In [3]:
from __future__ import unicode_literals, print_function
import json
import pathlib
import random
import spacy
from spacy.pipeline import EntityRecognizer
from spacy.gold import GoldParse
from spacy.tagger import Tagger
import os
import re
try:
unicode
except:
unicode = str
In [4]:
nlp = spacy.load('en')
#nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
In [5]:
def tex2doc(tex_file): #read the whole tex file in the spaCy doc object
with open(tex_file, 'r') as tex:
data=tex.read()
doc = nlp(data)
return doc
In [6]:
def rule_based_annotation(doc):
annotation = []
for match in re.finditer('let \$(\S+( \S+){0,3})\$ be an? (\S+)', doc.text, re.IGNORECASE):
annotation.append((match.span(1)[0],match.span(1)[1], 'VAR'))
annotation.append((match.span(3)[0],match.span(3)[1], 'TYPE'))
return (doc.text, annotation)
In [23]:
annotated_data=[]
directory = os.fsencode('tex_files/')
for file in os.listdir(directory):
filename = os.fsdecode(file)
print("file: ", filename)
doc = tex2doc(os.path.join(os.fsdecode(directory), filename))
annotated_data.append(rule_based_annotation(doc))
file: intersection.tex
file: spaces-simplicial.tex
file: stacks-sheaves.tex
file: cotangent.tex
file: stacks-more-morphisms.tex
file: formal-defos.tex
file: spaces-more-cohomology.tex
file: divisors.tex
file: more-morphisms.tex
In [29]:
print(len(annotated_data))
print(annotated_data[0])
9
("\\input{preamble}\n\n% OK, start here.\n%\n\\begin{document}\n\n\\title{Sheaves on Algebraic Stacks}\n\n\n\\maketitle\n\n\\phantomsection\n\\label{section-phantom}\n\n\\tableofcontents\n\n\\section{Introduction}\n\\label{section-introduction}\n\n\\noindent\nThere is a myriad of ways to think about sheaves on algebraic stacks.\nIn this chapter we discuss one approach, which is particularly well\nadapted to our foundations for algebraic stacks. Whenever we introduce\na type of sheaves we will indicate the precise relationship with\nsimilar notions in the literature.\nThe goal of this chapter is to state those results\nthat are either obviously true or straightforward to prove\nand leave more intricate constructions till later.\n\n\\medskip\\noindent\nIn fact, it turns out that to develop a fully fledged theory of\nconstructible \\'etale sheaves and/or an adequate discussion of\nderived categories of complexes $\\mathcal{O}$-modules whose\ncohomology sheaves are quasi-coherent takes a significant amount of work, see\n\\cite{olsson_sheaves}. We will return to this in\nCohomology of Stacks, Section \\ref{stacks-cohomology-section-introduction}.\n\n\\medskip\\noindent\nIn the literature and in research papers on sheaves on algebraic stacks\nthe lisse-\\'etale site of an algebraic stack often plays a prominent role.\nHowever, it is a problematic beast, because it turns out that a morphism of\nalgebraic stacks does not induce a morphism of lisse-\\'etale topoi. We have\ntherefore made the design decision to avoid any mention of the lisse-\\'etale\nsite as long as possible. Arguments that traditionally use the lisse-\\'etale\nsite will be replaced by an argument using a {\\v C}ech covering\nin the site $\\mathcal{X}_{smooth}$ defined below.\n\n\\medskip\\noindent\nSome of the notation, conventions and terminology in this chapter is awkward\nand may seem backwards to the more experienced reader. This is intentional.\nPlease see Quot, Section \\ref{quot-section-conventions} for an\nexplanation.\n\n\n\n\n\\section{Conventions}\n\\label{section-conventions}\n\n\\noindent\nThe conventions we use in this chapter are the same as those in the\nchapter on algebraic stacks, see\nAlgebraic Stacks, Section \\ref{algebraic-section-conventions}.\nFor convenience we repeat them here.\n\n\\medskip\\noindent\nWe work in a suitable big fppf site $\\Sch_{fppf}$ as in\nTopologies, Definition \\ref{topologies-definition-big-fppf-site}.\nSo, if not explicitly stated otherwise all schemes will be objects\nof $\\Sch_{fppf}$. We record what changes if you change the big\nfppf site elsewhere (insert future reference here).\n\n\\medskip\\noindent\nWe will always work relative to a base $S$ contained in $\\Sch_{fppf}$.\nAnd we will then work with the big fppf site $(\\Sch/S)_{fppf}$, see\nTopologies, Definition \\ref{topologies-definition-big-small-fppf}.\nThe absolute case can be recovered by taking\n$S = \\Spec(\\mathbf{Z})$.\n\n\n\n\n\n\\section{Presheaves}\n\\label{section-presheaves}\n\n\\noindent\nIn this section we define presheaves on categories fibred in groupoids\nover $(\\Sch/S)_{fppf}$, but most of the discussion works\nfor categories over any base category. This section also serves to\nintroduce the notation we will use later on.\n\n\\begin{definition}\n\\label{definition-presheaves}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred in\ngroupoids.\n\\begin{enumerate}\n\\item A {\\it presheaf on $\\mathcal{X}$} is a presheaf on the\nunderlying category of $\\mathcal{X}$.\n\\item A {\\it morphism of presheaves on $\\mathcal{X}$} is a morphism of\npresheaves on the underlying category of $\\mathcal{X}$.\n\\end{enumerate}\nWe denote $\\textit{PSh}(\\mathcal{X})$ the category of presheaves on\n$\\mathcal{X}$.\n\\end{definition}\n\n\\noindent\nThis defines presheaves of sets. Of course we can also talk about\npresheaves of pointed sets, abelian groups, groups, monoids, rings,\nmodules over a fixed ring, and lie algebras over a fixed field, etc.\nThe category of {\\it abelian presheaves}, i.e., presheaves of abelian\ngroups, is denoted $\\textit{PAb}(\\mathcal{X})$.\n\n\\medskip\\noindent\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Recall that this\nmeans just that $f$ is a functor over $(\\Sch/S)_{fppf}$.\nThe material in\nSites, Section \\ref{sites-section-more-functoriality-PSh}\nprovides us with a pair of adjoint functors\\footnote{These functors\nwill be denoted $f^{-1}$ and $f_*$ after\nLemma \\ref{lemma-functoriality-sheaves}\nhas been proved.}\n\\begin{equation}\n\\label{equation-pushforward-pullback}\nf^p : \\textit{PSh}(\\mathcal{Y}) \\longrightarrow \\textit{PSh}(\\mathcal{X})\n\\quad\\text{and}\\quad\n{}_pf : \\textit{PSh}(\\mathcal{X}) \\longrightarrow \\textit{PSh}(\\mathcal{Y}).\n\\end{equation}\nThe adjointness is\n$$\n\\Mor_{\\textit{PSh}(\\mathcal{X})}(f^p\\mathcal{G}, \\mathcal{F})\n=\n\\Mor_{\\textit{PSh}(\\mathcal{Y})}(\\mathcal{G}, {}_pf\\mathcal{F})\n$$\nwhere $\\mathcal{F} \\in \\Ob(\\textit{PSh}(\\mathcal{X}))$ and\n$\\mathcal{G} \\in \\Ob(\\textit{PSh}(\\mathcal{Y}))$. We call\n$f^p\\mathcal{G}$ the {\\it pullback} of $\\mathcal{G}$. It follows\nfrom the definitions that\n$$\nf^p\\mathcal{G}(x) = \\mathcal{G}(f(x))\n$$\nfor any $x \\in \\Ob(\\mathcal{X})$. The presheaf ${}_pf\\mathcal{F}$\nis called the {\\it pushforward} of $\\mathcal{F}$. It is described\nby the formula\n$$\n({}_pf\\mathcal{F})(y) = \\lim_{f(x) \\to y} \\mathcal{F}(x).\n$$\nThe rest of this section should probably be moved to the chapter\non sites and in any case should be skipped on a first reading.\n\n\\begin{lemma}\n\\label{lemma-1-morphisms-presheaves}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ and $g : \\mathcal{Y} \\to \\mathcal{Z}$\nbe $1$-morphisms of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$. Then $(g \\circ f)^p = f^p \\circ g^p$ and\nthere is a canonical isomorphism\n${}_p(g \\circ f) \\to {}_pg \\circ {}_pf$\ncompatible with with adjointness of $(f^p, {}_pf)$, $(g^p, {}_pg)$, and\n$((g \\circ f)^p, {}_p(g \\circ f))$.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{H}$ be a presheaf on $\\mathcal{Z}$. Then\n$(g \\circ f)^p\\mathcal{H} = f^p (g^p\\mathcal{H})$ is given\nby the equalities\n$$\n(g \\circ f)^p\\mathcal{H}(x) = \\mathcal{H}((g \\circ f)(x))\n= \\mathcal{H}(g(f(x))) = f^p (g^p\\mathcal{H})(x).\n$$\nWe omit the verification that this is compatible with restriction maps.\n\n\\medskip\\noindent\nNext, we define the transformation ${}_p(g \\circ f) \\to {}_pg \\circ {}_pf$.\nLet $\\mathcal{F}$ be a presheaf on $\\mathcal{X}$.\nIf $z$ is an object of $\\mathcal{Z}$ then we get a\ncategory $\\mathcal{J}$ of quadruples\n$(x, f(x) \\to y, y, g(y) \\to z)$ and a category $\\mathcal{I}$\nof pairs $(x, g(f(x)) \\to z)$. There is a canonical functor\n$\\mathcal{J} \\to \\mathcal{I}$ sending the object\n$(x, \\alpha : f(x) \\to y, y, \\beta : g(y) \\to z)$ to\n$(x, \\beta \\circ f(\\alpha) : g(f(x)) \\to z)$. This gives the arrow in\n\\begin{align*}\n({}_p(g \\circ f)\\mathcal{F})(z) & =\n\\lim_{g(f(x)) \\to z} \\mathcal{F}(x) \\\\\n& = \\lim_\\mathcal{I} \\mathcal{F} \\\\\n& \\to \\lim_\\mathcal{J} \\mathcal{F} \\\\\n& = \\lim_{g(y) \\to z}\n\\Big(\\lim_{f(x) \\to y} \\mathcal{F}(x)\\Big) \\\\\n& =\n({}_pg \\circ {}_pf\\mathcal{F})(x)\n\\end{align*}\nby\nCategories, Lemma \\ref{categories-lemma-functorial-limit}.\nWe omit the verification that this is compatible with restriction maps.\nAn alternative to this direct construction is to define\n${}_p(g \\circ f) \\cong {}_pg \\circ {}_pf$\nas the unique map compatible with the adjointness properties. This also\nhas the advantage that one does not need to prove the compatibility.\n\n\\medskip\\noindent\nCompatibility with adjointness of $(f^p, {}_pf)$, $(g^p, {}_pg)$, and\n$((g \\circ f)^p, {}_p(g \\circ f))$ means that given presheaves\n$\\mathcal{H}$ and $\\mathcal{F}$ as above we have a commutative diagram\n$$\n\\xymatrix{\n\\Mor_{\\textit{PSh}(\\mathcal{X})}(f^pg^p\\mathcal{H}, \\mathcal{F})\n\\ar@{=}[r] \\ar@{=}[d] &\n\\Mor_{\\textit{PSh}(\\mathcal{Y})}(g^p\\mathcal{H}, {}_pf\\mathcal{F})\n\\ar@{=}[r] &\n\\Mor_{\\textit{PSh}(\\mathcal{Y})}(\\mathcal{H}, {}_pg{}_pf\\mathcal{F})\n\\\\\n\\Mor_{\\textit{PSh}(\\mathcal{X})}((g \\circ f)^p\\mathcal{G}, \\mathcal{F})\n\\ar@{=}[rr] & &\n\\Mor_{\\textit{PSh}(\\mathcal{Y})}(\\mathcal{G}, {}_p(g \\circ f)\\mathcal{F})\n\\ar[u]\n}\n$$\nProof omitted.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-2-morphisms-presheaves}\nLet $f, g : \\mathcal{X} \\to \\mathcal{Y}$ be $1$-morphisms of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let $t : f \\to g$\nbe a $2$-morphism of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$. Assigned to $t$ there are canonical\nisomorphisms of functors\n$$\nt^p : g^p \\longrightarrow f^p\n\\quad\\text{and}\\quad\n{}_pt : {}_pf \\longrightarrow {}_pg\n$$\nwhich compatible with adjointness of $(f^p, {}_pf)$ and\n$(g^p, {}_pg)$ and with\nvertical and horizontal composition of $2$-morphisms.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{G}$ be a presheaf on $\\mathcal{Y}$. Then\n$t^p : g^p\\mathcal{G} \\to f^p\\mathcal{G}$ is given by the family\nof maps\n$$\ng^p\\mathcal{G}(x) = \\mathcal{G}(g(x))\n\\xrightarrow{\\mathcal{G}(t_x)}\n\\mathcal{G}(f(x)) = f^p\\mathcal{G}(x)\n$$\nparametrized by $x \\in \\Ob(\\mathcal{X})$. This makes sense as\n$t_x : f(x) \\to g(x)$ and $\\mathcal{G}$ is a contravariant functor.\nWe omit the verification that this is compatible with restriction\nmappings.\n\n\\medskip\\noindent\nTo define the transformation ${}_pt$ for $y \\in \\Ob(\\mathcal{Y})$\ndefine ${}_y^f\\mathcal{I}$, resp.\\ ${}_y^g\\mathcal{I}$ to be the category\nof pairs $(x, \\psi : f(x) \\to y)$, resp.\\ $(x, \\psi : g(x) \\to y)$, see\nSites, Section \\ref{sites-section-more-functoriality-PSh}.\nNote that $t$ defines a functor\n${}_yt : {}_y^g\\mathcal{I} \\to {}_y^f\\mathcal{I}$\ngiven by the rule\n$$\n(x, g(x) \\to y) \\longmapsto (x, f(x) \\xrightarrow{t_x} g(x) \\to y).\n$$\nNote that for $\\mathcal{F}$ a presheaf on $\\mathcal{X}$ the composition\nof ${}_yt$ with $\\mathcal{F} : {}_y^f\\mathcal{I}^{opp} \\to \\textit{Sets}$,\n$(x, f(x) \\to y) \\mapsto \\mathcal{F}(x)$ is equal to\n$\\mathcal{F} : {}_y^g\\mathcal{I}^{opp} \\to \\textit{Sets}$. Hence by\nCategories, Lemma \\ref{categories-lemma-functorial-limit}\nwe get for every $y \\in \\Ob(\\mathcal{Y})$ a canonical map\n$$\n({}_pf\\mathcal{F})(y) = \\lim_{{}_y^f\\mathcal{I}} \\mathcal{F}\n\\longrightarrow\n\\lim_{{}_y^g\\mathcal{I}} \\mathcal{F} = ({}_pg\\mathcal{F})(y)\n$$\nWe omit the verification that this is compatible with restriction\nmappings. An alternative to this direct construction is to define\n${}_pt$ as the unique map compatible with the adjointness properties\nof the pairs $(f^p, {}_pf)$ and $(g^p, {}_pg)$ (see below). This also\nhas the advantage that one does not need to prove the compatibility.\n\n\\medskip\\noindent\nCompatibility with adjointness of $(f^p, {}_pf)$ and $(g^p, {}_pg)$ means\nthat given presheaves $\\mathcal{G}$ and $\\mathcal{F}$ as above we have\na commutative diagram\n$$\n\\xymatrix{\n\\Mor_{\\textit{PSh}(\\mathcal{X})}(f^p\\mathcal{G}, \\mathcal{F})\n\\ar@{=}[r] \\ar[d]_{- \\circ t^p} &\n\\Mor_{\\textit{PSh}(\\mathcal{Y})}(\\mathcal{G}, {}_pf\\mathcal{F})\n\\ar[d]^{{}_pt \\circ -} \\\\\n\\Mor_{\\textit{PSh}(\\mathcal{X})}(g^p\\mathcal{G}, \\mathcal{F})\n\\ar@{=}[r] &\n\\Mor_{\\textit{PSh}(\\mathcal{Y})}(\\mathcal{G}, {}_pg\\mathcal{F})\n}\n$$\nProof omitted. Hint: Work through the proof of\nSites, Lemma \\ref{sites-lemma-adjoints-pu}\nand observe the compatibility from the explicit description of the\nhorizontal and vertical maps in the diagram.\n\n\\medskip\\noindent\nWe omit the verification that this is compatible with vertical and horizontal\ncompositions. Hint: The proof of this for $t^p$ is straightforward and\none can conclude that this holds for the ${}_pt$ maps using compatibility\nwith adjointness.\n\\end{proof}\n\n\n\n\n\n\n\n\\section{Sheaves}\n\\label{section-sheaves}\n\n\\noindent\nWe first make an observation that is important and trivial\n(especially for those readers who do not worry about set theoretical\nissues).\n\n\\medskip\\noindent\nConsider a big fppf site $\\Sch_{fppf}$ as in\nTopologies, Definition \\ref{topologies-definition-big-fppf-site}\nand denote its underlying category $\\Sch_\\alpha$.\nBesides being the underlying category of a fppf site,\nthe category $\\Sch_\\alpha$ can also can serve as the underlying\ncategory for a big Zariski site, a big \\'etale site, a big smooth site,\nand a big syntomic site, see\nTopologies, Remark \\ref{topologies-remark-choice-sites}.\nWe denote these sites $\\Sch_{Zar}$, $\\Sch_\\etale$,\n$\\Sch_{smooth}$, and $\\Sch_{syntomic}$.\nIn this situation, since we have defined\nthe big Zariski site $(\\Sch/S)_{Zar}$ of $S$,\nthe big \\'etale site $(\\Sch/S)_\\etale$ of $S$,\nthe big smooth site $(\\Sch/S)_{smooth}$ of $S$,\nthe big syntomic site $(\\Sch/S)_{syntomic}$ of $S$, and\nthe big fppf site $(\\Sch/S)_{fppf}$ of $S$\nas the localizations (see\nSites, Section \\ref{sites-section-localize})\n$\\Sch_{Zar}/S$, $\\Sch_\\etale/S$,\n$\\Sch_{smooth}/S$, $\\Sch_{syntomic}/S$, and\n$\\Sch_{fppf}/S$\nof these (absolute) big sites we see that all of these have the\nsame underlying category, namely $\\Sch_\\alpha/S$.\n\n\\medskip\\noindent\nIt follows that if we have a category\n$p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ fibred in groupoids, then\n$\\mathcal{X}$ inherits a Zariski, \\'etale, smooth, syntomic, and\nfppf topology, see\nStacks, Definition \\ref{stacks-definition-topology-inherited}.\n\n\\begin{definition}\n\\label{definition-inherited-topologies}\nLet $\\mathcal{X}$ be a category fibred in groupoids over\n$(\\Sch/S)_{fppf}$.\n\\begin{enumerate}\n\\item The {\\it associated Zariski site}, denoted $\\mathcal{X}_{Zar}$,\nis the structure of site on $\\mathcal{X}$ inherited from\n$(\\Sch/S)_{Zar}$.\n\\item The {\\it associated \\'etale site}, denoted $\\mathcal{X}_\\etale$,\nis the structure of site on $\\mathcal{X}$ inherited from\n$(\\Sch/S)_\\etale$.\n\\item The {\\it associated smooth site}, denoted $\\mathcal{X}_{smooth}$,\nis the structure of site on $\\mathcal{X}$ inherited from\n$(\\Sch/S)_{smooth}$.\n\\item The {\\it associated syntomic site}, denoted $\\mathcal{X}_{syntomic}$,\nis the structure of site on $\\mathcal{X}$ inherited from\n$(\\Sch/S)_{syntomic}$.\n\\item The {\\it associated fppf site}, denoted $\\mathcal{X}_{fppf}$,\nis the structure of site on $\\mathcal{X}$ inherited from\n$(\\Sch/S)_{fppf}$.\n\\end{enumerate}\n\\end{definition}\n\n\\noindent\nThis definition makes sense by the discussion above. If $\\mathcal{X}$\nis an algebraic stack, the literature calls $\\mathcal{X}_{fppf}$ (or a\nsite equivalent to it) the {\\it big fppf site} of $\\mathcal{X}$ and similarly\nfor the other ones. We may occasionally use this terminology to\ndistinguish this construction from others.