
be
an
augmentation TYPE
of
$
X$.
By
Lemma
\ref{lemma
-
augmentation
-
site
}
applied
to
the
morphism
of
sites
$
(
a_0)_{spaces
,
\etale
}
:
X_{0
,
spaces
,
\etale
}
\to
X_{-1
,
spaces
,
\etale}$
we
obtain
a
corresponding
morphism
of
topoi
$
a
:
\Sh(X_\etale
)
\to
\Sh(X_{-1
,
\etale})$.
Observe
that
$
a^{-1}\mathcal{G}$
is
the
sheaf
on
$
X_\etale$
with
components
$
a_n^{-1}\mathcal{G}$.
Hence
we
can
use
the
maps
$
a_n^\sharp
:
a_n^{-1}\mathcal{O}_{X_{-1
}
}
\to
\mathcal{O}_{X_n}$
to
define
a
map
$
a^\sharp
:
a^{-1}\mathcal{O}_{X_{-1
}
}
\to
\mathcal{O}$
,
or
equivalently
by
adjunction
a
map
$
a^\sharp
:
\mathcal{O}_{X_{-1
}
}
\to
a_*\mathcal{O}$
(
which
as
usual
has
the
same
name
)
.
This
puts
us
in
the
situation
discussed
in
Section
\ref{section
-
cohomology
-
augmentation
-
ringed
-
simplicial
-
sites}.
Therefore
we
obtain
a
morphism
of
ringed
topoi
$
$
a
:
(
\Sh(X_\etale
)
,
\mathcal{O
}
)
\longrightarrow
(
\Sh(X_{-1
}
)
,
\mathcal{O}_{X_{-1
}
}
)
$
$
\medskip\noindent
A
final
observation
is
the
following
.
Suppose
we
are
given
a
morphism
$
h
:
X
\to
Y$
of
simplicial
algebraic
spaces
$
X$
and
$
Y$
with
structure
sheaves
$
\mathcal{O}_X$
,
$
\mathcal{O}_Y$
,
augmentations
$
a_0
:
X_0
\to
X_{-1}$
,
$
b_0
:
Y_0
\to
Y_{-1}$
and
a
morphism
$
h_{-1
}
:
X_{-1
}
\to
Y_{-1}$
such
that
$
$
\xymatrix
{
X_0
\ar[r]_{h_0
}
\ar[d]_{a_0
}
&
Y_0
\ar[d]^{b_0
}
\\
X_{-1
}
\ar[r]^{h_{-1
}
}
&
Y_{-1
}
}
$
$
commutes
.
Then
from
the
constructions
elucidated
above
we
obtain
a
commutative
diagram
of
morphisms
of
ringed
topoi
as
follows
$
$
\xymatrix
{
(
\Sh(X_\etale
)
,
\mathcal{O}_X
)
\ar[r]_{h_\etale
}
\ar[d]_a
&
(
\Sh(Y_\etale
)
,
\mathcal{O}_Y
)
\ar[d]^b
\\
(
\Sh(X_{-1
}
)
,
\mathcal{O}_{X_{-1
}
}
)
\ar[r]^{h_{-1
}
}
&
(
\Sh(Y_{-1
}
)
,
\mathcal{O}_{Y_{-1
}
}
)
}
$
$
\section{Fppf
hypercoverings
of
algebraic
spaces
}
\label{section
-
fppf
-
hypercovering
}
\noindent
This
section
is
the
analogue
of
Section
\ref{section
-
proper
-
hypercovering
}
for
the
case
of
algebraic
spaces
and
fppf
hypercoverings
.
The
reader
who
wishes
to
do
so
,
can
replace
``
algebraic
space
''
everywhere
with
``
scheme
''
and
get
equally
valid
results
.
This
has
the
advantage
of
replacing
the
references
to
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
fppf
-
etale
}
with
references
to
\'Etale
Cohomology
,
Section
\ref{etale
-
cohomology
-
section
-
fppf
-
etale}.
\medskip\noindent
We
fix
a
base
scheme
$
S$.
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$
and
let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Assume
we
have
an
augmentation
$
$
a
:
U
\to
X
$
$
See
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
We
say
that
$
U$
is
an
{
\it
fppf
hypercovering
}
of
$
X$
if
\begin{enumerate
}
\item
$
U_0
\to
X$
is
flat
,
locally
of
finite
presentation
,
and
surjective
,
\item
$
U_1
\to
U_0
\times_X
U_0
$
is
flat
,
locally
of
finite
presentation
,
and
surjective
,
\item
$
U_{n
+
1
}
\to
(
\text{cosk}_n\text{sk}_n
U)_{n
+
1}$
is
flat
,
locally
of
finite
presentation
,
and
surjective
for
$
n
\geq
1$.
\end{enumerate
}
The
category
of
algebraic
spaces
over
$
S$
has
all
finite
limits
,
hence
the
coskeleta
used
in
the
formulation
above
exist
.
$
$
\fbox{Principle
:
Fppf
hypercoverings
can
be
used
to
compute
\'etale
cohomology
.
}
$
$
The
key
idea
behind
the
proof
of
the
principle
is
to
compare
the
fppf
and
\'etale
topologies
on
the
category
$
\textit{Spaces}/S$.
Namely
,
the
fppf
topology
is
stronger
than
the
\'etale
topology
and
we
have
(
a
)
a
flat
,
locally
finitely
presented
,
surjective
map
defines
an
fppf
covering
,
and
(
b
)
fppf
cohomology
of
sheaves
pulled
back
from
the
small
\'etale
site
agrees
with
\'etale
cohomology
as
we
have
seen
in
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
fppf
-
etale}.
\begin{lemma
}
\label{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
There
is
a
commutative
diagram
$
$
\xymatrix
{
\Sh((\textit{Spaces}/U)_{fppf
,
total
}
)
\ar[r]_-h
\ar[d]_{a_{fppf
}
}
&
\Sh(U_\etale
)
\ar[d]^a
\\
\Sh((\textit{Spaces}/X)_{fppf
}
)
\ar[r]^-{h_{-1
}
}
&
\Sh(X_\etale
)
}
$
$
where
the
left
vertical
arrow
is
defined
in
Section
\ref{section
-
hypercovering
}
and
the
right
vertical
arrow
is
defined
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
The
notation
$
(
\textit{Spaces}/U)_{fppf
,
total}$
indicates
that
we
are
using
the
construction
of
Section
\ref{section
-
hypercovering
}
for
the
site
$
(
\textit{Spaces}/S)_{fppf}$
and
the
simplicial
object
$
U$
of
this
site\footnote{We
could
also
use
the
\'etale
topology
and
this
would
be
denoted
$
(
\textit{Spaces}/U)_{\etale
,
total}$.}.
We
will
use
the
sites
$
X_{spaces
,
\etale}$
and
$
U_{spaces
,
\etale}$
for
the
topoi
on
the
right
hand
side
;
this
is
permissible
see
discussion
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\medskip\noindent
Observe
that
both
$
(
\textit{Spaces}/U)_{fppf
,
total}$
and
$
U_{spaces
,
\etale}$
fall
into
case
A
of
Situation
\ref{situation
-
simplicial
-
site}.