\n\n\\begin{remark}\n\\label{remark-ambiguity}\nWe only use this notation when the symbol $\\mathcal{X}$ refers to a\ncategory fibred in groupoids, and not a scheme, an algebraic space, etc.\nIn this way we will avoid confusion with the small \\'etale site of a\nscheme, or algebraic space which is denoted $X_\\etale$ (in which\ncase we use a roman capital instead of a calligraphic one).\n\\end{remark}\n\n\\noindent\nNow that we have these topologies defined we can say what it means\nto have a sheaf on $\\mathcal{X}$, i.e., define the corresponding topoi.\n\n\\begin{definition}\n\\label{definition-sheaves}\nLet $\\mathcal{X}$ be a category fibred in groupoids over\n$(\\Sch/S)_{fppf}$. Let $\\mathcal{F}$ be a presheaf on $\\mathcal{X}$.\n\\begin{enumerate}\n\\item We say $\\mathcal{F}$ is a {\\it Zariski sheaf}, or a\n{\\it sheaf for the Zariski topology} if $\\mathcal{F}$\nis a sheaf on the associated Zariski site $\\mathcal{X}_{Zar}$.\n\\item We say $\\mathcal{F}$ is an {\\it \\'etale sheaf}, or a\n{\\it sheaf for the \\'etale topology} if $\\mathcal{F}$\nis a sheaf on the associated \\'etale site $\\mathcal{X}_\\etale$.\n\\item We say $\\mathcal{F}$ is a {\\it smooth sheaf}, or a\n{\\it sheaf for the smooth topology} if $\\mathcal{F}$\nis a sheaf on the associated smooth site $\\mathcal{X}_{smooth}$.\n\\item We say $\\mathcal{F}$ is a {\\it syntomic sheaf}, or a\n{\\it sheaf for the syntomic topology} if $\\mathcal{F}$\nis a sheaf on the associated syntomic site $\\mathcal{X}_{syntomic}$.\n\\item We say $\\mathcal{F}$ is an {\\it fppf sheaf}, or a {\\it sheaf},\nor a {\\it sheaf for the fppf topology} if $\\mathcal{F}$\nis a sheaf on the associated fppf site $\\mathcal{X}_{fppf}$.\n\\end{enumerate}\nA morphism of sheaves is just a morphism of presheaves. We denote\nthese categories of sheaves\n$\\Sh(\\mathcal{X}_{Zar})$,\n$\\Sh(\\mathcal{X}_\\etale)$,\n$\\Sh(\\mathcal{X}_{smooth})$,\n$\\Sh(\\mathcal{X}_{syntomic})$, and\n$\\Sh(\\mathcal{X}_{fppf})$.\n\\end{definition}\n\n\\noindent\nOf course we can also talk about sheaves of pointed sets, abelian groups,\ngroups, monoids, rings, modules over a fixed ring, and lie algebras over\na fixed field, etc. The category of {\\it abelian sheaves}, i.e., sheaves\nof abelian groups, is denoted $\\textit{Ab}(\\mathcal{X}_{fppf})$\nand similarly for the other topologies. If $\\mathcal{X}$ is an algebraic\nstack, then $\\Sh(\\mathcal{X}_{fppf})$ is equivalent (modulo\nset theoretical problems) to what in the literature would be termed\nthe {\\it category of sheaves on the big fppf site of $\\mathcal{X}$}. Similar\nfor other topologies. We may occasionally use this terminology to\ndistinguish this construction from others.\n\n\\medskip\\noindent\nSince the topologies are listed in increasing order of strength we have\nthe following strictly full inclusions\n$$\n\\Sh(\\mathcal{X}_{fppf}) \\subset\n\\Sh(\\mathcal{X}_{syntomic}) \\subset\n\\Sh(\\mathcal{X}_{smooth}) \\subset\n\\Sh(\\mathcal{X}_\\etale) \\subset\n\\Sh(\\mathcal{X}_{Zar}) \\subset \\textit{PSh}(\\mathcal{X})\n$$\nWe sometimes write\n$\\Sh(\\mathcal{X}_{fppf}) = \\Sh(\\mathcal{X})$\nand\n$\\textit{Ab}(\\mathcal{X}_{fppf}) = \\textit{Ab}(\\mathcal{X})$\nin accordance with our terminology that a sheaf on $\\mathcal{X}$\nis an fppf sheaf on $\\mathcal{X}$.\n\n\\medskip\\noindent\nWith this setup functoriality of these topoi is straightforward, and\nmoreover, is compatible with the inclusion functors above.\n\n\\begin{lemma}\n\\label{lemma-functoriality-sheaves}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nThe functors ${}_pf$ and $f^p$ of (\\ref{equation-pushforward-pullback})\ntransform $\\tau$ sheaves into $\\tau$ sheaves and define a morphism\nof topoi\n$f : \\Sh(\\mathcal{X}_\\tau) \\to \\Sh(\\mathcal{Y}_\\tau)$.\n\\end{lemma}\n\n\\begin{proof}\nThis follows immediately from\nStacks, Lemma \\ref{stacks-lemma-topology-inherited-functorial}.\n\\end{proof}\n\n\\noindent\nIn other words, pushforward and pullback of presheaves as defined in\nSection \\ref{section-presheaves}\nalso produces {\\it pushforward} and {\\it pullback} of $\\tau$-sheaves.\nHaving said all of the above we see that we can write $f^p = f^{-1}$\nand ${}_pf = f_*$ without any possibility of confusion.\n\n\\begin{definition}\n\\label{definition-morphism}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. We denote\n$$\nf = (f^{-1}, f_*) :\n\\Sh(\\mathcal{X}_{fppf})\n\\longrightarrow\n\\Sh(\\mathcal{Y}_{fppf})\n$$\nthe {\\it associated morphism of fppf topoi} constructed above.\nSimilarly for the associated Zariski, \\'etale, smooth, and syntomic topoi.\n\\end{definition}\n\n\\noindent\nAs discussed in\nSites, Section \\ref{sites-section-sheaves-algebraic-structures}\nthe same formula (on the underlying sheaf of sets) defines\npushforward and pullback for sheaves (for one of our topologies)\nof pointed sets, abelian groups, groups, monoids, rings, modules\nover a fixed ring, and lie algebras over a fixed field, etc.\n\n\n\n\n\n\n\n\n\\section{Computing pushforward}\n\\label{section-pushforward}\n\n\\noindent\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let $\\mathcal{F}$\nbe a presheaf on $\\mathcal{X}$. Let $y \\in \\Ob(\\mathcal{Y})$.\nWe can compute $f_*\\mathcal{F}(y)$ in the following way. Suppose that\n$y$ lies over the scheme $V$ and using the $2$-Yoneda lemma think\nof $y$ as a $1$-morphism. Consider the projection\n$$\n\\text{pr} :\n(\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X}\n\\longrightarrow\n\\mathcal{X}\n$$\nThen we have a canonical identification\n\\begin{equation}\n\\label{equation-pushforward}\nf_*\\mathcal{F}(y) = \\Gamma\\Big(\n(\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{F}\\Big)\n\\end{equation}\nNamely, objects of the $2$-fibre product are triples\n$(h : U \\to V, x, f(x) \\to h^*y)$. Dropping the $h$ from the\nnotation we see that this is equivalent to the data of an object\n$x$ of $\\mathcal{X}$ and a morphism $\\alpha : f(x) \\to y$ of $\\mathcal{Y}$.\nSince $f_*\\mathcal{F}(y) = \\lim_{f(x) \\to y} \\mathcal{F}(x)$ by definition\nthe equality follows.\n\n\\medskip\\noindent\nAs a consequence we have the following ``base change'' result for\npushforwards. This result is trivial and hinges on the fact that\nwe are using ``big'' sites.\n\n\\begin{lemma}\n\\label{lemma-base-change}\nLet $S$ be a scheme. Let\n$$\n\\xymatrix{\n\\mathcal{Y}' \\times_\\mathcal{Y} \\mathcal{X} \\ar[r]_{g'} \\ar[d]_{f'} &\n\\mathcal{X} \\ar[d]^f \\\\\n\\mathcal{Y}' \\ar[r]^g & \\mathcal{Y}\n}\n$$\nbe a $2$-cartesian diagram of categories fibred in groupoids over $S$.\nThen we have a canonical isomorphism\n$$\ng^{-1}f_*\\mathcal{F} \\longrightarrow f'_*(g')^{-1}\\mathcal{F}\n$$\nfunctorial in the presheaf $\\mathcal{F}$ on $\\mathcal{X}$.\n\\end{lemma}\n\n\\begin{proof}\nGiven an object $y'$ of $\\mathcal{Y}'$ over $V$\nthere is an equivalence\n$$\n(\\Sch/V)_{fppf} \\times_{g(y'), \\mathcal{Y}} \\mathcal{X}\n=\n(\\Sch/V)_{fppf} \\times_{y', \\mathcal{Y}'}\n(\\mathcal{Y}' \\times_\\mathcal{Y} \\mathcal{X})\n$$\nHence by (\\ref{equation-pushforward}) a bijection\n$g^{-1}f_*\\mathcal{F}(y') \\to f'_*(g')^{-1}\\mathcal{F}(y')$.\nWe omit the verification that this is compatible with restriction\nmappings.\n\\end{proof}\n\n\\noindent\nIn the case of a representable morphism of categories fibred in groupoids\nthis formula (\\ref{equation-pushforward}) simplifies. We suggest the\nreader skip the rest of this section.\n\n\\begin{lemma}\n\\label{lemma-representable}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. The following are\nequivalent\n\\begin{enumerate}\n\\item $f$ is representable, and\n\\item for every $y \\in \\Ob(\\mathcal{Y})$ the functor\n$\\mathcal{X}^{opp} \\to \\textit{Sets}$,\n$x \\mapsto \\Mor_\\mathcal{Y}(f(x), y)$\nis representable.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nAccording to the discussion in\nAlgebraic Stacks, Section \\ref{algebraic-section-representable-morphism}\nwe see that $f$ is representable if and only if\nfor every $y \\in \\Ob(\\mathcal{Y})$\nlying over $U$ the $2$-fibre product\n$(\\Sch/U)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X}$\nis representable, i.e., of the form $(\\Sch/V_y)_{fppf}$ for some\nscheme $V_y$ over $U$. Objects in this $2$-fibre products are triples\n$(h : V \\to U, x, \\alpha : f(x) \\to h^*y)$ where $\\alpha$ lies\nover $\\text{id}_V$. Dropping the $h$ from the notation we see that this\nis equivalent to the data of an object $x$ of $\\mathcal{X}$ and a\nmorphism $f(x) \\to y$. Hence the $2$-fibre product is\nrepresentable by $V_y$ and $f(x_y) \\to y$ where $x_y$ is an object\nof $\\mathcal{X}$ over $V_y$ if and only if the functor in (2) is representable\nby $x_y$ with universal object a map $f(x_y) \\to y$.\n\\end{proof}\n\n\\noindent\nLet\n$$\n\\xymatrix{\n\\mathcal{X} \\ar[rr]_f \\ar[rd]_p & & \\mathcal{Y} \\ar[ld]^q \\\\\n& (\\Sch/S)_{fppf}\n}\n$$\nbe a $1$-morphism of categories fibred in groupoids. Assume $f$ is\nrepresentable. For every $y \\in \\Ob(\\mathcal{Y})$ we choose\nan object $u(y) \\in \\Ob(\\mathcal{X})$ representing the functor\n$x \\mapsto \\Mor_\\mathcal{Y}(f(x), y)$ of\nLemma \\ref{lemma-representable}\n(this is possible by the axiom of choice).\nThe objects come with canonical morphisms $f(u(y)) \\to y$ by\nconstruction.\nFor every morphism $\\beta : y' \\to y$ in $\\mathcal{Y}$ we obtain a unique\nmorphism $u(\\beta) : u(y') \\to u(y)$ in $\\mathcal{X}$ such that the diagram\n$$\n\\xymatrix{\nf(u(y')) \\ar[d] \\ar[rr]_{f(u(\\beta))} & & f(u(y)) \\ar[d] \\\\\ny' \\ar[rr] & & y\n}\n$$\ncommutes. In other words, $u : \\mathcal{Y} \\to \\mathcal{X}$ is a functor.\nIn fact, we can say a little bit more. Namely, suppose that\n$V' = q(y')$, $V = q(y)$, $U' = p(u(y'))$ and $U = p(u(y))$. Then\n$$\n\\xymatrix{\nU' \\ar[rr]_{p(u(\\beta))} \\ar[d] & & U \\ar[d] \\\\\nV' \\ar[rr]^{q(\\beta)} & & V\n}\n$$\nis a fibre product square. This is true because $U' \\to U$ represents\nthe base change\n$(\\Sch/V')_{fppf} \\times_{y', \\mathcal{Y}} \\mathcal{X} \\to\n(\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X}$\nof $V' \\to V$.\n\n\\begin{lemma}\n\\label{lemma-representable-pushforward}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a representable $1$-morphism of\ncategories fibred in groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nThen the functor $u : \\mathcal{Y}_\\tau \\to \\mathcal{X}_\\tau$ is continuous\nand defines a morphism of sites $\\mathcal{X}_\\tau \\to \\mathcal{Y}_\\tau$\nwhich induces the same morphism of topoi\n$\\Sh(\\mathcal{X}_\\tau) \\to \\Sh(\\mathcal{Y}_\\tau)$\nas the morphism $f$ constructed in\nLemma \\ref{lemma-functoriality-sheaves}.\nMoreover, $f_*\\mathcal{F}(y) = \\mathcal{F}(u(y))$ for any presheaf\n$\\mathcal{F}$ on $\\mathcal{X}$.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\{y_i \\to y\\}$ be a $\\tau$-covering in $\\mathcal{Y}$. By definition\nthis simply means that $\\{q(y_i) \\to q(y)\\}$ is a $\\tau$-covering of\nschemes. By the final remark above the lemma we see that\n$\\{p(u(y_i)) \\to p(u(y))\\}$ is the base change of the $\\tau$-covering\n$\\{q(y_i) \\to q(y)\\}$ by $p(u(y)) \\to q(y)$, hence is itself a\n$\\tau$-covering by the axioms of a site. Hence $\\{u(y_i) \\to u(y)\\}$\nis a $\\tau$-covering of $\\mathcal{X}$. This proves that $u$ is\ncontinuous.\n\n\\medskip\\noindent\nLet's use the notation $u_p, u_s, u^p, u^s$ of\nSites, Sections \\ref{sites-section-functoriality-PSh} and\n\\ref{sites-section-continuous-functors}.\nIf we can show the final assertion of the lemma, then we see that\n$f_* = u^p = u^s$ (by continuity of $u$ seen above) and hence by adjointness\n$f^{-1} = u_s$ which will prove $u_s$ is exact, hence that $u$ determines\na morphism of sites, and the equality will be clear as well.\nTo see that $f_*\\mathcal{F}(y) = \\mathcal{F}(u(y))$ note that by\ndefinition\n$$\nf_*\\mathcal{F}(y) = ({}_pf\\mathcal{F})(y) =\n\\lim_{f(x) \\to y} \\mathcal{F}(x).\n$$\nSince $u(y)$ is a final object in the category the limit is taken\nover we conclude.\n\\end{proof}\n\n\n\n\n\n\\section{The structure sheaf}\n\\label{section-structure-sheaf}\n\n\\noindent\nLet $\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids. The 2-category of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$ has a final object, namely,\n$\\text{id} : (\\Sch/S)_{fppf} \\to (\\Sch/S)_{fppf}$\nand $p$ is a $1$-morphism from $\\mathcal{X}$ to this final object.\nHence any presheaf $\\mathcal{G}$ on $(\\Sch/S)_{fppf}$ gives a\npresheaf $p^{-1}\\mathcal{G}$ on $\\mathcal{X}$ defined by the rule\n$p^{-1}\\mathcal{G}(x) = \\mathcal{G}(p(x))$. Moreover, the discussion in\nSection \\ref{section-sheaves}\nshows that $p^{-1}\\mathcal{G}$ is a $\\tau$ sheaf whenever\n$\\mathcal{G}$ is a $\\tau$-sheaf.\n\n\\medskip\\noindent\nRecall that the site $(\\Sch/S)_{fppf}$ is a ringed site\nwith structure sheaf $\\mathcal{O}$ defined by the rule\n$$\n(\\Sch/S)^{opp} \\longrightarrow \\textit{Rings},\n\\quad\nU/S \\longmapsto \\Gamma(U, \\mathcal{O}_U)\n$$\nsee\nDescent, Definition \\ref{descent-definition-structure-sheaf}.\n\n\\begin{definition}\n\\label{definition-structure-sheaf}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids. The\n{\\it structure sheaf of $\\mathcal{X}$} is the sheaf of rings\n$\\mathcal{O}_\\mathcal{X} = p^{-1}\\mathcal{O}$.\n\\end{definition}\n\n\\noindent\nFor an object $x$ of $\\mathcal{X}$ lying over $U$ we have\n$\\mathcal{O}_\\mathcal{X}(x) = \\mathcal{O}(U) = \\Gamma(U, \\mathcal{O}_U)$.\nNeedless to say $\\mathcal{O}_\\mathcal{X}$ is also a Zariski, \\'etale,\nsmooth, and syntomic sheaf, and hence each of the sites\n$\\mathcal{X}_{Zar}$, $\\mathcal{X}_\\etale$, $\\mathcal{X}_{smooth}$,\n$\\mathcal{X}_{syntomic}$, and $\\mathcal{X}_{fppf}$ is a ringed site.\nThis construction is functorial as well.\n\n\\begin{lemma}\n\\label{lemma-functoriality-structure-sheaf}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nThere is a canonical identification\n$f^{-1}\\mathcal{O}_\\mathcal{X} = \\mathcal{O}_\\mathcal{Y}$\nwhich turns\n$f : \\Sh(\\mathcal{X}_\\tau) \\to \\Sh(\\mathcal{Y}_\\tau)$\ninto a morphism of ringed topoi.\n\\end{lemma}\n\n\\begin{proof}\nDenote $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ and\n$q : \\mathcal{Y} \\to (\\Sch/S)_{fppf}$ the structural functors.\nThen $q = p \\circ f$, hence $q^{-1} = f^{-1} \\circ p^{-1}$ by\nLemma \\ref{lemma-1-morphisms-presheaves}.\nThe result follows.\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-flat}\nIn the situation of\nLemma \\ref{lemma-functoriality-structure-sheaf}\nthe morphism of ringed topoi\n$f : \\Sh(\\mathcal{X}_\\tau) \\to \\Sh(\\mathcal{Y}_\\tau)$\nis flat as is clear from the equality\n$f^{-1}\\mathcal{O}_\\mathcal{X} = \\mathcal{O}_\\mathcal{Y}$.\nThis is a bit counter intuitive, for example because a closed\nimmersion of algebraic stacks is typically not flat (as a morphism of\nalgebraic stacks).\nHowever, exactly the same thing happens when taking a closed\nimmersion $i : X \\to Y$ of schemes: in this case the associated\nmorphism of big $\\tau$-sites\n$i : (\\Sch/X)_\\tau \\to (\\Sch/Y)_\\tau$\nalso is flat.\n\\end{remark}\n\n\n\n\n\\section{Sheaves of modules}\n\\label{section-modules}\n\n\\noindent\nSince we have a structure sheaf we have modules.\n\n\\begin{definition}\n\\label{definition-modules}\nLet $\\mathcal{X}$ be a category fibred in groupoids over\n$(\\Sch/S)_{fppf}$.\n\\begin{enumerate}\n\\item A {\\it presheaf of modules on $\\mathcal{X}$} is a\npresheaf of $\\mathcal{O}_\\mathcal{X}$-modules. The category of\npresheaves of modules is denoted $\\textit{PMod}(\\mathcal{O}_\\mathcal{X})$.\n\\item We say a presheaf of modules $\\mathcal{F}$ is an\n{\\it $\\mathcal{O}_\\mathcal{X}$-module}, or more precisely a\n{\\it sheaf of $\\mathcal{O}_\\mathcal{X}$-modules} if $\\mathcal{F}$\nis an fppf sheaf. The category of $\\mathcal{O}_\\mathcal{X}$-modules\nis denoted $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$.\n\\end{enumerate}\n\\end{definition}\n\n\\noindent\nThese (pre)sheaves of modules occur in the literature as {\\it (pre)sheaves\nof $\\mathcal{O}_\\mathcal{X}$-modules on the big fppf site of $\\mathcal{X}$}.\nWe will occasionally use this terminology if we want to distinguish these\ncategories from others. We will also encounter presheaves of modules which\nare sheaves in the Zariski, \\'etale, smooth, or syntomic topologies\n(without necessarily being sheaves). If need be these will be denoted\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\nand similarly for the other topologies.\n\n\\medskip\\noindent\nNext, we address functoriality -- first for presheaves of modules. Let\n$$\n\\xymatrix{\n\\mathcal{X} \\ar[rr]_f \\ar[rd]_p & & \\mathcal{Y} \\ar[ld]^q \\\\\n& (\\Sch/S)_{fppf}\n}\n$$\nbe a $1$-morphism of categories fibred in groupoids.\nThe functors $f^{-1}$, $f_*$ on abelian presheaves extend to functors\n\\begin{equation}\n\\label{equation-functoriality-presheaves-modules}\nf^{-1} :\n\\textit{PMod}(\\mathcal{O}_\\mathcal{Y})\n\\longrightarrow\n\\textit{PMod}(\\mathcal{O}_\\mathcal{X})\n\\quad\\text{and}\\quad\nf_* :\n\\textit{PMod}(\\mathcal{O}_\\mathcal{Y})\n\\longrightarrow\n\\textit{PMod}(\\mathcal{O}_\\mathcal{X})\n\\end{equation}\nThis is immediate for $f^{-1}$ because\n$f^{-1}\\mathcal{G}(x) = \\mathcal{G}(f(x))$ which is a module over\n$\\mathcal{O}_\\mathcal{Y}(f(x)) = \\mathcal{O}(q(f(x))) = \\mathcal{O}(p(x)) =\n\\mathcal{O}_\\mathcal{X}(x)$. Alternatively it follows because\n$f^{-1}\\mathcal{O}_\\mathcal{Y} = \\mathcal{O}_\\mathcal{X}$\nand because $f^{-1}$ commutes with limits (on presheaves).\nSince $f_*$ is a right adjoint it commutes with all limits\n(on presheaves) in particular products. Hence we can extend\n$f_*$ to a functor on presheaves of modules as in the proof of\nModules on Sites, Lemma \\ref{sites-modules-lemma-pushforward-module}.\nWe claim that the functors (\\ref{equation-functoriality-presheaves-modules})\nform an adjoint pair of functors:\n$$\n\\Mor_{\\textit{PMod}(\\mathcal{O}_\\mathcal{X})}(\nf^{-1}\\mathcal{G}, \\mathcal{F})\n=\n\\Mor_{\\textit{PMod}(\\mathcal{O}_\\mathcal{Y})}(\n\\mathcal{G}, f_*\\mathcal{F}).\n$$\nAs $f^{-1}\\mathcal{O}_\\mathcal{Y} = \\mathcal{O}_\\mathcal{X}$\nthis follows from\nModules on Sites, Lemma \\ref{sites-modules-lemma-adjoint-push-pull-modules}\nby endowing $\\mathcal{X}$ and $\\mathcal{Y}$ with the chaotic\ntopology.\n\n\\medskip\\noindent\nNext, we discuss functoriality for modules, i.e., for sheaves of modules\nin the fppf topology. Denote by $f$ also the induced morphism of ringed\ntopoi, see\nLemma \\ref{lemma-functoriality-structure-sheaf}\n(for the fppf topologies right now). Note that the functors\n$f^{-1}$ and $f_*$ of (\\ref{equation-functoriality-presheaves-modules})\npreserve the subcategories of sheaves of modules, see\nLemma \\ref{lemma-functoriality-sheaves}.\nHence it follows immediately that\n\\begin{equation}\n\\label{equation-functoriality-sheaves-modules}\nf^{-1} :\n\\textit{Mod}(\\mathcal{O}_\\mathcal{Y})\n\\longrightarrow\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})\n\\quad\\text{and}\\quad\nf_* :\n\\textit{Mod}(\\mathcal{O}_\\mathcal{Y})\n\\longrightarrow\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})\n\\end{equation}\nform an adjoint pair of functors:\n$$\n\\Mor_{\\textit{Mod}(\\mathcal{O}_\\mathcal{X})}(\nf^{-1}\\mathcal{G}, \\mathcal{F})\n=\n\\Mor_{\\textit{Mod}(\\mathcal{O}_\\mathcal{Y})}(\n\\mathcal{G}, f_*\\mathcal{F}).\n$$\nBy uniqueness of adjoints we conclude that\n$f^* = f^{-1}$ where $f^*$ is as defined in\nModules on Sites, Section \\ref{sites-modules-section-functoriality-modules}\nfor the morphism of ringed topoi $f$ above. Of course we could have\nseen this directly because\n$f^*(-) = f^{-1}(-) \\otimes_{f^{-1}\\mathcal{O}_\\mathcal{Y}}\n\\mathcal{O}_\\mathcal{X}$ and because\n$f^{-1}\\mathcal{O}_\\mathcal{Y} = \\mathcal{O}_\\mathcal{X}$.\n\n\\medskip\\noindent\nSimilarly for sheaves of modules in the Zariski, \\'etale, smooth, syntomic\ntopology.\n\n\n\n\\section{Representable categories}\n\\label{section-representable}\n\n\\noindent\nIn this short section we compare our definitions with what happens\nin case the algebraic stacks in question are representable.\n\n\\begin{lemma}\n\\label{lemma-compare-with-scheme}\nLet $S$ be a scheme. Let $\\mathcal{X}$ be a category fibred\nin groupoids over $(\\Sch/S)$. Assume $\\mathcal{X}$ is representable\nby a scheme $X$. For $\\tau \\in \\{Zar,\\linebreak[0] \\etale,\\linebreak[0]\nsmooth,\\linebreak[0] syntomic,\\linebreak[0] fppf\\}$\nthere is a canonical equivalence\n$$\n(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X}) =\n((\\Sch/X)_\\tau, \\mathcal{O}_X)\n$$\nof ringed sites.\n\\end{lemma}\n\n\\begin{proof}\nThis follows by choosing an equivalence\n$(\\Sch/X)_\\tau \\to \\mathcal{X}$ of categories fibred in groupoids\nover $(\\Sch/S)_{fppf}$ and using the functoriality of\nthe construction $\\mathcal{X} \\leadsto \\mathcal{X}_\\tau$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-compare-with-morphism-of-schemes}\nLet $S$ be a scheme. Let $f : \\mathcal{X} \\to \\mathcal{Y}$ be a morphism\nof categories fibred in groupoids over $S$.\nAssume $\\mathcal{X}$, $\\mathcal{Y}$ are representable by schemes\n$X$, $Y$. Let $f : X \\to Y$ be the morphism of schemes corresponding\nto $f$. For $\\tau \\in \\{Zar,\\linebreak[0] \\etale,\\linebreak[0]\nsmooth,\\linebreak[0] syntomic,\\linebreak[0] fppf\\}$\nthe morphism of ringed topoi\n$f : (\\Sh(\\mathcal{X}_\\tau), \\mathcal{O}_\\mathcal{X}) \\to\n(\\Sh(\\mathcal{Y}_\\tau), \\mathcal{O}_\\mathcal{Y})$\nagrees with the morphism of ringed topoi\n$f : (\\Sh((\\Sch/X)_\\tau), \\mathcal{O}_X) \\to \n(\\Sh((\\Sch/Y)_\\tau), \\mathcal{O}_Y)$ via the identifications of\nLemma \\ref{lemma-compare-with-scheme}.\n\\end{lemma}\n\n\\begin{proof}\nFollows by unwinding the definitions.\n\\end{proof}\n\n\n\n\n\\section{Restriction}\n\\label{section-restriction}\n\n\n\\noindent\nA trivial but useful observation is that the localization\nof a category fibred in groupoids at an object\nis equivalent to the big site of the scheme it lies over.\n\n\\begin{lemma}\n\\label{lemma-localizing}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred\nin groupoids. Let $\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nLet $x \\in \\Ob(\\mathcal{X})$ lying over $U = p(x)$.\nThe functor $p$ induces an equivalence of sites\n$\\mathcal{X}_\\tau/x \\to (\\Sch/U)_\\tau$.\n\\end{lemma}\n\n\\begin{proof}\nSpecial case of Stacks, Lemma \\ref{stacks-lemma-localizing}.\n\\end{proof}\n\n\\noindent\nWe use the lemma above to talk about the pullback and the restriction\nof a (pre)sheaf to a scheme.\n\n\\begin{definition}\n\\label{definition-pullback}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred\nin groupoids. Let $x \\in \\Ob(\\mathcal{X})$ lying over $U = p(x)$.\nLet $\\mathcal{F}$ be a presheaf on $\\mathcal{X}$.\n\\begin{enumerate}\n\\item The {\\it pullback $x^{-1}\\mathcal{F}$ of $\\mathcal{F}$} is the\nrestriction $\\mathcal{F}|_{(\\mathcal{X}/x)}$ viewed as a presheaf on\n$(\\Sch/U)_{fppf}$ via the equivalence\n$\\mathcal{X}/x \\to (\\Sch/U)_{fppf}$ of\nLemma \\ref{lemma-localizing}.\n\\item The {\\it restriction of $\\mathcal{F}$ to $U_\\etale$}\nis $x^{-1}\\mathcal{F}|_{U_\\etale}$, abusively written\n$\\mathcal{F}|_{U_\\etale}$.\n\\end{enumerate}\n\\end{definition}\n\n\\noindent\nThis notation makes sense because to the object $x$ the $2$-Yoneda lemma, see\nAlgebraic Stacks, Section \\ref{algebraic-section-2-yoneda}\nassociates a $1$-morphism $x : (\\Sch/U)_{fppf} \\to \\mathcal{X}/x$\nwhich is quasi-inverse to $p : \\mathcal{X}/x \\to (\\Sch/U)_{fppf}$.\nHence $x^{-1}\\mathcal{F}$ truly is the pullback of $\\mathcal{F}$ via this\n$1$-morphism. In particular, by the material above, if $\\mathcal{F}$\nis a sheaf (or a Zariski, \\'etale, smooth, syntomic sheaf), then\n$x^{-1}\\mathcal{F}$ is a sheaf on $(\\Sch/U)_{fppf}$ (or on\n$(\\Sch/U)_{Zar}$, $(\\Sch/U)_\\etale$,\n$(\\Sch/U)_{smooth}$, $(\\Sch/U)_{syntomic}$).\n\n\\medskip\\noindent\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred\nin groupoids. Let $\\varphi : x \\to y$ be a morphism of $\\mathcal{X}$\nlying over the morphism of schemes $a : U \\to V$.\nRecall that $a$ induces a morphism of small \\'etale\nsites $a_{small} : U_\\etale \\to V_\\etale$, see\n\\'Etale Cohomology, Section \\ref{etale-cohomology-section-functoriality}.\nLet $\\mathcal{F}$ be a presheaf on $\\mathcal{X}$.\nLet $\\mathcal{F}|_{U_\\etale}$ and\n$\\mathcal{F}|_{V_\\etale}$ be the restrictions of $\\mathcal{F}$\nvia $x$ and $y$. There is a natural {\\it comparison} map\n\\begin{equation}\n\\label{equation-comparison-push}\nc_\\varphi :\n\\mathcal{F}|_{V_\\etale}\n\\longrightarrow\na_{small, *}(\\mathcal{F}|_{U_\\etale})\n\\end{equation}\nof presheaves on $U_\\etale$. Namely, if $V' \\to V$ is \\'etale,\nset $U' = V' \\times_V U$ and define $c_\\varphi$ on sections over $V'$\nvia\n$$\n\\xymatrix{\na_{small, *}(\\mathcal{F}|_{U_\\etale})(V') &\n\\mathcal{F}|_{U_\\etale}(U') \\ar@{=}[l] &\n\\mathcal{F}(x') \\ar@{=}[l] \\\\\n\\mathcal{F}|_{V_\\etale}(V') \\ar@{=}[rr] \\ar[u]^{c_\\varphi} &\n&\n\\mathcal{F}(y') \\ar[u]_{\\mathcal{F}(\\varphi')}\n}\n$$\nHere $\\varphi' : x' \\to y'$ is a morphism of $\\mathcal{X}$\nfitting into a commutative diagram\n$$\n\\vcenter{\n\\xymatrix{\nx' \\ar[r] \\ar[d]_{\\varphi'} & x \\ar[d]^\\varphi \\\\\ny' \\ar[r] & y\n}\n}\n\\quad\\text{lying over}\\quad\n\\vcenter{\n\\xymatrix{\nU' \\ar[r] \\ar[d] & U \\ar[d]^a \\\\\nV' \\ar[r] & V\n}\n}\n$$\nThe existence and uniqueness of $\\varphi'$ follow from the axioms\nof a category fibred in groupoids.\nWe omit the verification that $c_\\varphi$ so defined is indeed a map\nof presheaves (i.e., compatible with restriction mappings) and that\nit is functorial in $\\mathcal{F}$. In case $\\mathcal{F}$ is a sheaf for the\n\\'etale topology we obtain a {\\it comparison} map\n\\begin{equation}\n\\label{equation-comparison}\nc_\\varphi : a_{small}^{-1}(\\mathcal{F}|_{V_\\etale})\n\\longrightarrow\n\\mathcal{F}|_{U_\\etale}\n\\end{equation}\nwhich is also denoted $c_\\varphi$ as indicated (this is the customary abuse\nof notation in not distinguishing between adjoint maps).\n\n\\begin{lemma}\n\\label{lemma-comparison}\nLet $\\mathcal{F}$ be an \\'etale sheaf on $\\mathcal{X} \\to (\\Sch/S)_{fppf}$.\n\\begin{enumerate}\n\\item If $\\varphi : x \\to y$ and $\\psi : y \\to z$\nare morphisms of $\\mathcal{X}$ lying over $a : U \\to V$ and\n$b : V \\to W$, then the composition\n$$\na_{small}^{-1}(b_{small}^{-1} (\\mathcal{F}|_{W_\\etale}))\n\\xrightarrow{a_{small}^{-1}c_\\psi}\na_{small}^{-1}(\\mathcal{F}|_{V_\\etale})\n\\xrightarrow{c_\\varphi}\n\\mathcal{F}|_{U_\\etale}\n$$\nis equal to $c_{\\psi \\circ \\varphi}$ via the identification\n$$\n(b \\circ a)_{small}^{-1}(\\mathcal{F}|_{W_\\etale}) =\na_{small}^{-1}(b_{small}^{-1} (\\mathcal{F}|_{W_\\etale})).\n$$\n\\item If $\\varphi : x \\to y$ lies over an \\'etale morphism of schemes\n$a : U \\to V$, then (\\ref{equation-comparison}) is an isomorphism.\n\\item Suppose $f : \\mathcal{Y} \\to \\mathcal{X}$ is a $1$-morphism of\ncategories fibred in groupoids over $(\\Sch/S)_{fppf}$ and $y$ is\nan object of $\\mathcal{Y}$ lying over the scheme $U$ with image\n$x = f(y)$. Then there is a canonical identification\n$f^{-1}\\mathcal{F}|_{U_\\etale} = \\mathcal{F}|_{U_\\etale}$.\n\\item Moreover, given $\\psi : y' \\to y$ in $\\mathcal{Y}$ lying over\n$a : U' \\to U$ the comparison map\n$c_\\psi : a_{small}^{-1}(F^{-1}\\mathcal{F}|_{U_\\etale}) \\to\nF^{-1}\\mathcal{F}|_{U'_\\etale}$ is equal to the\ncomparison map $c_{f(\\psi)} : a_{small}^{-1}\\mathcal{F}|_{U_\\etale}\n\\to \\mathcal{F}|_{U'_\\etale}$ via the identifications in (3).\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe verification of these properties is omitted.\n\\end{proof}\n\n\\noindent\nNext, we turn to the restriction of (pre)sheaves of modules.\n\n\\begin{lemma}\n\\label{lemma-localizing-structure-sheaf}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred\nin groupoids. Let $\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nLet $x \\in \\Ob(\\mathcal{X})$ lying over $U = p(x)$.\nThe equivalence of\nLemma \\ref{lemma-localizing}\nextends to an equivalence of ringed sites\n$(\\mathcal{X}_\\tau/x, \\mathcal{O}_\\mathcal{X}|_x) \\to\n((\\Sch/U)_\\tau, \\mathcal{O})$.\n\\end{lemma}\n\n\\begin{proof}\nThis is immediate from the construction of the structure sheaves.\n\\end{proof}\n\n\\noindent\nLet $\\mathcal{X}$ be a category fibred in groupoids over $(\\Sch/S)_{fppf}$.\nLet $\\mathcal{F}$ be a (pre)sheaf of modules on $\\mathcal{X}$ as in\nDefinition \\ref{definition-modules}.\nLet $x$ be an object of $\\mathcal{X}$ lying over $U$. Then\nLemma \\ref{lemma-localizing-structure-sheaf}\nguarantees that the restriction\n$x^{-1}\\mathcal{F}$ is a (pre)sheaf of modules on $(\\Sch/U)_{fppf}$.\nWe will sometimes write $x^*\\mathcal{F} = x^{-1}\\mathcal{F}$ in this case.\nSimilarly, if $\\mathcal{F}$ is a sheaf for the Zariski, \\'etale, smooth,\nor syntomic topology, then $x^{-1}\\mathcal{F}$ is as well. Moreover, the\nrestriction\n$\\mathcal{F}|_{U_\\etale} = x^{-1}\\mathcal{F}|_{U_\\etale}$\nto $U$ is a presheaf of $\\mathcal{O}_{U_\\etale}$-modules.\nIf $\\mathcal{F}$ is a sheaf for the \\'etale topology, then\n$\\mathcal{F}|_{U_\\etale}$ is a sheaf of modules. Moreover,\nif $\\varphi : x \\to y$ is a morphism of $\\mathcal{X}$ lying over\n$a : U \\to V$ then the comparison map (\\ref{equation-comparison})\nis compatible with $a_{small}^\\sharp$ (see\nDescent, Remark \\ref{descent-remark-change-topologies-ringed})\nand induces a {\\it comparison} map\n\\begin{equation}\n\\label{equation-comparison-modules}\nc_\\varphi : a_{small}^*(\\mathcal{F}|_{V_\\etale})\n\\longrightarrow\n\\mathcal{F}|_{U_\\etale}\n\\end{equation}\nof $\\mathcal{O}_{U_\\etale}$-modules.\nNote that the properties (1), (2), (3), and (4) of\nLemma \\ref{lemma-comparison}\nhold in the setting of \\'etale sheaves of modules as well.\nWe will use this in the following without further mention.\n\n\\begin{lemma}\n\\label{lemma-enough-points}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred\nin groupoids. Let $\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nThe site $\\mathcal{X}_\\tau$ has enough points.\n\\end{lemma}\n\n\\begin{proof}\nBy\nSites, Lemma \\ref{sites-lemma-enough-points-local}\nwe have to show that there exists a family of objects $x$ of $\\mathcal{X}$\nsuch that $\\mathcal{X}_\\tau/x$ has enough points and such that the sheaves\n$h_x^\\#$ cover the final object of the category of sheaves.\nBy\nLemma \\ref{lemma-localizing}\nand\n\\'Etale Cohomology, Lemma \\ref{etale-cohomology-lemma-points-fppf}\nwe see that $\\mathcal{X}_\\tau/x$ has enough points for every object\n$x$ and we win.\n\\end{proof}\n\n\n\n\n\n\n\n\\section{Restriction to algebraic spaces}\n\\label{section-restriction-algebraic-spaces}\n\n\\noindent\nIn this section we consider sheaves on categories representable by\nalgebraic spaces. The following lemma is the analogue of\nTopologies, Lemma \\ref{topologies-lemma-at-the-bottom-etale}\nfor algebraic spaces.\n\n\\begin{lemma}\n\\label{lemma-compare}\nLet $S$ be a scheme. Let $\\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids. Assume $\\mathcal{X}$ is representable by an algebraic\nspace $F$. Then there exists a continuous and cocontinuous functor\n$\nF_\\etale \\to \\mathcal{X}_\\etale\n$\nwhich induces a morphism of ringed sites\n$$\n\\pi_F :\n(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})\n\\longrightarrow\n(F_\\etale, \\mathcal{O}_F)\n$$\nand a morphism of ringed topoi\n$$\ni_F :\n(\\Sh(F_\\etale), \\mathcal{O}_F)\n\\longrightarrow\n(\\Sh(\\mathcal{X}_\\etale), \\mathcal{O}_\\mathcal{X})\n$$\nsuch that $\\pi_F \\circ i_F = \\text{id}$. Moreover $\\pi_{F, *} = i_F^{-1}$.\n\\end{lemma}\n\n\\begin{proof}\nChoose an equivalence $j : \\mathcal{S}_F \\to \\mathcal{X}$, see\nAlgebraic Stacks, Sections \\ref{algebraic-section-split} and\n\\ref{algebraic-section-representable-by-algebraic-spaces}.