This
is
immediate
from
the
construction
of
$
U_\etale$
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces
}
and
it
follows
from
Lemma
\ref{lemma
-
sr
-
when
-
fibre
-
products
}
for
$
(
\textit{Spaces}/U)_{fppf
,
total}$.
Next
,
consider
the
functors
$
U_{n
,
spaces
,
\etale
}
\to
(
\textit{Spaces}/U_n)_{fppf}$
,
$
U
\mapsto
U
/
U_n$
and
$
X_{spaces
,
\etale
}
\to
(
\textit{Spaces}/X)_{fppf}$
,
$
U
\mapsto
U
/
X$.
We
have
seen
that
these
define
morphisms
of
sites
in
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
fppf
-
etale
}
where
these
were
denoted
$
a_{U_n
}
=
\epsilon_{U_n
}
\circ
\pi_{u_n}$
and
$
a_X
=
\epsilon_X
\circ
\pi_X$.
Thus
we
obtain
a
morphism
of
simplicial
sites
compatible
with
augmentations
as
in
Remark
\ref{remark
-
morphism
-
augmentation
-
simplicial
-
sites
}
and
we
may
apply
Lemma
\ref{lemma
-
morphism
-
augmentation
-
simplicial
-
sites
}
to
conclude
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
descent
-
sheaves
-
for
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$
,
then
$
$
a^{-1
}
:
\Sh(X_\etale
)
\to
\Sh(U_\etale
)
\quad\text{and}\quad
a^{-1
}
:
\textit{Ab}(X_\etale
)
\to
\textit{Ab}(U_\etale
)
$
$
are
fully
faithful
with
essential
image
the
cartesian
sheaves
and
quasi
-
inverse
given
by
$
a_*$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
We
will
prove
the
statement
for
sheaves
of
sets
.
It
will
be
an
TYPE
almost
formal
consequence
of
results
already
established
.
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale}.
In
the
proof
of
this
lemma
we
have
seen
that
$
h_{-1}$
is
the
morphism
$
a_X$
of
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
fppf
-
etale}.
Thus
it
follows
from
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
comparison
-
fppf
-
etale
}
that
$
(
h_{-1})^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
h_{-1
,
*
}
$
.
The
same
holds
true
for
the
components
$
h_n$
of
$
h$.
By
the
description
of
the
functors
$
h^{-1}$
and
$
h_*$
of
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
we
conclude
that
$
h^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
h_*$.
Observe
that
$
U$
is
a
hypercovering
of
$
X$
in
$
(
\textit{Spaces}/S)_{fppf}$
as
defined
in
Section
\ref{section
-
hypercovering}.
By
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
sheaves
}
we
see
that
$
a_{fppf}^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
a_{fppf
,
*
}
$
and
with
essential
image
the
cartesian
sheaves
on
$
(
\textit{Spaces}/U)_{fppf
,
total}$.
A
formal
argument
(
chasing
around
the
diagram
)
now
shows
that
$
a^{-1}$
is
fully
faithful
.
\medskip\noindent
Finally
,
suppose
that
$
\mathcal{G}$
is
a
cartesian
sheaf
on
$
U_\etale$.
Then
$
h^{-1}\mathcal{G}$
is
a
cartesian
sheaf
on
$
(
\textit{Spaces}/U)_{fppf
,
total}$.
Hence
$
h^{-1}\mathcal{G
}
=
a_{fppf}^{-1}\mathcal{H}$
for
some
sheaf
$
\mathcal{H}$
on
$
(
\textit{Spaces}/X)_{fppf}$.
In
particular
we
find
that
$
h_0^{-1}\mathcal{G}_0
=
(
a_{0
,
big
,
fppf})^{-1}\mathcal{H}$.
Recalling
that
$
h_0
=
a_{U_0}$
and
that
$
U_0
\to
X$
is
flat
,
locally
of
finite
presentation
,
and
surjective
,
we
find
from
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
descent
-
sheaf
-
fppf
-
etale
}
that
there
exists
a
sheaf
$
\mathcal{F}$
on
$
X_\etale$
and
isomorphism
$
\mathcal{H
}
=
(
h_{-1})^{-1}\mathcal{F}$.
Since
$
a_{fppf}^{-1}\mathcal{H
}
=
h^{-1}\mathcal{G}$
we
deduce
that
$
h^{-1}\mathcal{G
}
\cong
h^{-1}a^{-1}\mathcal{F}$.
By
fully
faithfulness
of
$
h^{-1}$
we
conclude
that
$
a^{-1}\mathcal{F
}
\cong
\mathcal{G}$.
\medskip\noindent
Fix
an
isomorphism
$
\theta
:
a^{-1}\mathcal{F
}
\to
\mathcal{G}$.
To
finish
the
proof
we
have
to
show
$
\mathcal{G
}
=
a^{-1}a_*\mathcal{G}$
(
in
order
to
show
that
the
quasi
-
inverse
is
given
by
$
a_*$
;
everything
else
has
been
proven
above
)
.
Because
$
a^{-1}$
is
fully
faithful
we
have
$
\text{id
}
\cong
a_*a^{-1}$
by
Categories
,
Lemma
\ref{categories
-
lemma
-
adjoint
-
fully
-
faithful}.
Thus
$
\mathcal{F
}
\cong
a_*a^{-1}\mathcal{F}$
and
$
a_*\theta
:
a_*a^{-1}\mathcal{F
}
\to
a_*\mathcal{G}$
combine
to
an
isomorphism
$
\mathcal{F
}
\to
a_*\mathcal{G}$.
Pulling
back
by
$
a$
and
precomposing
by
$
\theta^{-1}$
we
find
the
desired
isomorphism
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
for
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$
,
then
for
$
K
\in
D^+(X_\etale)$
$
$
K
\to
Ra_*(a^{-1}K
)
$
$
is
an
isomorphism
.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale}.
Observe
that
$
Rh_{n
,
*
}
h_n^{-1}$
is
the
identity
functor
on
$
D^+(U_{n
,
\etale})$
by
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
cohomological
-
descent
-
etale
-
fppf}.
Hence
$
Rh_*h^{-1}$
is
the
identity
functor
on
$
D^+(U_\etale)$
by
Lemma
\ref{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites}.