\nAn object of $F_\\etale$ is a scheme $U$ together with an\n\\'etale morphism $\\varphi : U \\to F$. Then $\\varphi$ is an object\nof $\\mathcal{S}_F$ over $U$. Hence $j(\\varphi)$ is an object of\n$\\mathcal{X}$ over $U$. In this way $j$ induces a functor\n$u : F_\\etale \\to \\mathcal{X}$. It is clear that\n$u$ is continuous and cocontinuous for the \\'etale topology on\n$\\mathcal{X}$. Since $j$ is an equivalence, the functor $u$ is fully\nfaithful. Also, fibre products and equalizers exist in $F_\\etale$\nand $u$ commutes with them because these are computed on the level\nof underlying schemes in $F_\\etale$. Thus\nSites, Lemmas \\ref{sites-lemma-when-shriek},\n\\ref{sites-lemma-preserve-equalizers}, and\n\\ref{sites-lemma-back-and-forth}\napply. In particular $u$ defines a morphism of topoi\n$i_F : \\Sh(F_\\etale) \\to \\Sh(\\mathcal{X}_\\etale)$\nand there exists a left adjoint $i_{F, !}$ of $i_F^{-1}$ which commutes\nwith fibre products and equalizers.\n\n\\medskip\\noindent\nWe claim that $i_{F, !}$ is exact. If this is true, then we can define\n$\\pi_F$ by the rules $\\pi_F^{-1} = i_{F, !}$ and $\\pi_{F, *} = i_F^{-1}$\nand everything is clear. To prove the claim, note that we already know\nthat $i_{F, !}$\nis right exact and preserves fibre products. Hence it suffices to show\nthat $i_{F, !}* = *$ where $*$ indicates the final object in the category\nof sheaves of sets. Let $U$ be a scheme and let\n$\\varphi : U \\to F$ be surjective and \\'etale. Set $R = U \\times_F U$.\nThen\n$$\n\\xymatrix{\nh_R \\ar@<1ex>[r] \\ar@<-1ex>[r] & h_U \\ar[r] & {*}\n}\n$$\nis a coequalizer diagram in $\\Sh(F_\\etale)$. Using the\nright exactness of $i_{F, !}$, using $i_{F, !} = (u_p\\ )^\\#$, and using\nSites, Lemma \\ref{sites-lemma-pullback-representable-presheaf}\nwe see that\n$$\n\\xymatrix{\nh_{u(R)} \\ar@<1ex>[r] \\ar@<-1ex>[r] & h_{u(U)} \\ar[r] & i_{F, !}{*}\n}\n$$\nis a coequalizer diagram in $\\Sh(F_\\etale)$. Using that\n$j$ is an equivalence and that $F = U/R$ it follows that\nthe coequalizer in $\\Sh(\\mathcal{X}_\\etale)$ of the\ntwo maps $h_{u(R)} \\to h_{u(U)}$ is $*$. We omit the proof that\nthese morphisms are compatible with structure sheaves.\n\\end{proof}\n\n\\noindent\nAssume $\\mathcal{X}$ is an algebraic stack represented by the\nalgebraic space $F$.\nLet $j : \\mathcal{S}_F \\to \\mathcal{X}$ be an equivalence and denote\n$u : F_\\etale \\to \\mathcal{X}_\\etale$ the\nfunctor of the proof of Lemma \\ref{lemma-compare} above.\nGiven a sheaf $\\mathcal{F}$ on $\\mathcal{X}_\\etale$ we have\n$$\n\\pi_{F, *}\\mathcal{F}(U) = i_F^{-1}\\mathcal{F}(U) = \\mathcal{F}(u(U)).\n$$\nThis is why we often think of $i_F^{-1}$ as a {\\it restriction functor}\nsimilarly to\nDefinition \\ref{definition-pullback}\nand to the restriction of a sheaf on the big \\'etale site of\na scheme to the small \\'etale site of a scheme. We often use the notation\n\\begin{equation}\n\\label{equation-restrict}\n\\mathcal{F}|_{F_\\etale} = i_F^{-1}\\mathcal{F} = \\pi_{F, *}\\mathcal{F}\n\\end{equation}\nin this situation.\n\n\\begin{lemma}\n\\label{lemma-compare-morphism}\nLet $S$ be a scheme. Let $f : \\mathcal{X} \\to \\mathcal{Y}$ be a morphism\nof categories fibred in groupoids over $(\\Sch/S)_{fppf}$. Assume\n$\\mathcal{X}$, $\\mathcal{Y}$ are representable by algebraic spaces $F$, $G$.\nDenote $f : F \\to G$ the induced morphism of algebraic spaces, and\n$f_{small} : F_\\etale \\to G_\\etale$\nthe corresponding morphism of ringed topoi. Then\n$$\n\\xymatrix{\n(\\Sh(\\mathcal{X}_\\etale), \\mathcal{O}_\\mathcal{X})\n\\ar[d]_{\\pi_F} \\ar[rr]_f & &\n(\\Sh(\\mathcal{Y}_\\etale), \\mathcal{O}_\\mathcal{Y}) \\ar[d]^{\\pi_G} \\\\\n(\\Sh(F_\\etale), \\mathcal{O}_F) \\ar[rr]^{f_{small}} & &\n(\\Sh(G_\\etale), \\mathcal{O}_G)\n}\n$$\nis a commutative diagram of ringed topoi.\n\\end{lemma}\n\n\\begin{proof}\nThis is similar to\nTopologies, Lemma \\ref{topologies-lemma-morphism-big-small-etale} (3)\nbut there is a small snag due to the fact that $F \\to G$ may not be\nrepresentable by schemes. In particular we don't get a commutative diagram\nof ringed sites, but only a commutative diagram of ringed topoi.\n\n\\medskip\\noindent\nBefore we start the proof proper, we choose equivalences\n$j : \\mathcal{S}_F \\to \\mathcal{X}$ and\n$j' : \\mathcal{S}_G \\to \\mathcal{Y}$ which induce functors\n$u : F_\\etale \\to \\mathcal{X}$ and\n$u' : G_\\etale \\to \\mathcal{Y}$ as in the proof of\nLemma \\ref{lemma-compare}. Because of the 2-functoriality of\nsheaves on categories fibred in groupoids over $\\Sch_{fppf}$\n(see discussion in Section \\ref{section-presheaves})\nwe may assume that $\\mathcal{X} = \\mathcal{S}_F$ and\n$\\mathcal{Y} = \\mathcal{S}_G$ and that $f : \\mathcal{S}_F \\to \\mathcal{S}_G$\nis the functor associated to the morphism $f : F \\to G$. Correspondingly\nwe will omit $u$ and $u'$ from the notation, i.e., given an object\n$U \\to F$ of $F_\\etale$ we denote $U/F$\nthe corresponding object of $\\mathcal{X}$. Similarly for $G$.\n\n\\medskip\\noindent\nLet $\\mathcal{G}$ be a sheaf on $\\mathcal{X}_\\etale$.\nTo prove (2) we compute $\\pi_{G, *}f_*\\mathcal{G}$ and\n$f_{small, *}\\pi_{F, *}\\mathcal{G}$. To do this let $V \\to G$ be an object\nof $G_\\etale$. Then\n$$\n\\pi_{G, *}f_*\\mathcal{G}(V) = f_*\\mathcal{G}(V/G) =\n\\Gamma\\Big(\n(\\Sch/V)_{fppf} \\times_{\\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{G}\\Big)\n$$\nsee (\\ref{equation-pushforward}). The fibre product in the formula is\n$$\n(\\Sch/V)_{fppf} \\times_{\\mathcal{Y}} \\mathcal{X} =\n(\\Sch/V)_{fppf} \\times_{\\mathcal{S}_G} \\mathcal{S}_F =\n\\mathcal{S}_{V \\times_G F}\n$$\ni.e., it is the split category fibred in groupoids associated to the\nalgebraic space $V \\times_G F$. And $\\text{pr}^{-1}\\mathcal{G}$ is a\nsheaf on $\\mathcal{S}_{V \\times_G F}$ for the \\'etale topology.\n\n\\medskip\\noindent\nIn particular, if $V \\times_G F$ is representable, i.e., if it is a scheme,\nthen $\\pi_{G, *}f_*\\mathcal{G}(V) = \\mathcal{G}(V \\times_G F/F)$ and\nalso\n$$\nf_{small, *}\\pi_{F, *}\\mathcal{G}(V) =\n\\pi_{F, *}\\mathcal{G}(V \\times_G F) =\n\\mathcal{G}(V \\times_G F/F)\n$$\nwhich proves the desired equality in this special case.\n\n\\medskip\\noindent\nIn general, choose a scheme $U$ and a surjective \\'etale morphism\n$U \\to V \\times_G F$. Set $R = U \\times_{V \\times_G F} U$. Then\n$U/V \\times_G F$ and $R/V \\times_G F$ are objects of the fibre\nproduct category above. Since $\\text{pr}^{-1}\\mathcal{G}$ is a\nsheaf for the \\'etale topology on $\\mathcal{S}_{V \\times_G F}$\nthe diagram\n$$\n\\xymatrix{\n\\Gamma\\Big(\n(\\Sch/V)_{fppf} \\times_{\\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{G}\\Big)\n\\ar[r] &\n\\text{pr}^{-1}\\mathcal{G}(U/V \\times_G F) \\ar@<1ex>[r] \\ar@<-1ex>[r] &\n\\text{pr}^{-1}\\mathcal{G}(R/V \\times_G F)\n}\n$$\nis an equalizer diagram. Note that\n$\\text{pr}^{-1}\\mathcal{G}(U/V \\times_G F) = \\mathcal{G}(U/F)$\nand $\\text{pr}^{-1}\\mathcal{G}(R/V \\times_G F) = \\mathcal{G}(R/F)$\nby the definition of pullbacks. Moreover, by the material in\nProperties of Spaces, Section \\ref{spaces-properties-section-etale-site}\n(especially,\nProperties of Spaces,\nRemark \\ref{spaces-properties-remark-explain-equivalence} and\nLemma \\ref{spaces-properties-lemma-functoriality-etale-site})\nwe see that there is an equalizer diagram\n$$\n\\xymatrix{\nf_{small, *}\\pi_{F, *}\\mathcal{G}(V)\n\\ar[r] &\n\\pi_{F, *}\\mathcal{G}(U/F) \\ar@<1ex>[r] \\ar@<-1ex>[r] &\n\\pi_{F, *}\\mathcal{G}(R/F)\n}\n$$\nSince we also have $\\pi_{F, *}\\mathcal{G}(U/F) = \\mathcal{G}(U/F)$\nand $\\pi_{F, *}\\mathcal{G}(U/F) = \\mathcal{G}(U/F)$\nwe obtain a canonical identification\n$f_{small, *}\\pi_{F, *}\\mathcal{G}(V) = \\pi_{G, *}f_*\\mathcal{G}(V)$.\nWe omit the proof that this is compatible with restriction mappings\nand that it is functorial in $\\mathcal{G}$.\n\\end{proof}\n\n\\noindent\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ and $f : F \\to G$ be as in the\nsecond part of the lemma above. A consequence of the lemma, using\n(\\ref{equation-restrict}), is that\n\\begin{equation}\n\\label{equation-compare-big-small}\n(f_*\\mathcal{F})|_{G_\\etale} =\nf_{small, *}(\\mathcal{F}|_{F_\\etale})\n\\end{equation}\nfor any sheaf $\\mathcal{F}$ on $\\mathcal{X}_\\etale$.\nMoreover, if $\\mathcal{F}$ is a sheaf of $\\mathcal{O}$-modules, then\n(\\ref{equation-compare-big-small}) is an isomorphism of\n$\\mathcal{O}_G$-modules on $G_\\etale$.\n\n\\medskip\\noindent\nFinally, suppose that we have a $2$-commutative diagram\n$$\n\\xymatrix{\n\\mathcal{U} \\ar[r]^a \\ar[dr]_f \\drtwocell<\\omit>{<-2>\\varphi} &\n\\mathcal{V} \\ar[d]^g \\\\\n& \\mathcal{X}\n}\n$$\nof $1$-morphisms of categories fibred in groupoids over $(\\Sch/S)_{fppf}$,\nthat $\\mathcal{F}$ is a sheaf on $\\mathcal{X}_\\etale$,\nand that $\\mathcal{U}, \\mathcal{V}$ are representable by algebraic\nspaces $U, V$. Then we obtain a comparison map\n\\begin{equation}\n\\label{equation-comparison-algebraic-spaces}\nc_\\varphi : a_{small}^{-1}(g^{-1}\\mathcal{F}|_{V_\\etale})\n\\longrightarrow\nf^{-1}\\mathcal{F}|_{U_\\etale}\n\\end{equation}\nwhere $a : U \\to V$ denotes the morphism of algebraic spaces corresponding\nto $a$. This is the analogue of (\\ref{equation-comparison}). We define\n$c_\\varphi$ as the adjoint to the map\n$$\ng^{-1}\\mathcal{F}|_{V_\\etale}\n\\longrightarrow\na_{small, *}(f^{-1}\\mathcal{F}|_{U_\\etale}) =\n(a_*f^{-1}\\mathcal{F})|_{V_\\etale}\n$$\n(equality by (\\ref{equation-compare-big-small}))\nwhich is the restriction to $V$ (\\ref{equation-restrict}) of the map\n$$\ng^{-1}\\mathcal{F} \\to a_*a^{-1}g^{-1}\\mathcal{F} = a_*f^{-1}\\mathcal{F}\n$$\nwhere the last equality uses the $2$-commutativity of the diagram above.\nIn case $\\mathcal{F}$ is a sheaf of $\\mathcal{O}_\\mathcal{X}$-modules\n$c_\\varphi$ induces a {\\it comparison} map\n\\begin{equation}\n\\label{equation-comparison-algebraic-spaces-modules}\nc_\\varphi : a_{small}^*(g^*\\mathcal{F}|_{V_\\etale})\n\\longrightarrow\nf^*\\mathcal{F}|_{U_\\etale}\n\\end{equation}\nof $\\mathcal{O}_{U_\\etale}$-modules.\nNote that the properties (1), (2), (3), and (4) of\nLemma \\ref{lemma-comparison}\nhold in this setting as well.\n\n\n\n\n\n\n\n\n\n\n\n\n\\section{Quasi-coherent modules}\n\\label{section-quasi-coherent}\n\n\\noindent\nAt this point we can apply the general definition of a quasi-coherent\nmodule to the situation discussed in this chapter.\n\n\\begin{definition}\n\\label{definition-quasi-coherent}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred\nin groupoids. A {\\it quasi-coherent module on $\\mathcal{X}$}, or a\n{\\it quasi-coherent $\\mathcal{O}_\\mathcal{X}$-module} is a\nquasi-coherent module on the ringed site\n$(\\mathcal{X}_{fppf}, \\mathcal{O}_\\mathcal{X})$ as in\nModules on Sites, Definition \\ref{sites-modules-definition-site-local}.\nThe category of quasi-coherent sheaves on $\\mathcal{X}$\nis denoted $\\QCoh(\\mathcal{O}_\\mathcal{X})$.\n\\end{definition}\n\n\\noindent\nIf $\\mathcal{X}$ is an algebraic stack, then this definition agrees with all\ndefinitions in the literature in the sense that $\\QCoh(\\mathcal{O}_\\mathcal{X})$\nis equivalent (modulo set theoretic issues) to any variant of this category\ndefined in the literature. For example, we will match our definition with\nthe definition in \\cite[Definition 6.1]{olsson_sheaves} in\nCohomology on Stacks, Lemma \\ref{lemma-quasi-coherent}.\nWe will also see alternative constructions of this category later on.\n\n\\medskip\\noindent\nIn general (as is the case for morphisms of schemes) the pushforward\nof quasi-coherent sheaf along a $1$-morphism is not quasi-coherent.\nPullback does preserve quasi-coherence.\n\n\\begin{lemma}\n\\label{lemma-pullback-quasi-coherent}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$.\nThe pullback functor\n$f^* = f^{-1} : \\textit{Mod}(\\mathcal{O}_\\mathcal{Y}) \\to\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\npreserves quasi-coherent sheaves.\n\\end{lemma}\n\n\\begin{proof}\nThis is a general fact, see\nModules on Sites, Lemma \\ref{sites-modules-lemma-local-pullback}.\n\\end{proof}\n\n\\noindent\nIt turns out that quasi-coherent sheaves have a very simple\ncharacterization in terms of their pullbacks. See also\nLemma \\ref{lemma-quasi-coherent}\nfor a characterization in terms of restrictions.\n\n\\begin{lemma}\n\\label{lemma-characterize-quasi-coherent}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids. Let $\\mathcal{F}$\nbe a sheaf of $\\mathcal{O}_\\mathcal{X}$-modules. Then $\\mathcal{F}$\nis quasi-coherent if and only if $x^*\\mathcal{F}$ is a quasi-coherent\nsheaf on $(\\Sch/U)_{fppf}$ for every object $x$ of\n$\\mathcal{X}$ with $U = p(x)$.\n\\end{lemma}\n\n\\begin{proof}\nBy\nLemma \\ref{lemma-pullback-quasi-coherent}\nthe condition is necessary. Conversely, since $x^*\\mathcal{F}$\nis just the restriction to $\\mathcal{X}_{fppf}/x$ we see that it\nis sufficient directly from the definition of a quasi-coherent sheaf\n(and the fact that the notion of being quasi-coherent is an intrinsic\nproperty of sheaves of modules, see\nModules on Sites, Section \\ref{sites-modules-section-intrinsic}).\n\\end{proof}\n\n\\noindent\nAlthough there is a variant for the Zariski topology, it seems\nthat the \\'etale topology is the natural topology to use in the\nfollowing definition.\n\n\\begin{definition}\n\\label{definition-locally-quasi-coherent}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids. Let $\\mathcal{F}$\nbe a presheaf of $\\mathcal{O}_\\mathcal{X}$-modules.\nWe say $\\mathcal{F}$ is {\\it locally quasi-coherent}\\footnote{This is\nnonstandard notation.} if\n$\\mathcal{F}$ is a sheaf for the \\'etale topology and\nfor every object $x$ of $\\mathcal{X}$ the restriction\n$x^*\\mathcal{F}|_{U_\\etale}$ is a quasi-coherent\nsheaf. Here $U = p(x)$.\n\\end{definition}\n\n\\noindent\nWe use $\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$ to indicate the category of\nlocally quasi-coherent modules. We now have the following diagram\nof categories of modules\n$$\n\\xymatrix{\n\\QCoh(\\mathcal{O}_\\mathcal{X}) \\ar[r] \\ar[d] &\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X}) \\ar[d] \\\\\n\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X}) \\ar[r] &\n\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})\n}\n$$\nwhere the arrows are strictly full embeddings.\nIt turns out that many results for quasi-coherent sheaves have a\ncounter part for locally quasi-coherent modules. Moreover, from many\npoints of view (as we shall see later) this is a natural category to consider.\nFor example the quasi-coherent sheaves are exactly those\nlocally quasi-coherent modules that are ``cartesian'', i.e., satisfy\nthe second condition of the lemma below.\n\n\\begin{lemma}\n\\label{lemma-quasi-coherent}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids. Let $\\mathcal{F}$\nbe a presheaf of $\\mathcal{O}_\\mathcal{X}$-modules. Then $\\mathcal{F}$\nis quasi-coherent if and only if the following two conditions hold\n\\begin{enumerate}\n\\item $\\mathcal{F}$ is locally quasi-coherent, and\n\\item for any morphism $\\varphi : x \\to y$ of $\\mathcal{X}$ lying over\n$f : U \\to V$ the comparison map\n$c_\\varphi : f_{small}^*\\mathcal{F}|_{V_\\etale} \\to\n\\mathcal{F}|_{U_\\etale}$ of\n(\\ref{equation-comparison-modules}) is an isomorphism.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nAssume $\\mathcal{F}$ is quasi-coherent. Then $\\mathcal{F}$ is a sheaf\nfor the fppf topology, hence a sheaf for the \\'etale topology. Moreover,\nany pullback of $\\mathcal{F}$ to a ringed topos is quasi-coherent, hence\nthe restrictions $x^*\\mathcal{F}|_{U_\\etale}$ are quasi-coherent.\nThis proves $\\mathcal{F}$ is locally quasi-coherent.\nLet $y$ be an object of $\\mathcal{X}$ with $V = p(y)$.\nWe have seen that $\\mathcal{X}/y = (\\Sch/V)_{fppf}$. By\nDescent, Proposition \\ref{descent-proposition-equivalence-quasi-coherent}\nit follows that $y^*\\mathcal{F}$ is the quasi-coherent module\nassociated to a (usual) quasi-coherent module $\\mathcal{F}_V$ on\nthe scheme $V$. Hence certainly the comparison maps\n(\\ref{equation-comparison-modules}) are isomorphisms.\n\n\\medskip\\noindent\nConversely, suppose that $\\mathcal{F}$ satisfies (1) and (2).\nLet $y$ be an object of $\\mathcal{X}$ with $V = p(y)$. Denote\n$\\mathcal{F}_V$ the quasi-coherent module on\nthe scheme $V$ corresponding to the restriction\n$y^*\\mathcal{F}|_{V_\\etale}$ which is quasi-coherent by\nassumption (1), see\nDescent, Proposition \\ref{descent-proposition-equivalence-quasi-coherent}.\nCondition (2) now signifies that the restrictions\n$x^*\\mathcal{F}|_{U_\\etale}$ for $x$ over $y$ are each\nisomorphic to the (\\'etale sheaf associated to the) pullback of $\\mathcal{F}_V$\nvia the corresponding morphism of schemes $U \\to V$.\nHence $y^*\\mathcal{F}$ is the sheaf on $(\\Sch/V)_{fppf}$\nassociated to $\\mathcal{F}_V$. Hence it is quasi-coherent (by\nDescent, Proposition \\ref{descent-proposition-equivalence-quasi-coherent}\nagain) and we see that $\\mathcal{F}$ is quasi-coherent on $\\mathcal{X}$ by\nLemma \\ref{lemma-characterize-quasi-coherent}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-pullback-lqc}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. The pullback functor\n$f^* = f^{-1} :\n\\textit{Mod}(\\mathcal{Y}_\\etale, \\mathcal{O}_\\mathcal{Y})\n\\to\n\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\npreserves locally quasi-coherent sheaves.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{G}$ be locally quasi-coherent on $\\mathcal{Y}$.\nChoose an object $x$ of $\\mathcal{X}$ lying over the scheme $U$.\nThe restriction $x^*f^*\\mathcal{G}|_{U_\\etale}$ equals\n$(f \\circ x)^*\\mathcal{G}|_{U_\\etale}$\nhence is a quasi-coherent sheaf by assumption on $\\mathcal{G}$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-lqc-colimits}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category fibred in\ngroupoids.\n\\begin{enumerate}\n\\item The category $\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$\nhas colimits and they agree with colimits in the category\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$.\n\\item The category $\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$\nis abelian with kernels and cokernels computed in\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$,\nin other words the inclusion functor is exact.\n\\item Given a short exact sequence\n$0 \\to \\mathcal{F}_1 \\to \\mathcal{F}_2 \\to \\mathcal{F}_3 \\to 0$ of\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\nif two out of three are locally quasi-coherent so is the third.\n\\item Given $\\mathcal{F}, \\mathcal{G}$ in\n$\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$\nthe tensor product $\\mathcal{F} \\otimes_{\\mathcal{O}_\\mathcal{X}} \\mathcal{G}$\nin $\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\nis an object of $\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$.\n\\item Given $\\mathcal{F}, \\mathcal{G}$ in\n$\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$\nwith $\\mathcal{F}$ locally of finite presentation on\n$\\mathcal{X}_\\etale$ the sheaf\n$\\SheafHom_{\\mathcal{O}_\\mathcal{X}}(\\mathcal{F}, \\mathcal{G})$\nin $\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\nis an object of $\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nEach of these statements follows from the corresponding statement of\nDescent, Lemma \\ref{descent-lemma-equivalence-quasi-coherent-limits}.\nFor example, suppose that\n$\\mathcal{I} \\to \\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$,\n$i \\mapsto \\mathcal{F}_i$ is a diagram.\nConsider the object $\\mathcal{F} = \\colim_i \\mathcal{F}_i$ of\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$.\nFor any object $x$ of $\\mathcal{X}$ with $U = p(x)$ the pullback functor\n$x^*$ commutes with all colimits as it is a left adjoint. Hence\n$x^*\\mathcal{F} = \\colim_i x^*\\mathcal{F}_i$. Similarly we have\n$x^*\\mathcal{F}|_{U_\\etale} =\n\\colim_i x^*\\mathcal{F}_i|_{U_\\etale}$.\nNow by assumption each $x^*\\mathcal{F}_i|_{U_\\etale}$\nis quasi-coherent, hence the colimit is quasi-coherent by the\naforementioned\nDescent, Lemma \\ref{descent-lemma-equivalence-quasi-coherent-limits}.\nThis proves (1).\n\n\\medskip\\noindent\nIt follows from (1) that cokernels exist in\n$\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$ and agree with the cokernels computed\nin $\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$.\nLet $\\varphi : \\mathcal{F} \\to \\mathcal{G}$ be a morphism of\n$\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$ and let\n$\\mathcal{K} = \\Ker(\\varphi)$ computed in\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$.\nIf we can show that $\\mathcal{K}$ is a locally quasi-coherent module,\nthen the proof of (2) is complete. To see this, note that kernels\nare computed in the category of presheaves (no sheafification necessary).\nHence $\\mathcal{K}|_{U_\\etale}$ is the kernel of the map\n$\\mathcal{F}|_{U_\\etale} \\to \\mathcal{G}|_{U_\\etale}$,\ni.e., is the kernel of a map of quasi-coherent sheaves on $U_\\etale$\nwhence quasi-coherent by\nDescent, Lemma \\ref{descent-lemma-equivalence-quasi-coherent-limits}.\nThis proves (2).\n\n\\medskip\\noindent\nParts (3), (4), and (5) follow in exactly the same way. Details omitted.\n\\end{proof}\n\n\\noindent\nIn the generality discussed here the category of quasi-coherent sheaves\nis not abelian. See Examples, Section \\ref{examples-section-nonabelian-QCoh}.\nHere is what we can prove without any further work.\n\n\\begin{lemma}\n\\label{lemma-qc-colimits}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ be a category\nfibred in groupoids.\n\\begin{enumerate}\n\\item The category $\\QCoh(\\mathcal{O}_\\mathcal{X})$\nhas colimits and they agree with colimits in the category\n$\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$ as well as with colimits\nin the category $\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$.\n\\item Given $\\mathcal{F}, \\mathcal{G}$ in\n$\\QCoh(\\mathcal{O}_\\mathcal{X})$\nthe tensor product $\\mathcal{F} \\otimes_{\\mathcal{O}_\\mathcal{X}} \\mathcal{G}$\nin $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\nis an object of $\\QCoh(\\mathcal{O}_\\mathcal{X})$.\n\\item Given $\\mathcal{F}, \\mathcal{G}$ in\n$\\QCoh(\\mathcal{O}_\\mathcal{X})$\nwith $\\mathcal{F}$ locally of finite presentation on\n$\\mathcal{X}_{fppf}$ the sheaf\n$\\SheafHom_{\\mathcal{O}_\\mathcal{X}}(\\mathcal{F}, \\mathcal{G})$\nin $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\nis an object of $\\QCoh(\\mathcal{O}_\\mathcal{X})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nLet $\\mathcal{I} \\to \\QCoh(\\mathcal{O}_\\mathcal{X})$,\n$i \\mapsto \\mathcal{F}_i$ be a diagram.\nConsider the object $\\mathcal{F} = \\colim_i \\mathcal{F}_i$ of\n$\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$.\nFor any object $x$ of $\\mathcal{X}$ with $U = p(x)$ the pullback functor\n$x^*$ commutes with all colimits as it is a left adjoint. Hence\n$x^*\\mathcal{F} = \\colim_i x^*\\mathcal{F}_i$ in\n$\\textit{Mod}((\\Sch/U)_{fppf}, \\mathcal{O})$. We conclude from\nDescent, Lemma \\ref{descent-lemma-equivalence-quasi-coherent-limits}\nthat $x^*\\mathcal{F}$ is quasi-coherent, hence $\\mathcal{F}$\nis quasi-coherent, see\nLemma \\ref{lemma-characterize-quasi-coherent}.\nThus we see that $\\QCoh(\\mathcal{O}_\\mathcal{X})$\nhas colimits and they agree with colimits in the category\n$\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$. In particular the (fppf) sheaf\n$\\mathcal{F}$ is also the colimit of the diagram in\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$,\nhence $\\mathcal{F}$ is also the colimit in\n$\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$. This proves (1).\n\n\\medskip\\noindent\nParts (2) and (3) are proved in the same way.\nDetails omitted.\n\\end{proof}\n\n\n\n\n\n\n\\section{Stackification and sheaves}\n\\label{section-stackification}\n\n\\noindent\nIt turns out that the category of sheaves on a category fibred in\ngroupoids only ``knows about'' the stackification.\n\n\\begin{lemma}\n\\label{lemma-stackification}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. If\n$f$ induces an equivalence of stackifications, then the morphism\nof topoi\n$f : \\Sh(\\mathcal{X}_{fppf}) \\to \\Sh(\\mathcal{Y}_{fppf})$\nis an equivalence.\n\\end{lemma}\n\n\\begin{proof}\nWe may assume $\\mathcal{Y}$ is the stackification of $\\mathcal{X}$.\nWe claim that $f : \\mathcal{X} \\to \\mathcal{Y}$ is a special cocontinuous\nfunctor, see\nSites, Definition \\ref{sites-definition-special-cocontinuous-functor}\nwhich will prove the lemma. By\nStacks, Lemma \\ref{stacks-lemma-topology-inherited-functorial}\nthe functor $f$ is continuous and cocontinuous. By\nStacks, Lemma \\ref{stacks-lemma-stackify}\nwe see that conditions (3), (4), and (5) of\nSites, Lemma \\ref{sites-lemma-equivalence}\nhold.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-stackification-quasi-coherent}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. If\n$f$ induces an equivalence of stackifications, then $f^*$\ninduces equivalences\n$\\textit{Mod}(\\mathcal{O}_\\mathcal{X}) \\to\n\\textit{Mod}(\\mathcal{O}_\\mathcal{Y})$\nand\n$\\QCoh(\\mathcal{O}_\\mathcal{X}) \\to\n\\QCoh(\\mathcal{O}_\\mathcal{Y})$.\n\\end{lemma}\n\n\\begin{proof}\nWe may assume $\\mathcal{Y}$ is the stackification of $\\mathcal{X}$.\nThe first assertion is clear from\nLemma \\ref{lemma-stackification}\nand\n$\\mathcal{O}_\\mathcal{X} = f^{-1}\\mathcal{O}_\\mathcal{Y}$.\nPullback of quasi-coherent sheaves are quasi-coherent, see\nLemma \\ref{lemma-pullback-quasi-coherent}.\nHence it suffices to show that if $f^*\\mathcal{G}$ is\nquasi-coherent, then $\\mathcal{G}$ is.\nTo see this, let $y$ be an object of $\\mathcal{Y}$.\nTranslating the condition that $\\mathcal{Y}$ is the stackification\nof $\\mathcal{X}$ we see there exists an fppf covering $\\{y_i \\to y\\}$\nin $\\mathcal{Y}$ such that $y_i \\cong f(x_i)$ for some\n$x_i$ object of $\\mathcal{X}$. Say $x_i$ and $y_i$ lie over the scheme $U_i$.\nThen $f^*\\mathcal{G}$ being quasi-coherent, means that $x_i^*f^*\\mathcal{G}$\nis quasi-coherent. Since $x_i^*f^*\\mathcal{G}$ is isomorphic to\n$y_i^*\\mathcal{G}$ (as sheaves on $(\\Sch/U_i)_{fppf}$ we\nsee that $y_i^*\\mathcal{G}$ is quasi-coherent.\nIt follows from\nModules on Sites, Lemma \\ref{sites-modules-lemma-local-final-object}\nthat the restriction of $\\mathcal{G}$ to $\\mathcal{Y}/y$ is\nquasi-coherent. Hence $\\mathcal{G}$ is quasi-coherent by\nLemma \\ref{lemma-characterize-quasi-coherent}.\n\\end{proof}\n\n\n\n\n\n\\section{Quasi-coherent sheaves and presentations}\n\\label{section-quasi-coherent-presentation}\n\n\\noindent\nIn\nGroupoids in Spaces, Definition\n\\ref{spaces-groupoids-definition-groupoid-module}\nwe have the defined the notion of a quasi-coherent module\non an arbitrary groupoid. The following (formal) proposition tells us\nthat we can study quasi-coherent sheaves on quotient stacks in\nterms of quasi-coherent modules on presentations.\n\n\\begin{proposition}\n\\label{proposition-quasi-coherent}\nLet $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$.\nLet $\\mathcal{X} = [U/R]$ be the quotient stack.\nThe category of quasi-coherent modules on $\\mathcal{X}$\nis equivalent to the category of quasi-coherent modules\non $(U, R, s, t, c)$.\n\\end{proposition}\n\n\\begin{proof}\nDenote $\\QCoh(U, R, s, t, c)$ the category of quasi-coherent modules\non the groupoid $(U, R, s, t, c)$. We will construct quasi-inverse functors\n$$\n\\QCoh(\\mathcal{O}_\\mathcal{X})\n\\longleftrightarrow\n\\QCoh(U, R, s, t, c).\n$$\nAccording to\nLemma \\ref{lemma-stackification-quasi-coherent}\nthe stackification map $[U/_{\\!p}R] \\to [U/R]$ (see\nGroupoids in Spaces, Definition\n\\ref{spaces-groupoids-definition-quotient-stack})\ninduces an equivalence of categories of quasi-coherent sheaves.\nThus it suffices to prove the lemma with $\\mathcal{X} = [U/_{\\!p}R]$.\n\n\\medskip\\noindent\nRecall that an object $x = (T, u)$ of $\\mathcal{X} = [U/_{\\!p}R]$\nis given by a scheme $T$ and a morphism $u : T \\to U$. A morphism\n$(T, u) \\to (T', u')$ is given by a pair $(f, r)$ where $f : T \\to T'$\nand $r : T \\to R$ with $s \\circ r = u$ and $t \\circ r = u' \\circ f$.\nLet us call a {\\it special morphism} any morphism of the form\n$(f, e \\circ u' \\circ f) : (T, u' \\circ f) \\to (T', u')$.\nThe category of $(T, u)$ with special morphisms is just the\ncategory of schemes over $U$.\n\n\\medskip\\noindent\nLet $\\mathcal{F}$ be a quasi-coherent sheaf on $\\mathcal{X}$.\nThen we obtain for every $x = (T, u)$ a quasi-coherent sheaf\n$\\mathcal{F}_{(T, u)} = x^*\\mathcal{F}|_{T_\\etale}$ on $T$.\nMoreover, for any morphism $(f, r) : x = (T, u) \\to (T', u') = x'$\nwe obtain a comparison isomorphism\n$$\nc_{(f, r)} :\nf_{small}^*\\mathcal{F}_{(T', u')}\n\\longrightarrow\n\\mathcal{F}_{(T, u)}\n$$\nsee Lemma \\ref{lemma-quasi-coherent}. Moreover, these isomorphisms are\ncompatible with compositions, see\nLemma \\ref{lemma-comparison}.\nIf $U$, $R$ are schemes, then we can\nconstruct the quasi-coherent sheaf on the groupoid as follows: First\nthe object $(U, \\text{id})$ corresponds to a quasi-coherent sheaf\n$\\mathcal{F}_{(U, \\text{id})}$ on $U$. Next, the isomorphism\n$\\alpha : t_{small}^*\\mathcal{F}_{(U, \\text{id})} \\to\ns_{small}^*\\mathcal{F}_{(U, \\text{id})}$\ncomes from\n\\begin{enumerate}\n\\item the morphism $(R, \\text{id}_R) : (R, s) \\to (R, t)$\nin the category $[U/_{\\!p}R]$ which produces an isomorphism\n$\\mathcal{F}_{(R, t)} \\to \\mathcal{F}_{(R, s)}$,\n\\item the special morphism $(R, s) \\to (U, \\text{id})$ which produces an\nisomorphism\n$s_{small}^*\\mathcal{F}_{(U, \\text{id})} \\to \\mathcal{F}_{(R, s)}$, and\n\\item the special morphism $(R, t) \\to (U, \\text{id})$ which produces an\nisomorphism $t_{small}^*\\mathcal{F}_{(U, \\text{id})} \\to \\mathcal{F}_{(R, t)}$.\n\\end{enumerate}\nThe cocycle condition for $\\alpha$ follows from the condition\nthat $(U, R, s, t, c)$ is groupoid, i.e., that composition is\nassociative (details omitted).\n\n\\medskip\\noindent\nTo do this in general, i.e., when $U$ and $R$ are algebraic spaces,\nit suffices to explain how to associate to an algebraic space $(W, u)$ over\n$U$ a quasi-coherent sheaf $\\mathcal{F}_{(W, u)}$ and to construct the\ncomparison maps for morphisms between these. We set\n$\\mathcal{F}_{(W, u)} = x^*\\mathcal{F}|_{W_\\etale}$\nwhere $x$ is the $1$-morphism\n$\\mathcal{S}_W \\to \\mathcal{S}_U \\to [U/_{\\!p}R]$ and the comparison\nmaps are explained in (\\ref{equation-comparison-algebraic-spaces-modules}).\n\n\\medskip\\noindent\nConversely, suppose that $(\\mathcal{G}, \\alpha)$ is a quasi-coherent\nmodule on $(U, R, s, t, c)$. We are going to define a presheaf of modules\n$\\mathcal{F}$ on $\\mathcal{X}$ as follows. Given an object\n$(T, u)$ of $[U/_{\\!p}R]$ we set\n$$\n\\mathcal{F}(T, u) : = \\Gamma(T, u_{small}^*\\mathcal{G}).\n$$\nGiven a morphism $(f, r) : (T, u) \\to (T', u')$ we get a map\n\\begin{align*}\n\\mathcal{F}(T', u') & = \\Gamma(T', (u')_{small}^*\\mathcal{G}) \\\\\n& \\to \\Gamma(T, f_{small}^*(u')_{small}^*\\mathcal{G}) =\n\\Gamma(T, (u' \\circ f)_{small}^*\\mathcal{G}) \\\\\n& = \\Gamma(T, (t \\circ r)_{small}^*\\mathcal{G}) =\n\\Gamma(T, r_{small}^*t_{small}^*\\mathcal{G}) \\\\\n& \\to \\Gamma(T, r_{small}^*s_{small}^*\\mathcal{G}) =\n\\Gamma(T, (s \\circ r)_{small}^*\\mathcal{G}) \\\\\n& = \\Gamma(T, u_{small}^*\\mathcal{G}) \\\\\n& = \\mathcal{F}(T, u)\n\\end{align*}\nwhere the first arrow is pullback along $f$ and the second arrow is\n$\\alpha$. Note that if $(T, r)$ is a special morphism, then this\nmap is just pullback along $f$ as $e_{small}^*\\alpha = \\text{id}$ by\nthe axioms of a sheaf of quasi-coherent modules on a groupoid.\nThe cocycle condition implies that $\\mathcal{F}$ is a presheaf\nof modules (details omitted). It is immediate from the definition that\n$\\mathcal{F}$ is quasi-coherent when pulled back to\n$(\\Sch/T)_{fppf}$ (by the simple description of the\nrestriction maps of $\\mathcal{F}$ in case of a special morphism).\n\n\\medskip\\noindent\nWe omit the verification that the functors constructed above are\nquasi-inverse to each other.\n\\end{proof}\n\n\\noindent\nWe finish this section with a technical lemma on maps out of quasi-coherent\nsheaves. It is an analogue of\nSchemes, Lemma \\ref{schemes-lemma-compare-constructions}.\nWe will see later (Criteria for Representability, Theorem\n\\ref{criteria-theorem-flat-groupoid-gives-algebraic-stack})\nthat the assumptions on the groupoid imply that $\\mathcal{X}$ is\nan algebraic stack.