We
have
\begin{align
*
}
Ra_*(a^{-1}K
)
&
=
Ra_*Rh_*h^{-1}a^{-1}K
\\
&
=
Rh_{-1
,
*
}
Ra_{fppf
,
*
}
a_{fppf}^{-1}(h_{-1})^{-1}K
\\
&
=
Rh_{-1
,
*
}
(
h_{-1})^{-1}K
\\
&
=
K
\end{align
*
}
The
first
equality
by
the
discussion
above
,
the
second
equality
because
of
the
commutativity
of
the
diagram
in
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
}
,
the
third
equality
by
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
bounded
-
abelian
}
as
$
U$
is
a
hypercovering
of
$
X$
in
$
(
\textit{Spaces}/S)_{fppf}$
,
and
the
last
equality
by
the
already
used
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
cohomological
-
descent
-
etale
-
fppf}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compute
-
via
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$
,
then
$
$
R\Gamma(X_\etale
,
K
)
=
R\Gamma(U_\etale
,
a^{-1}K
)
$
$
for
$
K
\in
D^+(X_\etale)$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
cohomological
-
descent
-
for
-
fppf
-
hypercovering
}
because
$
R\Gamma(U_\etale
,
-
)
=
R\Gamma(X_\etale
,
-
)
\circ
Ra_*$
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
fppf
-
hypercovering
-
equivalence
-
bounded
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{A
}
\subset
\textit{Ab}(U_\etale)$
denote
the
weak
Serre
subcategory
of
cartesian
abelian
sheaves
.
If
$
U$
is
an
fppf
hypercovering
of
$
X$
,
then
the
functor
$
a^{-1}$
defines
an
equivalence
$
$
D^+(X_\etale
)
\longrightarrow
D_\mathcal{A}^+(U_\etale
)
$
$
with
quasi
-
inverse
$
Ra_*$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
Observe
that
$
\mathcal{A}$
is
a
weak
Serre
subcategory
by
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules}.
The
equivalence
is
a
formal
consequence
of
the
results
obtained
so
far
.
Use
Lemmas
\ref{lemma
-
equivalence
-
bounded
}
,
\ref{lemma
-
descent
-
sheaves
-
for
-
fppf
-
hypercovering
}
,
and
\ref{lemma
-
cohomological
-
descent
-
for
-
fppf
-
hypercovering}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
spectral
-
sequence
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{F}$
be
an
abelian TYPE
sheaf
on
$
X_\etale$.
Let
$
\mathcal{F}_n$
be
the
pullback
to
$
U_{n
,
\etale}$.
If
$
U$
is
an
fppf
hypercovering
of
$
X$
,
then
there
exists
a
canonical
spectral
sequence
$
$
E_1^{p
,
q
}
=
H^q_\etale(U_p
,
\mathcal{F}_p
)
$
$
converging
to
$
H^{p
+
q}_\etale(X
,
\mathcal{F})$.
\end{lemma
}
\begin{proof
}
Immediate
consequence
of
Lemmas
\ref{lemma
-
compute
-
via
-
fppf
-
hypercovering
}
and
\ref{lemma
-
simplicial
-
sheaf
-
cohomology
-
site}.
\end{proof
}
\section{Fppf
hypercoverings
of
algebraic
spaces
:
modules
}
\label{section
-
fppf
-
hypercovering
-
modules
}
\noindent
We
continue
the
discussion
of
(
cohomological
)
descent
for
fppf
hypercoverings
started
in
Section
\ref{section
-
fppf
-
hypercovering
}
but
in
this
section
we
discuss
what
happens
for
sheaves
of
modules
.
We
mainly
discuss
quasi
-
coherent
modules
and
it
turns
out
that
we
can
do
unbounded
cohomological
descent
for
those
.
\begin{lemma
}
\label{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale
-
modules
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
There
is
a
commutative
diagram
$
$
\xymatrix
{
(
\Sh((\textit{Spaces}/U)_{fppf
,
total
}
)
,
\mathcal{O}_{big
,
total
}
)
\ar[r]_-h
\ar[d]_{a_{fppf
}
}
&
(
\Sh(U_\etale
)
,
\mathcal{O}_U
)
\ar[d]^a
\\
(
\Sh((\textit{Spaces}/X)_{fppf
}
)
,
\mathcal{O}_{big
}
)
\ar[r]^-{h_{-1
}
}
&
(
\Sh(X_\etale
)
,
\mathcal{O}_X
)
}
$
$
of
ringed
topoi
where
the
left
vertical
arrow
is
defined
in
Section
\ref{section
-
hypercovering
-
modules
}
and
the
right
vertical
arrow
is
defined
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
For
the
underlying
diagram
of
topoi
we
refer
to
the
discussion
in
the
proof
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale}.
The
sheaf
$
\mathcal{O}_U$
is
the
structure
sheaf
of
the
simplicial
algebraic
space
$
U$
as
defined
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
The
sheaf
$
\mathcal{O}_X$
is
the
usual
structure
sheaf
of
the
algebraic
space
$
X$.
The
sheaves
of
rings
$
\mathcal{O}_{big
,
total}$
and
$
\mathcal{O}_{big}$
come
from
the
structure
sheaf
on
$
(
\textit{Spaces}/S)_{fppf}$
in
the
manner
explained
in
Section
\ref{section
-
hypercovering
-
modules
}
which
also
constructs
$
a_{fppf}$
as
a
morphism
of
ringed
topoi
.
The
component
morphisms
$
h_n
=
a_{U_n}$
and
$
h_{-1
}
=
a_X$
are
morphisms
of
ringed
topoi
by
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
fppf
-
etale
-
modules}.
Finally
,
since
the
continuous
functor
$
u
:
U_{spaces
,
\etale
}
\to
(
\textit{Spaces}/U)_{fppf
,
total}$
used
to
define
$
h$\footnote{This
happened
in
the
proof
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale
}
via
an
application
of
Lemma
\ref{lemma
-
morphism
-
augmentation
-
simplicial
-
sites}.
}
is
given
by
$
V
/
U_n
\mapsto
V
/
U_n$
we
see
that
$
h_*\mathcal{O}_{big
,
total
}
=
\mathcal{O}_U$
which
is
how
we
endow
$
h$
with
the
structure
of
a
morphism
of
ringed
simplicial
sites
as
in
Remark
\ref{remark
-
morphism
-
simplicial
-
sites
-
modules}.
Then
we
obtain
$
h$
as
a
morphism
of
ringed
topoi
by
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
-
modules}.
Please
observe
that
the
morphisms
$
h_n$
indeed
agree
with
the
morphisms
$
a_{U_n}$
described
above
.
We
omit
the
verification
that
the
diagram
is
commutative
(
as
a
diagram
of
ringed
topoi
--
we
already
know
it
is
commutative
as
a
diagram
of
topoi
)
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
descent
-
qcoh
-
for
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$
,
then
$
$
a^
*
:
\QCoh(\mathcal{O}_X
)
\to
\QCoh(\mathcal{O}_U
)
$
$
is
an
equivalence
fully
faithful
with
quasi
-
inverse
given
by
$
a_*$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale
-
modules}.
In
the
proof
of
this
lemma
we
have
seen
that
$
h_{-1}$
is
the
morphism
$
a_X$
of
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
fppf
-
etale
-
modules}.
Thus
it
follows
from
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
review
-
quasi
-
coherent
}
that
$
$
(
h_{-1})^
*
:
\QCoh(\mathcal{O}_X
)
\longrightarrow
\QCoh(\mathcal{O}_{big
}
)
$
$
is
an
equivalence
with
quasi
-
inverse
$
h_{-1
,
*
}
$
.
The
same
holds
true
for
the
components
$
h_n$
of
$
h$.