\n\n\\begin{lemma}\n\\label{lemma-map-from-quasi-coherent}\nLet $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$.\nAssume $s, t$ are flat and locally of finite presentation.\nLet $\\mathcal{X} = [U/R]$ be the quotient stack. Denote\n$\\pi : \\mathcal{S}_U \\to \\mathcal{X}$ the quotient map.\nLet $\\mathcal{F}$ be a quasi-coherent\n$\\mathcal{O}_\\mathcal{X}$-module, and let $\\mathcal{H}$ be any object\nof $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$.\nThe map\n$$\n\\Hom_{\\mathcal{O}_\\mathcal{X}}(\\mathcal{F}, \\mathcal{H})\n\\longrightarrow\n\\Hom_{\\mathcal{O}_U}(x^*\\mathcal{F}|_{U_\\etale},\nx^*\\mathcal{H}|_{U_\\etale}),\n\\quad\n\\phi \\longmapsto x^*\\phi|_{U_\\etale}\n$$\nis injective and its image consists of exactly those\n$\\varphi : x^*\\mathcal{F}|_{U_\\etale} \\to\nx^*\\mathcal{H}|_{U_\\etale}$ which give rise to a commutative\ndiagram\n$$\n\\xymatrix{\ns_{small}^*(x^*\\mathcal{F}|_{U_\\etale})\n\\ar[r] \\ar[d]^{s_{small}^*\\varphi} &\n(x \\circ s)^*\\mathcal{F}|_{R_\\etale} =\n(x \\circ t)^*\\mathcal{F}|_{R_\\etale} &\nt_{small}^*(x^*\\mathcal{F}|_{U_\\etale})\n\\ar[l] \\ar[d]_{t_{small}^*\\varphi} \\\\\ns_{small}^*(x^*\\mathcal{H}|_{U_\\etale})\n\\ar[r] &\n(x \\circ s)^*\\mathcal{H}|_{R_\\etale} =\n(x \\circ t)^*\\mathcal{H}|_{R_\\etale} &\nt_{small}^*(x^*\\mathcal{H}|_{U_\\etale})\n\\ar[l]\n}\n$$\nof modules on $R_\\etale$\nwhere the horizontal arrows are the comparison maps\n(\\ref{equation-comparison-algebraic-spaces-modules}).\n\\end{lemma}\n\n\\begin{proof}\nAccording to\nLemma \\ref{lemma-stackification-quasi-coherent}\nthe stackification map $[U/_{\\!p}R] \\to [U/R]$ (see\nGroupoids in Spaces, Definition\n\\ref{spaces-groupoids-definition-quotient-stack})\ninduces an equivalence of categories of quasi-coherent sheaves\nand of fppf $\\mathcal{O}$-modules.\nThus it suffices to prove the lemma with $\\mathcal{X} = [U/_{\\!p}R]$.\nBy Proposition \\ref{proposition-quasi-coherent}\nand its proof there exists a quasi-coherent module\n$(\\mathcal{G}, \\alpha)$ on $(U, R, s, t, c)$ such that\n$\\mathcal{F}$ is given by the rule\n$\\mathcal{F}(T, u) = \\Gamma(T, u^*\\mathcal{G})$.\nIn particular $x^*\\mathcal{F}|_{U_\\etale} = \\mathcal{G}$\nand it is clear that the map of the statement of the\nlemma is injective. Moreover, given a map\n$\\varphi : \\mathcal{G} \\to x^*\\mathcal{H}|_{U_\\etale}$\nand given any object\n$y = (T, u)$ of $[U/_{\\!p}R]$ we can consider the map\n$$\n\\mathcal{F}(y) = \\Gamma(T, u^*\\mathcal{G})\n\\xrightarrow{u_{small}^*\\varphi}\n\\Gamma(T, u_{small}^*x^*\\mathcal{H}|_{U_\\etale})\n\\rightarrow\n\\Gamma(T, y^*\\mathcal{H}|_{T_\\etale}) = \\mathcal{H}(y)\n$$\nwhere the second arrow is the comparison map\n(\\ref{equation-comparison-modules}) for the sheaf $\\mathcal{H}$.\nThis assignment is compatible with the restriction mappings of the\nsheaves $\\mathcal{F}$ and $\\mathcal{G}$ for morphisms of\n$[U/_{\\!p}R]$ if the cocycle condition of\nthe lemma is satisfied. Proof omitted. Hint: the restriction maps\nof $\\mathcal{F}$ are made explicit in terms of $(\\mathcal{G}, \\alpha)$\nin the proof of\nProposition \\ref{proposition-quasi-coherent}.\n\\end{proof}\n\n\n\n\n\n\n\n\\section{Quasi-coherent sheaves on algebraic stacks}\n\\label{section-quasi-coherent-algebraic-stacks}\n\n\\noindent\nLet $\\mathcal{X}$ be an algebraic stack over $S$. By\nAlgebraic Stacks, Lemma \\ref{algebraic-lemma-stack-presentation}\nwe can find an equivalence $[U/R] \\to \\mathcal{X}$\nwhere $(U, R, s, t, c)$ is a smooth groupoid in algebraic spaces.\nThen\n$$\n\\QCoh(\\mathcal{O}_\\mathcal{X})\n\\cong\n\\QCoh(\\mathcal{O}_{[U/R]})\n\\cong\n\\QCoh(U, R, s, t, c)\n$$\nwhere the second equivalence is\nProposition \\ref{proposition-quasi-coherent}.\nHence the category of quasi-coherent sheaves on an algebraic stack\nis equivalent to the category of quasi-coherent modules on a smooth\ngroupoid in algebraic spaces. In particular, by\nGroupoids in Spaces, Lemma \\ref{spaces-groupoids-lemma-abelian}\nwe see that $\\QCoh(\\mathcal{O}_\\mathcal{X})$ is abelian!\n\n\\medskip\\noindent\nThere is something slightly disconcerting about our current setup.\nIt is that the fully faithful embedding\n$$\n\\QCoh(\\mathcal{O}_\\mathcal{X})\n\\longrightarrow\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})\n$$\nis in general {\\bf not} exact. However, exactly the same thing happens\nfor schemes: for most schemes $X$ the embedding\n$$\n\\QCoh(\\mathcal{O}_X) \\cong\n\\QCoh((\\Sch/X)_{fppf}, \\mathcal{O}_X) \\longrightarrow\n\\textit{Mod}((\\Sch/X)_{fppf}, \\mathcal{O}_X)\n$$\nisn't exact, see\nDescent, Lemma \\ref{descent-lemma-equivalence-quasi-coherent-limits}.\nParenthetically, the example in the proof of\nDescent, Lemma \\ref{descent-lemma-equivalence-quasi-coherent-limits}\nshows that in general the strictly full embedding\n$\\QCoh(\\mathcal{O}_\\mathcal{X}) \\to\n\\textit{LQCoh}(\\mathcal{O}_\\mathcal{X})$ isn't exact either.\n\n\\medskip\\noindent\nWe collect all the positive results obtained so far in a single statement.\n\n\\begin{lemma}\n\\label{lemma-quasi-coherent-algebraic-stack}\nLet $\\mathcal{X}$ be an algebraic stack over $S$.\n\\begin{enumerate}\n\\item If $[U/R] \\to \\mathcal{X}$ is a presentation of $\\mathcal{X}$\nthen there is a canonical equivalence\n$\\QCoh(\\mathcal{O}_\\mathcal{X}) \\cong\n\\QCoh(U, R, s, t, c)$.\n\\item The category $\\QCoh(\\mathcal{O}_\\mathcal{X})$ is abelian.\n\\item The category $\\QCoh(\\mathcal{O}_\\mathcal{X})$\nhas colimits and they agree with colimits in the category\n$\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$.\n\\item Given $\\mathcal{F}, \\mathcal{G}$ in\n$\\QCoh(\\mathcal{O}_\\mathcal{X})$\nthe tensor product $\\mathcal{F} \\otimes_{\\mathcal{O}_\\mathcal{X}} \\mathcal{G}$\nin $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\nis an object of $\\QCoh(\\mathcal{O}_\\mathcal{X})$.\n\\item Given $\\mathcal{F}, \\mathcal{G}$ in\n$\\QCoh(\\mathcal{O}_\\mathcal{X})$\nwith $\\mathcal{F}$ locally of finite presentation on\n$\\mathcal{X}_{fppf}$ the sheaf\n$\\SheafHom_{\\mathcal{O}_\\mathcal{X}}(\\mathcal{F}, \\mathcal{G})$\nin $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\nis an object of $\\QCoh(\\mathcal{O}_\\mathcal{X})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nProperties (3), (4), and (5) were proven in\nLemma \\ref{lemma-qc-colimits}.\nPart (1) is\nProposition \\ref{proposition-quasi-coherent}.\nPart (2) follows from\nGroupoids in Spaces, Lemma \\ref{spaces-groupoids-lemma-abelian}\nas discussed above.\n\\end{proof}\n\n\\begin{proposition}\n\\label{proposition-coherator}\nLet $\\mathcal{X}$ be an algebraic stack over $S$.\n\\begin{enumerate}\n\\item The category $\\QCoh(\\mathcal{O}_\\mathcal{X})$ is a Grothendieck\nabelian category. Consequently, $\\QCoh(\\mathcal{O}_\\mathcal{X})$\nhas enough injectives and all limits.\n\\item The inclusion functor\n$\\QCoh(\\mathcal{O}_\\mathcal{X}) \\to\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$ has a right adjoint\\footnote{This\nfunctor is sometimes called the {\\it coherator}.}\n$$\nQ :\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})\n\\longrightarrow\n\\QCoh(\\mathcal{O}_\\mathcal{X})\n$$\nsuch that for every quasi-coherent sheaf $\\mathcal{F}$ the adjunction mapping\n$Q(\\mathcal{F}) \\to \\mathcal{F}$ is an isomorphism.\n\\end{enumerate}\n\\end{proposition}\n\n\\begin{proof}\nThis proof is a repeat of the proof in the case of schemes, see\nProperties, Proposition \\ref{properties-proposition-coherator}\nand the case of algebraic spaces, see\nProperties of Spaces, Proposition\n\\ref{spaces-properties-proposition-coherator}.\nWe advise the reader to read either of those proofs first.\n\n\\medskip\\noindent\nPart (1) means $\\QCoh(\\mathcal{O}_\\mathcal{X})$ (a) has all colimits,\n(b) filtered colimits are exact, and (c) has a generator, see\nInjectives, Section \\ref{injectives-section-grothendieck-conditions}.\nBy Lemma \\ref{lemma-quasi-coherent-algebraic-stack}\ncolimits in $\\QCoh(\\mathcal{O}_X)$ exist and agree\nwith colimits in $\\textit{Mod}(\\mathcal{O}_X)$. By\nModules on Sites, Lemma \\ref{sites-modules-lemma-limits-colimits}\nfiltered colimits are exact. Hence (a) and (b) hold.\n\n\\medskip\\noindent\nChoose a presentation $\\mathcal{X} = [U/R]$ so that $(U, R, s, t, c)$\nis a smooth groupoid in algebraic spaces and in particular $s$ and $t$\nare flat morphisms of algebraic spaces. By\nLemma \\ref{lemma-quasi-coherent-algebraic-stack}\nabove we have\n$\\QCoh(\\mathcal{O}_\\mathcal{X}) = \\QCoh(U, R, s, t, c)$.\nBy Groupoids in Spaces, Lemma \\ref{spaces-groupoids-lemma-set-generators}\nthere exists a set $T$ and a family $(\\mathcal{F}_t)_{t \\in T}$ of\nquasi-coherent sheaves on $\\mathcal{X}$ such that every quasi-coherent\nsheaf on $\\mathcal{X}$ is the directed colimit of its subsheaves\nwhich are isomorphic to one of the $\\mathcal{F}_t$.\nThus $\\bigoplus_t \\mathcal{F}_t$ is\na generator of $\\QCoh(\\mathcal{O}_X)$ and we conclude that (c) holds.\nThe assertions on limits and injectives hold in any\nGrothendieck abelian category, see\nInjectives, Theorem\n\\ref{injectives-theorem-injective-embedding-grothendieck} and\nLemma \\ref{injectives-lemma-grothendieck-products}.\n\n\\medskip\\noindent\nProof of (2). To construct $Q$ we use the following general procedure.\nGiven an object $\\mathcal{F}$ of $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\nwe consider the functor\n$$\n\\QCoh(\\mathcal{O}_\\mathcal{X})^{opp}\n\\longrightarrow\n\\textit{Sets},\n\\quad\n\\mathcal{G}\n\\longmapsto\n\\Hom_\\mathcal{X}(\\mathcal{G}, \\mathcal{F})\n$$\nThis functor transforms colimits into limits,\nhence is representable, see\nInjectives, Lemma \\ref{injectives-lemma-grothendieck-brown}.\nThus there exists a quasi-coherent sheaf $Q(\\mathcal{F})$\nand a functorial isomorphism\n$\\Hom_\\mathcal{X}(\\mathcal{G}, \\mathcal{F}) =\n\\Hom_\\mathcal{X}(\\mathcal{G}, Q(\\mathcal{F}))$\nfor $\\mathcal{G}$ in $\\QCoh(\\mathcal{O}_\\mathcal{X})$.\nBy the Yoneda lemma\n(Categories, Lemma \\ref{categories-lemma-yoneda})\nthe construction $\\mathcal{F} \\leadsto Q(\\mathcal{F})$ is\nfunctorial in $\\mathcal{F}$. By construction $Q$ is a right\nadjoint to the inclusion functor.\nThe fact that $Q(\\mathcal{F}) \\to \\mathcal{F}$ is an isomorphism\nwhen $\\mathcal{F}$ is quasi-coherent is a formal consequence of the fact\nthat the inclusion functor\n$\\QCoh(\\mathcal{O}_\\mathcal{X}) \\to\n\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$\nis fully faithful.\n\\end{proof}\n\n\n\n\n\n\n\n\n\\section{Cohomology}\n\\label{section-cohomology-general}\n\n\\noindent\nLet $S$ be a scheme and let $\\mathcal{X}$ be a category fibred in groupoids\nover $(\\Sch/S)_{fppf}$. For any $\\tau \\in \\{Zariski, \\etale, smooth,\nsyntomic, fppf\\}$ the categories $\\textit{Ab}(\\mathcal{X}_\\tau)$ and\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$ have\nenough injectives, see\nInjectives, Theorems \\ref{injectives-theorem-sheaves-injectives} and\n\\ref{injectives-theorem-sheaves-modules-injectives}.\nThus we can use the machinery of\nCohomology on Sites, Section \\ref{sites-cohomology-section-cohomology-sheaves}\nto define the cohomology groups\n$$\nH^p(\\mathcal{X}_\\tau, \\mathcal{F}) = H^p_\\tau(\\mathcal{X}, \\mathcal{F})\n\\quad\\text{and}\\quad\nH^p(x, \\mathcal{F}) = H^p_\\tau(x, \\mathcal{F})\n$$\nfor any $x \\in \\Ob(\\mathcal{X})$ and any object $\\mathcal{F}$ of\n$\\textit{Ab}(\\mathcal{X}_\\tau)$ or\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$. Moreover, if\n$f : \\mathcal{X} \\to \\mathcal{Y}$ is a $1$-morphism of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$, then we obtain the higher direct\nimages $R^if_*\\mathcal{F}$ in $\\textit{Ab}(\\mathcal{Y}_\\tau)$ or\n$\\textit{Mod}(\\mathcal{Y}_\\tau, \\mathcal{O}_\\mathcal{Y})$.\nOf course, as explained in\nCohomology on Sites, Section \\ref{sites-cohomology-section-derived-functors}\nthere are also derived versions of $H^p(-)$ and $R^if_*$.\n\n\\begin{lemma}\n\\label{lemma-cohomology-restriction}\nLet $S$ be a scheme. Let $\\mathcal{X}$ be a category fibred in groupoids\nover $(\\Sch/S)_{fppf}$. Let $\\tau \\in \\{Zariski, \\etale, smooth,\nsyntomic, fppf\\}$. Let $x \\in \\Ob(\\mathcal{X})$ be an object lying\nover the scheme $U$. Let $\\mathcal{F}$ be\nan object of $\\textit{Ab}(\\mathcal{X}_\\tau)$ or\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$. Then\n$$\nH^p_\\tau(x, \\mathcal{F}) = H^p((\\Sch/U)_\\tau, x^{-1}\\mathcal{F})\n$$\nand if $\\tau = \\etale$, then we also have\n$$\nH^p_\\etale(x, \\mathcal{F}) =\nH^p(U_\\etale, \\mathcal{F}|_{U_\\etale}).\n$$\n\\end{lemma}\n\n\\begin{proof}\nThe first statement follows from\nCohomology on Sites, Lemma \\ref{sites-cohomology-lemma-cohomology-of-open}\nand the equivalence of \nLemma \\ref{lemma-localizing-structure-sheaf}.\nThe second statement follows from the first combined with\n\\'Etale Cohomology, Lemma\n\\ref{etale-cohomology-lemma-compare-cohomology-big-small}.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\\section{Injective sheaves}\n\\label{section-lower-shriek}\n\n\\noindent\nThe pushforward of an injective abelian sheaf or module is injective.\n\n\\begin{lemma}\n\\label{lemma-pushforward-injective}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\n\\begin{enumerate}\n\\item $f_*\\mathcal{I}$ is injective in $\\textit{Ab}(\\mathcal{Y}_\\tau)$\nfor $\\mathcal{I}$ injective in $\\textit{Ab}(\\mathcal{X}_\\tau)$, and\n\\item $f_*\\mathcal{I}$ is injective in\n$\\textit{Mod}(\\mathcal{Y}_\\tau, \\mathcal{O}_\\mathcal{Y})$\nfor $\\mathcal{I}$ injective in\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThis follows formally from the fact that $f^{-1}$ is an exact\nleft adjoint of $f_*$, see\nHomology, Lemma \\ref{homology-lemma-adjoint-preserve-injectives}.\n\\end{proof}\n\n\\noindent\nIn the rest of this section we prove that pullback $f^{-1}$ has a left\nadjoint $f_!$ on abelian sheaves and modules. If $f$ is representable (by\nschemes or by algebraic spaces), then it will turn out that $f_!$ is exact\nand $f^{-1}$ will preserve injectives. We first prove a few\npreliminary lemmas about fibre products and equalizers in categories\nfibred in groupoids and their behaviour with respect to morphisms.\n\n\\begin{lemma}\n\\label{lemma-fibre-products}\nLet $p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$\nbe a category fibred in groupoids.\n\\begin{enumerate}\n\\item The category $\\mathcal{X}$ has fibre products.\n\\item If the $\\mathit{Isom}$-presheaves of $\\mathcal{X}$\nare representable by algebraic spaces, then $\\mathcal{X}$ has equalizers.\n\\item If $\\mathcal{X}$ is an algebraic stack (or more generally\na quotient stack), then $\\mathcal{X}$ has equalizers.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nPart (1) follows\nCategories, Lemma \\ref{categories-lemma-fibred-groupoids-fibre-product-goes-up}\nas $(\\Sch/S)_{fppf}$ has fibre products.\n\n\\medskip\\noindent\nLet $a, b : x \\to y$ be morphisms of $\\mathcal{X}$.\nSet $U = p(x)$ and $V = p(y)$. The category of schemes has equalizers\nhence we can let $W \\to U$ be the equalizer of $p(a)$ and $p(b)$.\nDenote $c : z \\to x$ a morphism of $\\mathcal{X}$ lying over $W \\to U$.\nThe equalizer of $a$ and $b$, if it exists, is the equalizer of $a \\circ c$\nand $b \\circ c$. Thus we may assume that $p(a) = p(b) = f : U \\to V$.\nAs $\\mathcal{X}$ is fibred in groupoids, there exists a unique automorphism\n$i : x \\to x$ in the fibre category of $\\mathcal{X}$ over $U$ such that\n$a \\circ i = b$. Again the equalizer of $a$ and $b$ is the equalizer\nof $\\text{id}_x$ and $i$. Recall that the $\\mathit{Isom}_\\mathcal{X}(x)$\nis the presheaf on $(\\Sch/U)_{fppf}$ which to\n$V/U$ associates the set of automorphisms of $x|_V$ in the fibre category\nof $\\mathcal{X}$ over $V$, see\nStacks, Definition \\ref{stacks-definition-mor-presheaf}.\nIf $\\mathit{Isom}_\\mathcal{X}(x)$ is representable by an algebraic space\n$G \\to U$, then we see that $\\text{id}_x$ and $i$ define morphisms\n$e, i : U \\to G$ over $U$. Set $V = U \\times_{e, G, i} U$, which by\nMorphisms of Spaces, Lemma \\ref{spaces-morphisms-lemma-section-immersion}\nis a scheme. Then it is clear that $x|_V \\to x$ is the equalizer of\nthe maps $\\text{id}_x$ and $i$ in $\\mathcal{X}$.\nThis proves (2).\n\n\\medskip\\noindent\nIf $\\mathcal{X} = [U/R]$ for some groupoid in algebraic spaces\n$(U, R, s, t, c)$ over $S$, then the hypothesis of (2) holds by\nBootstrap, Lemma \\ref{bootstrap-lemma-quotient-stack-isom}.\nIf $\\mathcal{X}$ is an algebraic stack, then we can choose a\npresentation $[U/R] \\cong \\mathcal{X}$ by\nAlgebraic Stacks, Lemma \\ref{algebraic-lemma-stack-presentation}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-fibre-products-morphism}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$.\n\\begin{enumerate}\n\\item The functor $f$ transforms fibre products into fibre products.\n\\item If $f$ is faithful, then $f$ transforms equalizers into equalizers.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nBy\nCategories, Lemma \\ref{categories-lemma-fibred-groupoids-fibre-product-goes-up}\nwe see that a fibre product in $\\mathcal{X}$ is any commutative square lying\nover a fibre product diagram in $(\\Sch/S)_{fppf}$. Similarly for\n$\\mathcal{Y}$. Hence (1) is clear.\n\n\\medskip\\noindent\nLet $x \\to x'$ be the equalizer of two morphisms $a, b : x' \\to x''$\nin $\\mathcal{X}$. We will show that $f(x) \\to f(x')$ is the equalizer\nof $f(a)$ and $f(b)$. Let $y \\to f(x)$ be a morphism of $\\mathcal{Y}$\nequalizing $f(a)$ and $f(b)$. Say $x, x', x''$ lie over the schemes\n$U, U', U''$ and $y$ lies over $V$. Denote $h : V \\to U'$ the image\nof $y \\to f(x)$ in the category of schemes. The morphism\n$y \\to f(x)$ is isomorphic to $f(h^*x') \\to f(x')$ by the axioms of\nfibred categories. Hence, as $f$ is faithful, we see that\n$h^*x' \\to x'$ equalizes $a$ and $b$. Thus we obtain a unique morphism\n$h^*x' \\to x$ whose image $y = f(h^*x') \\to f(x)$ is the desired morphism\nin $\\mathcal{Y}$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-fibre-products-preserve-properties}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$, $g : \\mathcal{Z} \\to \\mathcal{Y}$\nbe faithful $1$-morphisms of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$.\n\\begin{enumerate}\n\\item the functor $\\mathcal{X} \\times_\\mathcal{Y} \\mathcal{Z} \\to \\mathcal{Y}$\nis faithful, and\n\\item if $\\mathcal{X}, \\mathcal{Z}$ have equalizers, so does\n$\\mathcal{X} \\times_\\mathcal{Y} \\mathcal{Z}$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nWe think of objects in $\\mathcal{X} \\times_\\mathcal{Y} \\mathcal{Z}$ as\nquadruples $(U, x, z, \\alpha)$ where $\\alpha : f(x) \\to g(z)$ is an\nisomorphism over $U$, see\nCategories, Lemma \\ref{categories-lemma-2-product-categories-over-C}.\nA morphism $(U, x, z, \\alpha) \\to (U', x', z', \\alpha')$ is a\npair of morphisms $a : x \\to x'$ and $b : z \\to z'$ compatible\nwith $\\alpha$ and $\\alpha'$. Thus it is clear that if $f$ and\n$g$ are faithful, so is the functor\n$\\mathcal{X} \\times_\\mathcal{Y} \\mathcal{Z} \\to \\mathcal{Y}$.\nNow, suppose that\n$(a, b), (a', b') : (U, x, z, \\alpha) \\to (U', x', z', \\alpha')$\nare two morphisms of the $2$-fibre product. Then consider the equalizer\n$x'' \\to x$ of $a$ and $a'$ and the equalizer $z'' \\to z$ of $b$ and $b'$.\nSince $f$ commutes with equalizers (by\nLemma \\ref{lemma-fibre-products-morphism})\nwe see that $f(x'') \\to f(x)$ is the equalizer of $f(a)$ and $f(a')$.\nSimilarly, $g(z'') \\to g(z)$ is the equalizer of $g(b)$ and $g(b')$.\nPicture\n$$\n\\xymatrix{\nf(x'') \\ar[r] \\ar@{..>}[d]_{\\alpha''}&\nf(x) \\ar[d]_\\alpha\n\\ar@<0.5ex>[r]^{f(a)}\n\\ar@<-0.5ex>[r]_{f(a')}\n &\nf(x') \\ar[d]^{\\alpha'} \\\\\ng(z'') \\ar[r] &\ng(z)\n\\ar@<0.5ex>[r]^{g(b)}\n\\ar@<-0.5ex>[r]_{g(b')}\n &\ng(z')\n}\n$$\nIt is clear that the dotted arrow exists and is an isomorphism.\nHowever, it is not a priori the case that the image of $\\alpha''$\nin the category of schemes is the identity of its source. On the other\nhand, the existence of $\\alpha''$ means that we can assume that $x''$\nand $z''$ are defined over the same scheme and that the morphisms\n$x'' \\to x$ and $z'' \\to z$ have the same image in the category of schemes.\nRedoing the diagram above we see that the dotted arrow now does\nproject to an identity morphism and we win. Some details omitted.\n\\end{proof}\n\n\\noindent\nAs we are working with big sites we have the following somewhat\ncounter intuitive result (which also holds for morphisms of big sites\nof schemes). Warning: This result isn't true if we drop the hypothesis\nthat $f$ is faithful.\n\n\\begin{lemma}\n\\label{lemma-pullback-injective}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nThe functor\n$f^{-1} : \\textit{Ab}(\\mathcal{Y}_\\tau) \\to \\textit{Ab}(\\mathcal{X}_\\tau)$\nhas a left adjoint\n$f_! : \\textit{Ab}(\\mathcal{X}_\\tau) \\to \\textit{Ab}(\\mathcal{Y}_\\tau)$.\nIf $f$ is faithful and $\\mathcal{X}$ has equalizers, then\n\\begin{enumerate}\n\\item $f_!$ is exact, and\n\\item $f^{-1}\\mathcal{I}$ is injective in $\\textit{Ab}(\\mathcal{X}_\\tau)$\nfor $\\mathcal{I}$ injective in $\\textit{Ab}(\\mathcal{Y}_\\tau)$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nBy\nStacks, Lemma \\ref{stacks-lemma-topology-inherited-functorial}\nthe functor $f$ is continuous and cocontinuous. Hence by\nModules on Sites, Lemma \\ref{sites-modules-lemma-g-shriek-adjoint}\nthe functor\n$f^{-1} : \\textit{Ab}(\\mathcal{Y}_\\tau) \\to \\textit{Ab}(\\mathcal{X}_\\tau)$\nhas a left adjoint\n$f_! : \\textit{Ab}(\\mathcal{X}_\\tau) \\to \\textit{Ab}(\\mathcal{Y}_\\tau)$.\nTo see (1) we apply\nModules on Sites, Lemma \\ref{sites-modules-lemma-exactness-lower-shriek}\nand to see that the hypotheses of that lemma are satisfied use\nLemmas \\ref{lemma-fibre-products} and\n\\ref{lemma-fibre-products-morphism}\nabove. Part (2) follows from this formally, see\nHomology, Lemma \\ref{homology-lemma-adjoint-preserve-injectives}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-pullback-injective-modules}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nThe functor\n$f^* : \\textit{Mod}(\\mathcal{Y}_\\tau, \\mathcal{O}_\\mathcal{Y}) \\to\n\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$\nhas a left adjoint\n$f_! : \\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X}) \\to\n\\textit{Mod}(\\mathcal{Y}_\\tau, \\mathcal{O}_\\mathcal{Y})$ which\nagrees with the functor $f_!$ of Lemma \\ref{lemma-pullback-injective}\non underlying abelian sheaves.\nIf $f$ is faithful and $\\mathcal{X}$ has equalizers, then\n\\begin{enumerate}\n\\item $f_!$ is exact, and\n\\item $f^{-1}\\mathcal{I}$ is injective in\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$\nfor $\\mathcal{I}$ injective in\n$\\textit{Mod}(\\mathcal{Y}_\\tau, \\mathcal{O}_\\mathcal{X})$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nRecall that $f$ is a continuous and cocontinuous functor of sites\nand that $f^{-1}\\mathcal{O}_\\mathcal{Y} = \\mathcal{O}_\\mathcal{X}$. Hence\nModules on Sites, Lemma \\ref{sites-modules-lemma-lower-shriek-modules}\nimplies $f^*$ has a left adjoint $f_!^{Mod}$.\nLet $x$ be an object of $\\mathcal{X}$ lying over the scheme $U$.\nThen $f$ induces an equivalence of ringed sites\n$$\n\\mathcal{X}/x \\longrightarrow \\mathcal{Y}/f(x)\n$$\nas both sides are equivalent to $(\\Sch/U)_\\tau$, see\nLemma \\ref{lemma-localizing-structure-sheaf}.\nModules on Sites, Remark \\ref{sites-modules-remark-when-shriek-equal}\nshows that $f_!$ agrees with the functor on abelian sheaves.\n\n\\medskip\\noindent\nAssume now that $\\mathcal{X}$ has equalizers and that $f$ is faithful.\nLemma \\ref{lemma-pullback-injective}\ntells us that $f_!$ is exact. Finally,\nHomology, Lemma \\ref{homology-lemma-adjoint-preserve-injectives}\nimplies the statement on pullbacks of injective modules.\n\\end{proof}\n\n\n\n\n\\section{The {\\v C}ech complex}\n\\label{section-cech}\n\n\\noindent\nTo compute the cohomology of a sheaf on an algebraic stack we compare\nit to the cohomology of the sheaf restricted to coverings of the\ngiven algebraic stack.\n\n\\medskip\\noindent\nThroughout this section the situation will be as follows. We are given\na $1$-morphism of categories fibred in groupoids\n\\begin{equation}\n\\label{equation-covering}\n\\vcenter{\n\\xymatrix{\n\\mathcal{U} \\ar[rr]_f \\ar[rd]_q & & \\mathcal{X} \\ar[ld]^p \\\\\n& (\\Sch/S)_{fppf}\n}\n}\n\\end{equation}\nWe are going to think about $\\mathcal{U}$ as a ``covering'' of $\\mathcal{X}$.\nHence we want to consider the simplicial object\n$$\n\\xymatrix{\n\\mathcal{U} \\times_\\mathcal{X} \\mathcal{U} \\times_\\mathcal{X} \\mathcal{U}\n\\ar@<1ex>[r]\n\\ar@<0ex>[r]\n\\ar@<-1ex>[r]\n&\n\\mathcal{U} \\times_\\mathcal{X} \\mathcal{U}\n\\ar@<0.5ex>[r]\n\\ar@<-0.5ex>[r]\n&\n\\mathcal{U}\n}\n$$\nin the category of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$. However, since this is a $(2, 1)$-category and\nnot a category, we should say explicitly what we mean. Namely, we let\n$\\mathcal{U}_n$ be the category with objects\n$(u_0, \\ldots, u_n, x, \\alpha_0, \\ldots, \\alpha_n)$\nwhere $\\alpha_i : f(u_i) \\to x$ is an isomorphism in $\\mathcal{X}$.\nWe denote $f_n : \\mathcal{U}_n \\to \\mathcal{X}$ the $1$-morphism\nwhich assigns to $(u_0, \\ldots, u_n, x, \\alpha_0, \\ldots, \\alpha_n)$\nthe object $x$. Note that $\\mathcal{U}_0 = \\mathcal{U}$ and $f_0 = f$.\nGiven a map $\\varphi : [m] \\to [n]$ we consider the $1$-morphism\n$\\mathcal{U}_\\varphi : \\mathcal{U}_n \\longrightarrow \\mathcal{U}_n$\ngiven by\n$$\n(u_0, \\ldots, u_n, x, \\alpha_0, \\ldots, \\alpha_n)\n\\longmapsto\n(u_{\\varphi(0)}, \\ldots, u_{\\varphi(n)}, x,\n\\alpha_{\\varphi(0)}, \\ldots, \\alpha_{\\varphi(n)})\n$$\non objects. All of these $1$-morphisms compose correctly on the nose\n(no $2$-morphisms required) and all of these $1$-morphisms are $1$-morphisms\nover $\\mathcal{X}$. We denote $\\mathcal{U}_\\bullet$ this simplicial object.\nIf $\\mathcal{F}$ is a presheaf of sets on $\\mathcal{X}$, then we obtain a\ncosimplicial set\n$$\n\\xymatrix{\n\\Gamma(\\mathcal{U}_0, f_0^{-1}\\mathcal{F})\n\\ar@<0.5ex>[r]\n\\ar@<-0.5ex>[r]\n&\n\\Gamma(\\mathcal{U}_1, f_1^{-1}\\mathcal{F})\n\\ar@<1ex>[r]\n\\ar@<0ex>[r]\n\\ar@<-1ex>[r]\n&\n\\Gamma(\\mathcal{U}_2, f_2^{-1}\\mathcal{F})\n}\n$$\nHere the arrows are the pullback maps along the given morphisms of\nthe simplicial object.\nIf $\\mathcal{F}$ is a presheaf of abelian groups, this is a cosimplicial\nabelian group.\n\n\\medskip\\noindent\nLet $\\mathcal{U} \\to \\mathcal{X}$ be as above and let $\\mathcal{F}$\nbe an abelian presheaf on $\\mathcal{X}$.\nThe {\\it {\\v C}ech complex} associated to the situation is denoted\n$\\check{\\mathcal{C}}^\\bullet(\\mathcal{U} \\to \\mathcal{X}, \\mathcal{F})$.\nIt is the cochain complex associated to the cosimplicial abelian group\nabove, see\nSimplicial, Section \\ref{simplicial-section-dold-kan-cosimplicial}.\nIt has terms\n$$\n\\check{\\mathcal{C}}^n(\\mathcal{U} \\to \\mathcal{X}, \\mathcal{F})\n= \\Gamma(\\mathcal{U}_n, f_n^{-1}\\mathcal{F}).\n$$\nThe boundary maps are the maps\n$$\nd^n = \\sum\\nolimits_{i = 0}^{n + 1} (-1)^i \\delta^{n + 1}_i :\n\\Gamma(\\mathcal{U}_n, f_n^{-1}\\mathcal{F})\n\\longrightarrow\n\\Gamma(\\mathcal{U}_{n + 1}, f_{n + 1}^{-1}\\mathcal{F})\n$$\nwhere $\\delta^{n + 1}_i$ corresponds to the map\n$[n] \\to [n + 1]$ omitting the index $i$. Note that the map\n$\\Gamma(\\mathcal{X}, \\mathcal{F}) \\to\n\\Gamma(\\mathcal{U}_0, f_0^{-1}\\mathcal{F}_0)$\nis in the kernel of the differential $d^0$. Hence we define\nthe {\\it extended {\\v C}ech complex} to be the complex\n$$\n\\ldots \\to 0 \\to\n\\Gamma(\\mathcal{X}, \\mathcal{F}) \\to\n\\Gamma(\\mathcal{U}_0, f_0^{-1}\\mathcal{F}_0) \\to\n\\Gamma(\\mathcal{U}_1, f_1^{-1}\\mathcal{F}_1) \\to \\ldots\n$$\nwith $\\Gamma(\\mathcal{X}, \\mathcal{F})$ placed in degree $-1$.\nThe extended {\\v C}ech complex is acyclic if and only if the canonical map\n$$\n\\Gamma(\\mathcal{X}, \\mathcal{F})[0]\n\\longrightarrow\n\\check{\\mathcal{C}}^\\bullet(\\mathcal{U} \\to \\mathcal{X}, \\mathcal{F})\n$$\nis a quasi-isomorphism of complexes.\n\n\\begin{lemma}\n\\label{lemma-generalities}\nGeneralities on {\\v C}ech complexes.\n\\begin{enumerate}\n\\item If\n$$\n\\xymatrix{\n\\mathcal{V} \\ar[d]_g \\ar[r]_h & \\mathcal{U} \\ar[d]^f \\\\\n\\mathcal{Y} \\ar[r]^e & \\mathcal{X}\n}\n$$\nis $2$-commutative diagram of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$, then there is a morphism of {\\v C}ech complexes\n$$\n\\check{\\mathcal{C}}^\\bullet(\\mathcal{U} \\to \\mathcal{X}, \\mathcal{F})\n\\longrightarrow\n\\check{\\mathcal{C}}^\\bullet(\\mathcal{V} \\to \\mathcal{Y}, e^{-1}\\mathcal{F})\n$$\n\\item if $h$ and $e$ are equivalences, then the map of (1) is an isomorphism,\n\\item if $f, f' : \\mathcal{U} \\to \\mathcal{X}$ are $2$-isomorphic, then\nthe associated {\\v C}ech complexes are isomorphic,\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nIn the situation of (1) let $t : f \\circ h \\to e \\circ g$ be a $2$-morphism.\nThe map on complexes is given in degree $n$ by\npullback along the $1$-morphisms\n$\\mathcal{V}_n \\to \\mathcal{U}_n$ given by the rule\n$$\n(v_0, \\ldots, v_n, y, \\beta_0, \\ldots, \\beta_n)\n\\longmapsto\n(h(v_0), \\ldots, h(v_n), e(y),\ne(\\beta_0) \\circ t_{v_0}, \\ldots, e(\\beta_n) \\circ t_{v_n}).\n$$\nFor (2), note that pullback on global sections is an isomorphism\nfor any presheaf of sets when the pullback is along an equivalence\nof categories. Part (3) follows on combining (1) and (2).\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-homotopy}\nIf there exists a $1$-morphism $s : \\mathcal{X} \\to \\mathcal{U}$\nsuch that $f \\circ s$ is $2$-isomorphic to $\\text{id}_\\mathcal{X}$\nthen the extended {\\v C}ech complex is homotopic to zero.\n\\end{lemma}\n\n\\begin{proof}\nSet $\\mathcal{U}' = \\mathcal{U} \\times_\\mathcal{X} \\mathcal{X}$\nequal to the fibre product as described in\nCategories, Lemma \\ref{categories-lemma-2-product-categories-over-C}.\nSet $f' : \\mathcal{U}' \\to \\mathcal{X}$ equal to the second projection.\nThen $\\mathcal{U} \\to \\mathcal{U}'$, $u \\mapsto (u, f(x), 1)$\nis an equivalence over $\\mathcal{X}$, hence we may replace\n$(\\mathcal{U}, f)$ by $(\\mathcal{U}', f')$ by\nLemma \\ref{lemma-generalities}.\nThe advantage of this is that now $f'$ has a section $s'$ such\nthat $f' \\circ s' = \\text{id}_\\mathcal{X}$ on the nose. Namely, if\n$t : s \\circ f \\to \\text{id}_\\mathcal{X}$ is a $2$-isomorphism\nthen we can set $s'(x) = (s(x), x, t_x)$. Thus we may assume that\n$f \\circ s = \\text{id}_\\mathcal{X}$.\n\n\\medskip\\noindent\nIn the case that $f \\circ s = \\text{id}_\\mathcal{X}$ the result follows\nfrom general principles. We give the homotopy explicitly. Namely,\nfor $n \\geq 0$ define $s_n : \\mathcal{U}_n \\to \\mathcal{U}_{n + 1}$\nto be the $1$-morphism defined by the rule on objects\n$$\n(u_0, \\ldots, u_n, x, \\alpha_0, \\ldots, \\alpha_n)\n\\longmapsto\n(u_0, \\ldots, u_n, s(x), x,\n\\alpha_0, \\ldots, \\alpha_n, \\text{id}_x).\n$$\nDefine\n$$\nh^{n + 1} :\n\\Gamma(\\mathcal{U}_{n + 1}, f_{n + 1}^{-1}\\mathcal{F})\n\\longrightarrow\n\\Gamma(\\mathcal{U}_n, f_n^{-1}\\mathcal{F})\n$$\nas pullback along $s_n$. We also set $s_{-1} = s$ and\n$h^0 : \\Gamma(\\mathcal{U}_0, f_0^{-1}\\mathcal{F}) \\to\n\\Gamma(\\mathcal{X}, \\mathcal{F})$ equal to pullback along $s_{-1}$.\nThen the family of maps $\\{h^n\\}_{n \\geq 0}$ is a homotopy between\n$1$ and $0$ on the extended {\\v C}ech complex.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\\section{The relative {\\v C}ech complex}\n\\label{section-sheaf-cech-complex}\n\n\\noindent\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of categories\nfibred in groupoids over $(\\Sch/S)_{fppf}$ as in\n(\\ref{equation-covering}). Consider the associated simplicial\nobject $\\mathcal{U}_\\bullet$ and the maps\n$f_n : \\mathcal{U}_n \\to \\mathcal{X}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nFinally, suppose that $\\mathcal{F}$ is a sheaf (of sets)\non $\\mathcal{X}_\\tau$. Then\n$$\n\\xymatrix{\nf_{0, *}f_0^{-1}\\mathcal{F}\n\\ar@<0.5ex>[r]\n\\ar@<-0.5ex>[r]\n&\nf_{1, *}f_1^{-1}\\mathcal{F}\n\\ar@<1ex>[r]\n\\ar@<0ex>[r]\n\\ar@<-1ex>[r]\n&\nf_{2, *}f_2^{-1}\\mathcal{F}\n}\n$$\nis a cosimplicial sheaf on $\\mathcal{X}_\\tau$ where we use the pullback maps\nintroduced in\nSites, Section \\ref{sites-section-pullback}.