Recall
that
$
\QCoh(\mathcal{O}_U)$
and
$
\QCoh(\mathcal{O}_{big
,
total})$
consist
of
cartesian
modules
whose
components
are
quasi
-
coherent
,
see
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
Since
the
functors
$
h^*$
and
$
h_*$
of
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
-
modules
}
agree
with
the
functors
$
h_n^*$
and
$
h_{n
,
*
}
$
on
components
we
conclude
that
$
$
h^
*
:
\QCoh(\mathcal{O}_U
)
\longrightarrow
\QCoh(\mathcal{O}_{big
,
total
}
)
$
$
is
an
equivalence
with
quasi
-
inverse
$
h_*$.
Observe
that
$
U$
is
a
hypercovering
of
$
X$
in
$
(
\textit{Spaces}/S)_{fppf}$
as
defined
in
Section
\ref{section
-
hypercovering}.
By
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
modules
}
we
see
that
$
a_{fppf}^*$
is
fully
faithful
with
quasi
-
inverse
$
a_{fppf
,
*
}
$
and
with
essential
image
the
cartesian
sheaves
of
$
\mathcal{O}_{fppf
,
total}$-modules
.
Thus
,
by
the
description
of
$
\QCoh(\mathcal{O}_{big})$
and
$
\QCoh(\mathcal{O}_{big
,
total})$
of
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf
}
,
we
get
an
equivalence
$
$
a_{fppf}^
*
:
\QCoh(\mathcal{O}_{big
}
)
\longrightarrow
\QCoh(\mathcal{O}_{big
,
total
}
)
$
$
with
quasi
-
inverse
given
by
$
a_{fppf
,
*
}
$
.
A
formal
argument
(
chasing
around
the
diagram
)
now
shows
that
$
a^*$
is
fully
faithful
on
$
\QCoh(\mathcal{O}_X)$
and
has
image
contained
in
$
\QCoh(\mathcal{O}_U)$.
\medskip\noindent
Finally
,
suppose
that
$
\mathcal{G}$
is
in
$
\QCoh(\mathcal{O}_U)$.
Then
$
h^*\mathcal{G}$
is
in
$
\QCoh(\mathcal{O}_{big
,
total})$.
Hence
$
h^*\mathcal{G
}
=
a_{fppf}^*\mathcal{H}$
with
$
\mathcal{H
}
=
a_{fppf
,
*
}
h^*\mathcal{G}$
in
$
\QCoh(\mathcal{O}_{big})$
(
see
above
)
.
In
turn
we
see
that
$
\mathcal{H
}
=
(
h_{-1})^*\mathcal{F}$
with
$
\mathcal{F
}
=
h_{-1
,
*
}
\mathcal{H}$
in
$
\QCoh(\mathcal{O}_X)$.
Going
around
the
diagram
we
deduce
that
$
h^*\mathcal{G
}
\cong
h^*a^*\mathcal{F}$.
By
fully
faithfulness
of
$
h^*$
we
conclude
that
$
a^*\mathcal{F
}
\cong
\mathcal{G}$.
Since
$
\mathcal{F
}
=
h_{-1
,
*
}
a_{fppf
,
*
}
h^*\mathcal{G
}
=
a_*h_*h^*\mathcal{G
}
=
a_*\mathcal{G}$
we
also
obtain
the
statement
that
the
quasi
-
inverse
is
given
by
$
a_*$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
qcoh
-
for
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$
,
then
for
$
\mathcal{F}$
a
quasi
-
coherent
$
\mathcal{O}_X$-module
the
map
$
$
\mathcal{F
}
\to
Ra_*(a^*\mathcal{F
}
)
$
$
is
an
isomorphism
.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
fppf
-
etale}.
Let
$
\mathcal{F}_n
=
a_n^*\mathcal{F}$
be
the
$
n$th
component
of
$
a^*\mathcal{F}$.
This
is
a
quasi
-
coherent
$
\mathcal{O}_{U_n}$-module
.
Then
$
\mathcal{F}_n
=
Rh_{n
,
*
}
h_n^*\mathcal{F}_n$
by
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
cohomological
-
descent
-
etale
-
fppf
-
modules}.
Hence
$
a^*\mathcal{F
}
=
Rh_*h^*a^*\mathcal{F}$
by
Lemma
\ref{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites
-
modules}.
We
have
\begin{align
*
}
Ra_*(a^*\mathcal{F
}
)
&
=
Ra_*Rh_*h^*a^*\mathcal{F
}
\\
&
=
Rh_{-1
,
*
}
Ra_{fppf
,
*
}
a_{fppf}^*(h_{-1})^*\mathcal{F
}
\\
&
=
Rh_{-1
,
*
}
(
h_{-1})^*\mathcal{F
}
\\
&
=
\mathcal{F
}
\end{align
*
}
The
first
equality
by
the
discussion
above
,
the
second
equality
because
of
the
commutativity
of
the
diagram
in
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
}
,
the
third
equality
by
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
bounded
-
modules
}
as
$
U$
is
a
hypercovering
of
$
X$
in
$
(
\textit{Spaces}/S)_{fppf}$
and
$
La_{fppf}^
*
=
a_{fppf}^*$
as
$
a_{fppf}$
is
flat
(
namely
$
a_{fppf}^{-1}\mathcal{O}_{big
}
=
\mathcal{O}_{big
,
total}$
,
see
Remark
\ref{remark
-
augmentation
-
ringed
}
)
,
and
the
last
equality
by
the
already
used
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
cohomological
-
descent
-
etale
-
fppf
-
modules}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
coh
-
descent
-
qcoh
-
unbounded
-
for
-
fppf
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Assume
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$.
Then
$
\QCoh(\mathcal{O}_U)$
is
a
weak
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O}_U)$
and
$
$
a^
*
:
D_\QCoh(\mathcal{O}_X
)
\longrightarrow
D_\QCoh(\mathcal{O}_U
)
$
$
is
an
equivalence
of
categories
with
quasi
-
inverse
given
by
$
Ra_*$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
First
observe
that
the
maps
$
a_n
:
U_n
\to
X$
and
$
d^n_i
:
U_n
\to
U_{n
-
1}$
are
flat
,
locally
of
finite
presentation
,
and
surjective
by
Hypercoverings
,
Remark
\ref{hypercovering
-
remark
-
P
-
covering}.
\medskip\noindent
Recall
that
an
$
\mathcal{O}_U$-module
$
\mathcal{F}$
is
quasi
-
coherent
if
and
only
if
it
is
cartesian
and
$
\mathcal{F}_n$
is
quasi
-
coherent
for
all
$
n$.
See
Lemma
\ref{lemma
-
quasi
-
coherent
-
sheaf}.
By
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules
}
(
and
flatness
of
the
maps
$
d^n_i
:
U_n
\to
U_{n
-
1}$
shown
above
)
the
cartesian
modules
for
a
weak
Serre
subcategory
of
$
\textit{Mod}(\mathcal{O}_U)$.
On
the
other
hand
$
\QCoh(\mathcal{O}_{U_n
}
)
\subset
\textit{Mod}(\mathcal{O}_{U_n})$
is
a
weak
Serre
subcategory
for
each
$
n$
(
Properties
of
Spaces
,
Lemma
\ref{spaces
-
properties
-
lemma
-
properties
-
quasi
-
coherent
}
)
.
Combined
we
see
that
$
\QCoh(\mathcal{O}_U
)
\subset
\textit{Mod}(\mathcal{O}_U)$
is
a
weak
Serre
subcategory
.
\medskip\noindent
To
finish
the
proof
we
check
the
conditions
(
1
)
--
(
5
)
of
Lemma
\ref{lemma
-
equivalence
-
unbounded
-
one
}
one
by
one
.
\medskip\noindent
Ad
(
1
)
.
This
holds
since
$
a_n$
flat
(
seen
above
)
implies
$
a$
is
flat
by
Lemma
\ref{lemma
-
flat
-
augmentation
-
modules}.
\medskip\noindent
Ad
(
2
)
.
This
is
the
content
of
Lemma
\ref{lemma
-
descent
-
qcoh
-
for
-
fppf
-
hypercovering}.
\medskip\noindent
Ad
(
3
)
.
This
is
the
content
of
Lemma
\ref{lemma
-
cohomological
-
descent
-
qcoh
-
for
-
fppf
-
hypercovering}.
\medskip\noindent
Ad
(
4
)
.
Recall
that
we
can
use
either
the
site
$
U_\etale$
or
$
U_{spaces
,
\etale}$
to
define
the
small
\'etale
topos
$
\Sh(U_\etale)$
,
see
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
The
assumption
of
Cohomology
on
Sites
,
Situation
\ref{sites
-
cohomology
-
situation
-
olsson
-
laszlo
}
holds
for
the
triple
$
(
U_{spaces
,
\etale
}
,
\mathcal{O}_U
,
\QCoh(\mathcal{O}_U))$
and
by
the
same
reasoning
for
the
triple
$
(
U_\etale
,
\mathcal{O}_U
,
\QCoh(\mathcal{O}_U))$.
Namely
,
take
$
$
\mathcal{B
}
\subset
\Ob(U_\etale
)
\subset
\Ob(U_{spaces
,
\etale
}
)
$
$
to
be
the
set
of
affine
objects
.
For
$
V
/
U_n
\in
\mathcal{B}$
take
$
d_{V
/
U_n
}
=
0
$
and
take
$
\text{Cov}_{V
/
U_n}$
to
be
the
set
of
\'etale
coverings
$
\{V_i
\to
V\}$
with
$
V_i$
affine
.
Then
we
get
the
desired
vanishing
because
for
$
\mathcal{F
}
\in
\QCoh(\mathcal{O}_U)$
and
any
$
V
/
U_n
\in
\mathcal{B}$
we
have
$
$
H^p(V
/
U_n
,
\mathcal{F
}
)
=
H^p(V
,
\mathcal{F}_n
)
$
$
by
Lemma
\ref{lemma
-
sanity
-
check
-
modules}.
Here
on
the
right
hand
side
we
have
the
cohomology
of
the
quasi
-
coherent
sheaf
$
\mathcal{F}_n$
on
$
U_n$
over
the
affine
obect
$
V$
of
$
U_{n
,
\etale}$.
This
vanishes
for
$
p
>
0
$
by
the
discussion
in
Cohomology
of
Spaces
,
Section
\ref{spaces
-
cohomology
-
section
-
higher
-
direct
-
image
}
and
Cohomology
of
Schemes
,
Lemma
\ref{coherent
-
lemma
-
quasi
-
coherent
-
affine
-
cohomology
-
zero}.
\medskip\noindent
Ad
(
5
)
.
Follows
by
taking
$
\mathcal{B
}
\subset
\Ob(X_{spaces
,
\etale})$
the
set
of
affine
objects
and
the
references
given
above
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compute
-
via
-
fppf
-
hypercovering
-
modules
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
an
fppf
hypercovering
of
$
X$
,
then
$
$
R\Gamma(X_\etale
,
K
)
=
R\Gamma(U_\etale
,
a^*K
)
$
$
for
$
K
\in
D_\QCoh(\mathcal{O}_X)$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
coh
-
descent
-
qcoh
-
unbounded
-
for
-
fppf
-
hypercovering
}
because
$
R\Gamma(U_\etale
,
-
)
=
R\Gamma(X_\etale
,
-
)
\circ
Ra_*$
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
spectral
-
sequence
-
fppf
-
hypercovering
-
modules
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{F}$
be
quasi
-
coherent
$
\mathcal{O}_X$-module
.
Let
$
\mathcal{F}_n$
be
the
pullback
to
$
U_{n
,
\etale}$.
If
$
U$
is
an
fppf
hypercovering
of
$
X$
,
then
there
exists
a
canonical
spectral
sequence
$
$
E_1^{p
,
q
}
=
H^q_\etale(U_p
,
\mathcal{F}_p
)
$
$
converging
to
$
H^{p
+
q}_\etale(X
,
\mathcal{F})$.
\end{lemma
}
\begin{proof
}
Immediate
consequence
of
Lemmas
\ref{lemma
-
compute
-
via
-
fppf
-
hypercovering
-
modules
}
and
\ref{lemma
-
simplicial
-
module
-
cohomology
-
site}.
\end{proof
}
\section{Fppf
descent
of
complexes
}
\label{section
-
fppf
-
descent
-
derived
}
\noindent
In
this
section
we
pull
some
of
the
previously
shown
results
together
for
fppf
coverings
of
algebraic
spaces
and
derived
categories
of
quasi
-
coherent
modules
.
\begin{lemma
}
\label{lemma
-
fppf
-
neg
-
ext
-
zero
-
hom
}
Let
$
X$
be
an
algebraic TYPE
space
over
a
scheme
$
S$.
Let
$
K
,
E
\in
D_\QCoh(\mathcal{O}_X)$.
Let
$
a
:
U
\to
X$
be
an
fppf
hypercovering
.
Assume
that
for
all
$
n
\geq
0
$
we
have
$
$
\Ext_{\mathcal{O}_{U_n}}^i(La_n^*K
,
La_n^*E
)
=
0
\text
{
for
}
i
<
0
$
$
Then
we
have
\begin{enumerate
}
\item
$
\Ext_{\mathcal{O}_X}^i(K
,
E
)
=
0
$
for
$
i
<
0
$
,
and
\item
there
is
an
exact
sequence
$
$
0
\to
\Hom_{\mathcal{O}_X}(K
,
E
)
\to
\Hom_{\mathcal{O}_{U_0}}(La_0^*K
,
La_0^*E
)
\to
\Hom_{\mathcal{O}_{U_1}}(La_1^*K
,
La_1^*E
)
$
$
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Write
$
K_n
=
La_n^*K$
and
$
E_n
=
La_n^*E$.