\nIf $\\mathcal{F}$ is an abelian sheaf, then $f_{n, *}f_n^{-1}\\mathcal{F}$\nform a cosimplicial abelian sheaf on $\\mathcal{X}_\\tau$.\nThe associated complex (see\nSimplicial, Section \\ref{simplicial-section-dold-kan-cosimplicial})\n$$\n\\ldots \\to 0 \\to\nf_{0, *}f_0^{-1}\\mathcal{F} \\to\nf_{1, *}f_1^{-1}\\mathcal{F} \\to\nf_{2, *}f_2^{-1}\\mathcal{F} \\to \\ldots\n$$\nis called the {\\it relative {\\v C}ech complex} associated to the situation.\nWe will denote this complex $\\mathcal{K}^\\bullet(f, \\mathcal{F})$.\nThe {\\it extended relative {\\v C}ech complex} is the complex\n$$\n\\ldots \\to 0 \\to\n\\mathcal{F} \\to\nf_{0, *}f_0^{-1}\\mathcal{F} \\to\nf_{1, *}f_1^{-1}\\mathcal{F} \\to\nf_{2, *}f_2^{-1}\\mathcal{F} \\to \\ldots\n$$\nwith $\\mathcal{F}$ in degree $-1$. The extended relative {\\v C}ech complex\nis acyclic if and only if the map\n$\\mathcal{F}[0] \\to \\mathcal{K}^\\bullet(f, \\mathcal{F})$\nis a quasi-isomorphism of complexes of sheaves.\n\n\\begin{remark}\n\\label{remark-cech-complex-presheaves}\nWe can define the complex $\\mathcal{K}^\\bullet(f, \\mathcal{F})$\nalso if $\\mathcal{F}$ is a presheaf, only we cannot use the reference to\nSites, Section \\ref{sites-section-pullback}\nto define the pullback maps. To explain the pullback maps, suppose\ngiven a commutative diagram\n$$\n\\xymatrix{\n\\mathcal{V} \\ar[rd]_g \\ar[rr]_h & & \\mathcal{U} \\ar[ld]^f \\\\\n& \\mathcal{X}\n}\n$$\nof categories fibred in groupoids over $(\\Sch/S)_{fppf}$\nand a presheaf $\\mathcal{G}$ on $\\mathcal{U}$\nwe can define the pullback map $f_*\\mathcal{G} \\to g_*h^{-1}\\mathcal{G}$\nas the composition\n$$\nf_*\\mathcal{G} \\longrightarrow\nf_*h_*h^{-1}\\mathcal{G} = g_*h^{-1}\\mathcal{G}\n$$\nwhere the map comes from the adjunction map\n$\\mathcal{G} \\to h_*h^{-1}\\mathcal{G}$. This works because in our situation\nthe functors $h_*$ and $h^{-1}$ are adjoint in presheaves (and agree with\ntheir counter parts on sheaves). See\nSections \\ref{section-presheaves} and \\ref{section-sheaves}.\n\\end{remark}\n\n\\begin{lemma}\n\\label{lemma-generalities-sheafified}\nGeneralities on relative {\\v C}ech complexes.\n\\begin{enumerate}\n\\item If\n$$\n\\xymatrix{\n\\mathcal{V} \\ar[d]_g \\ar[r]_h & \\mathcal{U} \\ar[d]^f \\\\\n\\mathcal{Y} \\ar[r]^e & \\mathcal{X}\n}\n$$\nis $2$-commutative diagram of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$, then there is a morphism\n$e^{-1}\\mathcal{K}^\\bullet(f, \\mathcal{F}) \\to\n\\mathcal{K}^\\bullet(g, e^{-1}\\mathcal{F})$.\n\\item if $h$ and $e$ are equivalences, then the map of (1) is an isomorphism,\n\\item if $f, f' : \\mathcal{U} \\to \\mathcal{X}$ are $2$-isomorphic, then\nthe associated relative {\\v C}ech complexes are isomorphic,\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nLiterally the same as the proof of\nLemma \\ref{lemma-generalities}\nusing the pullback maps of\nRemark \\ref{remark-cech-complex-presheaves}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-homotopy-sheafified}\nIf there exists a $1$-morphism $s : \\mathcal{X} \\to \\mathcal{U}$\nsuch that $f \\circ s$ is $2$-isomorphic to $\\text{id}_\\mathcal{X}$\nthen the extended relative {\\v C}ech complex is homotopic to zero.\n\\end{lemma}\n\n\\begin{proof}\nLiterally the same as the proof of\nLemma \\ref{lemma-homotopy}.\n\\end{proof}\n\n\\begin{remark}\n\\label{remark-cech-complex-sections}\nLet us ``compute'' the value of the relative {\\v C}ech complex on an\nobject $x$ of $\\mathcal{X}$. Say $p(x) = U$.\nConsider the $2$-fibre product diagram (which serves to introduce\nthe notation $g : \\mathcal{V} \\to \\mathcal{Y}$)\n$$\n\\xymatrix{\n\\mathcal{V} \\ar@{=}[r] \\ar[d]_g &\n(\\Sch/U)_{fppf} \\times_{x, \\mathcal{X}} \\mathcal{U} \\ar[r] \\ar[d] &\n\\mathcal{U} \\ar[d]^f \\\\\n\\mathcal{Y} \\ar@{=}[r] &\n(\\Sch/U)_{fppf} \\ar[r]^-x & \\mathcal{X}\n}\n$$\nNote that the morphism $\\mathcal{V}_n \\to \\mathcal{U}_n$ of the proof of\nLemma \\ref{lemma-generalities}\ninduces an equivalence\n$\\mathcal{V}_n =\n(\\Sch/U)_{fppf} \\times_{x, \\mathcal{X}} \\mathcal{U}_n$.\nHence we see from\n(\\ref{equation-pushforward})\nthat\n$$\n\\Gamma(x, \\mathcal{K}^\\bullet(f, \\mathcal{F})) =\n\\check{\\mathcal{C}}^\\bullet(\\mathcal{V} \\to \\mathcal{Y}, x^{-1}\\mathcal{F})\n$$\nIn words: The value of the relative {\\v C}ech complex on an object $x$ of\n$\\mathcal{X}$ is the {\\v C}ech complex of the base change of $f$ to\n$\\mathcal{X}/x \\cong (\\Sch/U)_{fppf}$. This implies for example that\nLemma \\ref{lemma-homotopy}\nimplies\nLemma \\ref{lemma-homotopy-sheafified}\nand more generally that results on the (usual) {\\v C}ech complex imply\nresults for the relative {\\v C}ech complex.\n\\end{remark}\n\n\\begin{lemma}\n\\label{lemma-base-change-cech-complex}\nLet\n$$\n\\xymatrix{\n\\mathcal{V} \\ar[d]_g \\ar[r]_h & \\mathcal{U} \\ar[d]^f \\\\\n\\mathcal{Y} \\ar[r]^e & \\mathcal{X}\n}\n$$\nbe a $2$-fibre product of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$ and let $\\mathcal{F}$ be an abelian presheaf\non $\\mathcal{X}$. Then the map\n$e^{-1}\\mathcal{K}^\\bullet(f, \\mathcal{F}) \\to\n\\mathcal{K}^\\bullet(g, e^{-1}\\mathcal{F})$\nof\nLemma \\ref{lemma-generalities-sheafified}\nis an isomorphism of complexes of abelian presheaves.\n\\end{lemma}\n\n\\begin{proof}\nLet $y$ be an object of $\\mathcal{Y}$ lying over the scheme $T$.\nSet $x = e(y)$. We are going to show that the map induces an isomorphism\non sections over $y$. Note that\n$$\n\\Gamma(y, e^{-1}\\mathcal{K}^\\bullet(f, \\mathcal{F})) =\n\\Gamma(x, \\mathcal{K}^\\bullet(f, \\mathcal{F})) =\n\\check{\\mathcal{C}}^\\bullet(\n(\\Sch/T)_{fppf} \\times_{x, \\mathcal{X}} \\mathcal{U} \\to\n(\\Sch/T)_{fppf}, x^{-1}\\mathcal{F})\n$$\nby\nRemark \\ref{remark-cech-complex-sections}. On the other hand,\n$$\n\\Gamma(y, \\mathcal{K}^\\bullet(g, e^{-1}\\mathcal{F})) =\n\\check{\\mathcal{C}}^\\bullet(\n(\\Sch/T)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{V} \\to\n(\\Sch/T)_{fppf}, y^{-1}e^{-1}\\mathcal{F})\n$$\nalso by\nRemark \\ref{remark-cech-complex-sections}.\nNote that $y^{-1}e^{-1}\\mathcal{F} = x^{-1}\\mathcal{F}$\nand since the diagram is $2$-cartesian the $1$-morphism\n$$\n(\\Sch/T)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{V} \\to\n(\\Sch/T)_{fppf} \\times_{x, \\mathcal{X}} \\mathcal{U}\n$$\nis an equivalence. Hence the map on sections over $y$ is an\nisomorphism by\nLemma \\ref{lemma-generalities}.\n\\end{proof}\n\n\\noindent\nExactness can be checked on a ``covering''.\n\n\\begin{lemma}\n\\label{lemma-check-exactness-covering}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nLet\n$$\n\\mathcal{F} \\to \\mathcal{G} \\to \\mathcal{H}\n$$\nbe a complex in $\\textit{Ab}(\\mathcal{X}_\\tau)$. Assume that\n\\begin{enumerate}\n\\item for every object $x$ of $\\mathcal{X}$ there exists a covering\n$\\{x_i \\to x\\}$ in $\\mathcal{X}_\\tau$ such that each $x_i$ is isomorphic\nto $f(u_i)$ for some object $u_i$ of $\\mathcal{U}$, and\n\\item $f^{-1}\\mathcal{F} \\to f^{-1}\\mathcal{G} \\to f^{-1}\\mathcal{H}$ is exact.\n\\end{enumerate}\nThen the sequence $\\mathcal{F} \\to \\mathcal{G} \\to \\mathcal{H}$\nis exact.\n\\end{lemma}\n\n\\begin{proof}\nLet $x$ be an object of $\\mathcal{X}$ lying over the scheme $T$.\nConsider the sequence\n$x^{-1}\\mathcal{F} \\to x^{-1}\\mathcal{G} \\to x^{-1}\\mathcal{H}$\nof abelian sheaves on $(\\Sch/T)_\\tau$. It suffices to show\nthis sequence is exact. By assumption there exists a $\\tau$-covering\n$\\{T_i \\to T\\}$ such that $x|_{T_i}$ is isomorphic to $f(u_i)$ for\nsome object $u_i$ of $\\mathcal{U}$ over $T_i$ and moreover the sequence\n$u_i^{-1}f^{-1}\\mathcal{F} \\to u_i^{-1}f^{-1}\\mathcal{G} \\to\nu_i^{-1}f^{-1}\\mathcal{H}$ of abelian sheaves on $(\\Sch/T_i)_\\tau$\nis exact. Since\n$u_i^{-1}f^{-1}\\mathcal{F} = x^{-1}\\mathcal{F}|_{(\\Sch/T_i)_\\tau}$\nwe conclude that the sequence\n$x^{-1}\\mathcal{F} \\to x^{-1}\\mathcal{G} \\to x^{-1}\\mathcal{H}$\nbecome exact after localizing at each of the members of a covering,\nhence the sequence is exact.\n\\end{proof}\n\n\\begin{proposition}\n\\label{proposition-exactness-cech-complex}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nIf\n\\begin{enumerate}\n\\item $\\mathcal{F}$ is an abelian sheaf on $\\mathcal{X}_\\tau$, and\n\\item for every object $x$ of $\\mathcal{X}$ there exists a covering\n$\\{x_i \\to x\\}$ in $\\mathcal{X}_\\tau$ such that each $x_i$ is isomorphic\nto $f(u_i)$ for some object $u_i$ of $\\mathcal{U}$,\n\\end{enumerate}\nthen the extended relative {\\v C}ech complex\n$$\n\\ldots \\to 0 \\to\n\\mathcal{F} \\to\nf_{0, *}f_0^{-1}\\mathcal{F} \\to\nf_{1, *}f_1^{-1}\\mathcal{F} \\to\nf_{2, *}f_2^{-1}\\mathcal{F} \\to \\ldots\n$$\nis exact in $\\textit{Ab}(\\mathcal{X}_\\tau)$.\n\\end{proposition}\n\n\\begin{proof}\nBy\nLemma \\ref{lemma-check-exactness-covering}\nit suffices to check exactness after pulling back to $\\mathcal{U}$.\nBy\nLemma \\ref{lemma-base-change-cech-complex}\nthe pullback of the extended relative {\\v C}ech complex is isomorphic\nto the extend relative {\\v C}ech complex for the morphism\n$\\mathcal{U} \\times_\\mathcal{X} \\mathcal{U} \\to \\mathcal{U}$\nand an abelian sheaf on $\\mathcal{U}_\\tau$. Since there is a section\n$\\Delta_{\\mathcal{U}/\\mathcal{X}} : \\mathcal{U} \\to\n\\mathcal{U} \\times_\\mathcal{X} \\mathcal{U}$ exactness follows from\nLemma \\ref{lemma-homotopy-sheafified}.\n\\end{proof}\n\n\\noindent\nUsing this we can construct the {\\v C}ech-to-cohomology spectral sequence\nas follows. We first give a technical, precise version. In the next section\nwe give a version that applies only to algebraic stacks.\n\n\\begin{lemma}\n\\label{lemma-cech-to-cohomology}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nAssume\n\\begin{enumerate}\n\\item $\\mathcal{F}$ is an abelian sheaf on $\\mathcal{X}_\\tau$,\n\\item for every object $x$ of $\\mathcal{X}$ there exists a covering\n$\\{x_i \\to x\\}$ in $\\mathcal{X}_\\tau$ such that each $x_i$ is isomorphic\nto $f(u_i)$ for some object $u_i$ of $\\mathcal{U}$,\n\\item the category $\\mathcal{U}$ has equalizers, and\n\\item the functor $f$ is faithful.\n\\end{enumerate}\nThen there is a first quadrant spectral sequence of abelian groups\n$$\nE_1^{p, q} = H^q((\\mathcal{U}_p)_\\tau, f_p^{-1}\\mathcal{F})\n\\Rightarrow\nH^{p + q}(\\mathcal{X}_\\tau, \\mathcal{F})\n$$\nconverging to the cohomology of $\\mathcal{F}$ in the $\\tau$-topology.\n\\end{lemma}\n\n\\begin{proof}\nBefore we start the proof we make some remarks. By\nLemma \\ref{lemma-fibre-products-preserve-properties}\n(and induction) all of the categories fibred in groupoids $\\mathcal{U}_p$\nhave equalizers and all of the morphisms $f_p : \\mathcal{U}_p \\to \\mathcal{X}$\nare faithful. Let $\\mathcal{I}$ be an injective object\nof $\\textit{Ab}(\\mathcal{X}_\\tau)$. By\nLemma \\ref{lemma-pullback-injective}\nwe see $f_p^{-1}\\mathcal{I}$ is an injective object of\n$\\textit{Ab}((\\mathcal{U}_p)_\\tau)$.\nHence $f_{p, *}f_p^{-1}\\mathcal{I}$ is an injective object of\n$\\textit{Ab}(\\mathcal{X}_\\tau)$ by\nLemma \\ref{lemma-pushforward-injective}.\nHence\nProposition \\ref{proposition-exactness-cech-complex}\nshows that the extended relative {\\v C}ech complex\n$$\n\\ldots \\to 0 \\to\n\\mathcal{I} \\to\nf_{0, *}f_0^{-1}\\mathcal{I} \\to\nf_{1, *}f_1^{-1}\\mathcal{I} \\to\nf_{2, *}f_2^{-1}\\mathcal{I} \\to \\ldots\n$$\nis an exact complex in $\\textit{Ab}(\\mathcal{X}_\\tau)$ all of whose\nterms are injective. Taking global sections of this complex is exact\nand we see that the {\\v C}ech complex\n$\\check{\\mathcal{C}}^\\bullet(\\mathcal{U} \\to \\mathcal{X}, \\mathcal{I})$\nis quasi-isomorphic to $\\Gamma(\\mathcal{X}_\\tau, \\mathcal{I})[0]$.\n\n\\medskip\\noindent\nWith these preliminaries out of the way consider the two spectral sequences\nassociated to the double complex (see\nHomology, Section \\ref{homology-section-double-complex})\n$$\n\\check{\\mathcal{C}}^\\bullet(\\mathcal{U} \\to \\mathcal{X}, \\mathcal{I}^\\bullet)\n$$\nwhere $\\mathcal{F} \\to \\mathcal{I}^\\bullet$ is an injective resolution\nin $\\textit{Ab}(\\mathcal{X}_\\tau)$.\nThe discussion above shows that\nHomology, Lemma \\ref{homology-lemma-double-complex-gives-resolution}\napplies which shows that\n$\\Gamma(\\mathcal{X}_\\tau, \\mathcal{I}^\\bullet)$\nis quasi-isomorphic to the total complex associated to the double complex.\nBy our remarks above the complex $f_p^{-1}\\mathcal{I}^\\bullet$ is an\ninjective resolution of $f_p^{-1}\\mathcal{F}$. Hence the other spectral\nsequence is as indicated in the lemma.\n\\end{proof}\n\n\\noindent\nTo be sure there is a version for modules as well.\n\n\\begin{lemma}\n\\label{lemma-cech-to-cohomology-modules}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nAssume\n\\begin{enumerate}\n\\item $\\mathcal{F}$ is an object of\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$,\n\\item for every object $x$ of $\\mathcal{X}$ there exists a covering\n$\\{x_i \\to x\\}$ in $\\mathcal{X}_\\tau$ such that each $x_i$ is isomorphic\nto $f(u_i)$ for some object $u_i$ of $\\mathcal{U}$,\n\\item the category $\\mathcal{U}$ has equalizers, and\n\\item the functor $f$ is faithful.\n\\end{enumerate}\nThen there is a first quadrant spectral sequence of\n$\\Gamma(\\mathcal{O}_\\mathcal{X})$-modules\n$$\nE_1^{p, q} = H^q((\\mathcal{U}_p)_\\tau, f_p^*\\mathcal{F})\n\\Rightarrow\nH^{p + q}(\\mathcal{X}_\\tau, \\mathcal{F})\n$$\nconverging to the cohomology of $\\mathcal{F}$ in the $\\tau$-topology.\n\\end{lemma}\n\n\\begin{proof}\nThe proof of this lemma is identical to the proof of\nLemma \\ref{lemma-cech-to-cohomology}\nexcept that it uses an injective resolution in\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$\nand it uses\nLemma \\ref{lemma-pullback-injective-modules}\ninstead of\nLemma \\ref{lemma-pullback-injective}.\n\\end{proof}\n\n\\noindent\nHere is a lemma that translates a more usual kind of covering in the\nkinds of coverings we have encountered above.\n\n\\begin{lemma}\n\\label{lemma-surjective-flat-locally-finite-presentation}\nLet $f : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of\ncategories fibred in groupoids over $(\\Sch/S)_{fppf}$.\n\\begin{enumerate}\n\\item Assume that $f$ is representable by algebraic spaces, surjective,\nflat, and locally of finite presentation. Then for any object $y$ of\n$\\mathcal{Y}$ there exists an fppf covering $\\{y_i \\to y\\}$ and objects\n$x_i$ of $\\mathcal{X}$ such that $f(x_i) \\cong y_i$ in $\\mathcal{Y}$.\n\\item Assume that $f$ is representable by algebraic spaces, surjective,\nand smooth. Then for any object $y$ of\n$\\mathcal{Y}$ there exists an \\'etale covering $\\{y_i \\to y\\}$ and objects\n$x_i$ of $\\mathcal{X}$ such that $f(x_i) \\cong y_i$ in $\\mathcal{Y}$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nProof of (1). Suppose that $y$ lies over the scheme $V$.\nWe may think of $y$ as a morphism $(\\Sch/V)_{fppf} \\to \\mathcal{Y}$.\nBy definition the $2$-fibre product\n$\\mathcal{X} \\times_\\mathcal{Y} (\\Sch/V)_{fppf}$\nis representable by an algebraic space $W$ and the morphism\n$W \\to V$ is surjective, flat, and locally of finite presentation.\nChoose a scheme $U$ and a surjective \\'etale morphism $U \\to W$.\nThen $U \\to V$ is also surjective, flat, and locally of finite presentation\n(see Morphisms of Spaces, Lemmas\n\\ref{spaces-morphisms-lemma-etale-flat},\n\\ref{spaces-morphisms-lemma-etale-locally-finite-presentation},\n\\ref{spaces-morphisms-lemma-composition-surjective},\n\\ref{spaces-morphisms-lemma-composition-finite-presentation}, and\n\\ref{spaces-morphisms-lemma-composition-flat}).\nHence $\\{U \\to V\\}$ is an fppf covering. Denote $x$ the object of\n$\\mathcal{X}$ over $U$ corresponding to the $1$-morphism\n$(\\Sch/U)_{fppf} \\to \\mathcal{X}$. Then $\\{f(x) \\to y\\}$ is\nthe desired fppf covering of $\\mathcal{Y}$.\n\n\\medskip\\noindent\nProof of (1). Suppose that $y$ lies over the scheme $V$.\nWe may think of $y$ as a morphism $(\\Sch/V)_{fppf} \\to \\mathcal{Y}$.\nBy definition the $