Then
these
are
the
simplicial
systems
of
the
derived
category
of
modules
(
Definition
\ref{definition
-
cartesian
-
derived
-
modules
}
)
associated
to
$
La^*K$
and
$
La^*E$
(
Lemma
\ref{lemma
-
cartesian
-
objects
-
derived
-
modules
}
)
where
$
a
:
U_\etale
\to
X_\etale$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
Let
us
prove
(
2
)
first
.
By
Lemma
\ref{lemma
-
coh
-
descent
-
qcoh
-
unbounded
-
for
-
fppf
-
hypercovering
}
we
have
$
$
\Hom_{\mathcal{O}_X}(K
,
E
)
=
\Hom_{\mathcal{O}_U}(La^*K
,
La^*E
)
$
$
Thus
the
sequence
looks
like
this
:
$
$
0
\to
\Hom_{\mathcal{O}_U}(La^*K
,
La^*E
)
\to
\Hom_{\mathcal{O}_{U_0}}(K_0
,
E_0
)
\to
\Hom_{\mathcal{O}_{U_1}}(K_1
,
E_1
)
$
$
The
first
arrow
is
injective
by
Lemma
\ref{lemma
-
nullity
-
cartesian
-
modules
-
derived}.
The
image
of
this
arrow
is
the
kernel
of
the
second
by
Lemma
\ref{lemma
-
hom
-
cartesian
-
modules
-
derived}.
This
finishes
the
proof
of
(
2
)
.
Part
(
1
)
follows
by
applying
part
(
2
)
with
$
K[i]$
and
$
E$
for
$
i
>
0$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
fppf
-
glue
-
neg
-
ext
-
zero
}
Let
$
X$
be
an
algebraic TYPE
space
over
a
scheme
$
S$.
Let
$
a
:
U
\to
X$
be
an
fppf
hypercovering
.
Suppose
given
$
K_0
\in
D_\QCoh(U_0)$
and
an
isomorphism
$
$
\alpha
:
L(f_{\delta_1
^
1})^*K_0
\longrightarrow
L(f_{\delta_0
^
1})^*K_0
$
$
satisfying
the
cocycle
condition
on
$
U_1$.
Set
$
\tau^n_i
:
[
0
]
\to
[
n]$
,
$
0
\mapsto
i$
and
set
$
K_n
=
Lf_{\tau^n_n}^*K_0$.
Assume
$
\Ext^i_{\mathcal{O}_{U_n}}(K_n
,
K_n
)
=
0
$
for
$
i
<
0$.
Then
there
exists
an
object
$
K
\in
D_\QCoh(\mathcal{O}_X)$
and
an
isomorphism
$
La_0^*K
\to
K$
compatible
with
$
\alpha$.
\end{lemma
}
\begin{proof
}
We
claim
that
the
objects
$
K_n$
form
the
members
of
a
simplicial
system
of
the
derived
category
of
modules
(
Definition
\ref{definition
-
cartesian
-
derived
-
modules
}
)
of
the
ringed
simplicial
site
$
U_\etale$
of
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
The
construction
is
analogous
to
the
construction
discussed
in
Descent
,
Section
\ref{descent
-
section
-
descent
-
modules
}
from
which
we
borrow
the
notation
$
\tau^n_i
:
[
0
]
\to
[
n]$
,
$
0
\mapsto
i$
and
$
\tau^n_{ij
}
:
[
1
]
\to
[
n]$
,
$
0
\mapsto
i$
,
$
1
\mapsto
j$.
Given
$
\varphi
:
[
n
]
\to
[
m]$
we
define
$
K_\varphi
:
L(f_\varphi)^*K_n
\to
K_m$
using
$
$
\xymatrix
{
L(f_\varphi)^*K_n
\ar@{=}[r
]
&
L(f_\varphi)^
*
L(f_{\tau^n_n})^*K_0
\ar@{=}[r
]
&
L(f_{\tau^m_{\varphi(n)}})^*K_0
\ar@{=}[r
]
&
L(f_{\tau^m_{\varphi(n)m}})^
*
L(f_{\delta^1_1})^*K_0
\ar[d]_{L(f_{\tau^m_{\varphi(n)m}})^*\alpha
}
\\
&
K_m
\ar@{=}[r
]
&
L(f_{\tau^m_m})^*K_0
\ar@{=}[r
]
&
L(f_{\tau^m_{\varphi(n)m}})^
*
L(f_{\delta^1_0})^*K_0
}
$
$
We
omit
the
verification
that
the
cocycle
condition
implies
the
maps
compose
correctly
(
in
their
respective
derived
categories
)
and
hence
give
rise
to
a
simplicial
systems
of
the
derived
category
of
modules\footnote{This
verification
is
the
same
as
that
done
in
the
proof
of
Lemma
\ref{lemma
-
characterize
-
cartesian
}
as
well
as
in
the
chapter
on
descent
referenced
above
.
We
should
probably
write
this
as
a
general
lemma
about
fibred
and
cofibred
categories
over
$
\Delta$.}.
Once
this
is
verified
,
we
obtain
an
object
$
K
'
\in
D_\QCoh(\mathcal{O}_{U_\etale})$
such
that
$
(
K_n
,
K_\varphi)$
is
the
system
deduced
from
$
K'$
,
see
Lemma
\ref{lemma
-
cartesian
-
module
-
derived
-
from
-
simplicial}.
Finally
,
we
apply
Lemma
\ref{lemma
-
coh
-
descent
-
qcoh
-
unbounded
-
for
-
fppf
-
hypercovering
}
to
see
that
$
K
'
=
La^*K$
for
some
$
K
\in
D_\QCoh(\mathcal{O}_X)$
as
desired
.
\end{proof
}
\section{Proper
hypercoverings
of
algebraic
spaces
}
\label{section
-
proper
-
hypercovering
-
spaces
}
\noindent
This
section
is
the
analogue
of
Section
\ref{section
-
proper
-
hypercovering
}
for
the
case
of
algebraic
spaces
.
The
reader
who
wishes
to
do
so
,
can
replace
``
algebraic
space
''
everywhere
with
``
scheme
''
and
get
equally
valid
results
.
This
has
the
advantage
of
replacing
the
references
to
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
ph
-
etale
}
with
references
to
\'Etale
Cohomology
,
Section
\ref{etale
-
cohomology
-
section
-
ph
-
etale}.
\medskip\noindent
We
fix
a
base
scheme
$
S$.
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$
and
let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Assume
we
have
an
augmentation
$
$
a
:
U
\to
X
$
$
See
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
We
say
that
$
U$
is
a
{
\it
proper
hypercovering
}
of
$
X$
if
\begin{enumerate
}
\item
$
U_0
\to
X$
is
proper
and
surjective
,
\item
$
U_1
\to
U_0
\times_X
U_0
$
is
proper
and
surjective
,
\item
$
U_{n
+
1
}
\to
(
\text{cosk}_n\text{sk}_n
U)_{n
+
1}$
is
proper
and
surjective
for
$
n
\geq
1$.
\end{enumerate
}
The
category
of
algebraic
spaces
over
$
S$
has
all
finite
limits
,
hence
the
coskeleta
used
in
the
formulation
above
exist
.
$
$
\fbox{Principle
:
Proper
hypercoverings
can
be
used
to
compute
\'etale
cohomology
.
}
$
$
The
key
idea
behind
the
proof
of
the
principle
is
to
compare
the
ph
and
\'etale
topologies
on
the
category
$
\textit{Spaces}/S$.
Namely
,
the
ph
topology
is
stronger
than
the
\'etale
topology
and
we
have
(
a
)
a
proper
surjective
map
defines
a
ph
covering
,
and
(
b
)
ph
cohomology
of
sheaves
pulled
back
from
the
small
\'etale
site
agrees
with
\'etale
cohomology
as
we
have
seen
in
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
ph
-
etale}.
\medskip\noindent
All
results
in
this
section
generalize
to
the
case
where
$
U
\to
X$
is
merely
a
``
ph
hypercovering
''
,
meaning
a
hypercovering
of
$
X$
in
the
site
$
(
\textit{Spaces}/S)_{ph}$
as
defined
in
Section
\ref{section
-
hypercovering}.
If
we
ever
need
this
,
we
will
precisely
formulate
and
prove
this
here
.
\begin{lemma
}
\label{lemma
-
compare
-
simplicial
-
objects
-
ph
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
There
is
a
commutative
diagram
$
$
\xymatrix
{
\Sh((\textit{Spaces}/U)_{ph
,
total
}
)
\ar[r]_-h
\ar[d]_{a_{ph
}
}
&
\Sh(U_\etale
)
\ar[d]^a
\\
\Sh((\textit{Spaces}/X)_{ph
}
)
\ar[r]^-{h_{-1
}
}
&
\Sh(X_\etale
)
}
$
$
where
the
left
vertical
arrow
is
defined
in
Section
\ref{section
-
hypercovering
}
and
the
right
vertical
arrow
is
defined
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
The
notation
$
(
\textit{Spaces}/U)_{ph
,
total}$
indicates
that
we
are
using
the
construction
of
Section
\ref{section
-
hypercovering
}
for
the
site
$
(
\textit{Spaces}/S)_{ph}$
and
the
simplicial
object
$
U$
of
this
site\footnote{To
distinguish
from
$
(
\textit{Spaces}/U)_{fppf
,
total}$
defined
using
the
fppf
topology
in
Section
\ref{section
-
fppf
-
hypercovering}.}.
We
will
use
the
sites
$
X_{spaces
,
\etale}$
and
$
U_{spaces
,
\etale}$
for
the
topoi
on
the
right
hand
side
;
this
is
permissible
see
discussion
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\medskip\noindent
Observe
that
both
$
(
\textit{Spaces}/U)_{ph
,
total}$
and
$
U_{spaces
,
\etale}$
fall
into
case
A
of
Situation
\ref{situation
-
simplicial
-
site}.
This
is
immediate
from
the
construction
of
$
U_\etale$
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces
}
and
it
follows
from
Lemma
\ref{lemma
-
sr
-
when
-
fibre
-
products
}
for
$
(
\textit{Spaces}/U)_{ph
,
total}$.
Next
,
consider
the
functors
$
U_{n
,
spaces
,
\etale
}
\to
(
\textit{Spaces}/U_n)_{ph}$
,
$
U
\mapsto
U
/
U_n$
and
$
X_{spaces
,
\etale
}
\to
(
\textit{Spaces}/X)_{ph}$
,
$
U
\mapsto
U
/
X$.
We
have
seen
that
these
define
morphisms
of
sites
in
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
ph
-
etale
}
where
these
were
denoted
$
a_{U_n
}
=
\epsilon_{U_n
}
\circ
\pi_{u_n}$
and
$
a_X
=
\epsilon_X
\circ
\pi_X$.
Thus
we
obtain
a
morphism
of
simplicial
sites
compatible
with
augmentations
as
in
Remark
\ref{remark
-
morphism
-
augmentation
-
simplicial
-
sites
}
and
we
may
apply
Lemma
\ref{lemma
-
morphism
-
augmentation
-
simplicial
-
sites
}
to
conclude
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
descent
-
sheaves
-
for
-
ph
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
a
proper
hypercovering
of
$
X$
,
then
$
$
a^{-1
}
:
\Sh(X_\etale
)
\to
\Sh(U_\etale
)
\quad\text{and}\quad
a^{-1
}
:
\textit{Ab}(X_\etale
)
\to
\textit{Ab}(U_\etale
)
$
$
are
fully
faithful
with
essential
image
the
cartesian
sheaves
and
quasi
-
inverse
given
by
$
a_*$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
We
will
prove
the
statement
for
sheaves
of
sets
.
It
will
be
an
TYPE
almost
formal
consequence
of
results
already
established
.
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
ph
-
etale}.
In
the
proof
of
this
lemma
we
have
seen
that
$
h_{-1}$
is
the
morphism
$
a_X$
of
More
on
Cohomology
of
Spaces
,
Section
\ref{spaces
-
more
-
cohomology
-
section
-
ph
-
etale}.
Thus
it
follows
from
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
comparison
-
ph
-
etale
}
that
$
(
h_{-1})^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
h_{-1
,
*
}
$
.
The
same
holds
true
for
the
components
$
h_n$
of
$
h$.
By
the
description
of
the
functors
$
h^{-1}$
and
$
h_*$
of
Lemma
\ref{lemma
-
morphism
-
simplicial
-
sites
}
we
conclude
that
$
h^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
h_*$.
Observe
that
$
U$
is
a
hypercovering
of
$
X$
in
$
(
\textit{Spaces}/S)_{ph}$
as
defined
in
Section
\ref{section
-
hypercovering
}
since
a
surjective
proper
morphism
gives
a
ph
covering
by
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
surjective
-
proper
-
ph}.
By
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
sheaves
}
we
see
that
$
a_{ph}^{-1}$
is
fully
faithful
with
quasi
-
inverse
$
a_{ph
,
*
}
$
and
with
essential
image
the
cartesian
sheaves
on
$
(
\textit{Spaces}/U)_{ph
,
total}$.
A
formal
argument
(
chasing
around
the
diagram
)
now
shows
that
$
a^{-1}$
is
fully
faithful
.
\medskip\noindent
Finally
,
suppose
that
$
\mathcal{G}$
is
a
cartesian
sheaf
on
$
U_\etale$.
Then
$
h^{-1}\mathcal{G}$
is
a
cartesian
sheaf
on
$
(
\textit{Spaces}/U)_{ph
,
total}$.
Hence
$
h^{-1}\mathcal{G
}
=
a_{ph}^{-1}\mathcal{H}$
for
some
sheaf
$
\mathcal{H}$
on
$
(
\textit{Spaces}/X)_{ph}$.
We
compute
using
somewhat
pedantic
notation
\begin{align
*
}
(
h_{-1})^{-1}(a_*\mathcal{G
}
)
&
=
(
h_{-1})^{-1
}
\text{Eq
}
(
\xymatrix
{
a_{0
,
small
,
*
}
\mathcal{G}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{1
,
small
,
*
}
\mathcal{G}_1
}
)
\\
&
=
\text{Eq
}
(
\xymatrix
{
(
h_{-1})^{-1}a_{0
,
small
,
*
}
\mathcal{G}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
(
h_{-1})^{-1}a_{1
,
small
,
*
}
\mathcal{G}_1
}
)
\\
&
=
\text{Eq
}
(
\xymatrix
{
a_{0
,
big
,
ph
,
*
}
h_0^{-1}\mathcal{G}_0
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{1
,
big
,
ph
,
*
}
h_1^{-1}\mathcal{G}_1
}
)
\\
&
=
\text{Eq
}
(
\xymatrix
{
a_{0
,
big
,
ph
,
*
}
(
a_{0
,
big
,
ph})^{-1}\mathcal{H
}
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
a_{1
,
big
,
ph
,
*
}
(
a_{1
,
big
,
ph})^{-1}\mathcal{H
}
}
)
\\
&
=
a_{ph
,
*
}
a_{ph}^{-1}\mathcal{H
}
\\
&
=
\mathcal{H
}
\end{align
*
}
Here
the
first
equality
follows
from
Lemma
\ref{lemma
-
augmentation
-
site
}
,
the
second
equality
follows
as
$
(
h_{-1})^{-1}$
is
an
exact
functor
,
the
third
equality
follows
from
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
proper
-
push
-
pull
-
ph
-
etale
}
(
here
we
use
that
$
a_0
:
U_0
\to
X$
and
$
a_1
:
U_1
\to
X$
are
proper
)
,
the
fourth
follows
from
$
a_{ph}^{-1}\mathcal{H
}
=
h^{-1}\mathcal{G}$
,
the
fifth
from
Lemma
\ref{lemma
-
augmentation
-
site
}
,
and
the
sixth
we
've
seen
above
.
Since
$
a_{ph}^{-1}\mathcal{H
}
=
h^{-1}\mathcal{G}$
we
deduce
that
$
h^{-1}\mathcal{G
}
\cong
h^{-1}a^{-1}a_*\mathcal{G}$
which
ends
the
proof
by
fully
faithfulness
of
$
h^{-1}$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
for
-
ph
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
a
proper
hypercovering
of
$
X$
,
then
for
$
K
\in
D^+(X_\etale)$
$
$
K
\to
Ra_*(a^{-1}K
)
$
$
is
an
isomorphism
.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
Consider
the
diagram
of
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
-
ph
-
etale}.
Observe
that
$
Rh_{n
,
*
}
h_n^{-1}$
is
the
identity
functor
on
$
D^+(U_{n
,
\etale})$
by
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
cohomological
-
descent
-
etale
-
ph}.
Hence
$
Rh_*h^{-1}$
is
the
identity
functor
on
$
D^+(U_\etale)$
by
Lemma
\ref{lemma
-
direct
-
image
-
morphism
-
simplicial
-
sites}.
We
have
\begin{align
*
}
Ra_*(a^{-1}K
)
&
=
Ra_*Rh_*h^{-1}a^{-1}K
\\
&
=
Rh_{-1
,
*
}
Ra_{ph
,
*
}
a_{ph}^{-1}(h_{-1})^{-1}K
\\
&
=
Rh_{-1
,
*
}
(
h_{-1})^{-1}K
\\
&
=
K
\end{align
*
}
The
first
equality
by
the
discussion
above
,
the
second
equality
because
of
the
commutativity
of
the
diagram
in
Lemma
\ref{lemma
-
compare
-
simplicial
-
objects
}
,
the
third
equality
by
Lemma
\ref{lemma
-
hypercovering
-
X
-
simple
-
descent
-
bounded
-
abelian
}
as
$
U$
is
a
hypercovering
of
$
X$
in
$
(
\textit{Spaces}/S)_{ph}$
by
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
surjective
-
proper
-
ph
}
,
and
the
last
equality
by
the
already
used
More
on
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
more
-
cohomology
-
lemma
-
cohomological
-
descent
-
etale
-
ph}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compute
-
via
-
ph
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
If
$
a
:
U
\to
X$
is
a
proper
hypercovering
of
$
X$
,
then
$
$
R\Gamma(X_\etale
,
K
)
=
R\Gamma(U_\etale
,
a^{-1}K
)
$
$
for
$
K
\in
D^+(X_\etale)$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
cohomological
-
descent
-
for
-
ph
-
hypercovering
}
because
$
R\Gamma(U_\etale
,
-
)
=
R\Gamma(X_\etale
,
-
)
\circ
Ra_*$
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
ph
-
hypercovering
-
equivalence
-
bounded
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{A
}
\subset
\textit{Ab}(U_\etale)$
denote
the
weak
Serre
subcategory
of
cartesian
abelian
sheaves
.
If
$
U$
is
a
proper
hypercovering
of
$
X$
,
then
the
functor
$
a^{-1}$
defines
an
equivalence
$
$
D^+(X_\etale
)
\longrightarrow
D_\mathcal{A}^+(U_\etale
)
$
$
with
quasi
-
inverse
$
Ra_*$.
Here
$
a
:
\Sh(U_\etale
)
\to
\Sh(X_\etale)$
is
as
in
Section
\ref{section
-
simplicial
-
algebraic
-
spaces}.
\end{lemma
}
\begin{proof
}
Observe
that
$
\mathcal{A}$
is
a
weak
Serre
subcategory
by
Lemma
\ref{lemma
-
Serre
-
subcat
-
cartesian
-
modules}.
The
equivalence
is
a
formal
consequence
of
the
results
obtained
so
far
.
Use
Lemmas
\ref{lemma
-
equivalence
-
bounded
}
,
\ref{lemma
-
descent
-
sheaves
-
for
-
ph
-
hypercovering
}
,
and
\ref{lemma
-
cohomological
-
descent
-
for
-
ph
-
hypercovering}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
spectral
-
sequence
-
ph
-
hypercovering
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
U$
be
a
simplicial TYPE
algebraic
space
over
$
S$.
Let
$
a
:
U
\to
X$
be
an
augmentation TYPE
.
Let
$
\mathcal{F}$
be
an
abelian TYPE
sheaf
on
$
X_\etale$.
Let
$
\mathcal{F}_n$
be
the
pullback
to
$
U_{n
,
\etale}$.
If
$
U$
is
a
ph
hypercovering
of
$
X$
,
then
there
exists
a
canonical
spectral
sequence
$
$
E_1^{p
,
q
}
=
H^q_\etale(U_p
,
\mathcal{F}_p
)
$
$
converging
to
$
H^{p
+
q}_\etale(X
,
\mathcal{F})$.
\end{lemma
}
\begin{proof
}
Immediate
consequence
of
Lemmas
\ref{lemma
-
compute
-
via
-
ph
-
hypercovering
}
and
\ref{lemma
-
simplicial
-
sheaf
-
cohomology
-
site}.
\end{proof
}
\input{chapters
}
\bibliography{my
}
\bibliographystyle{amsalpha
}
\end{document
}
In [ ]:
Content source: vmando/deep-algebra
Similar notebooks: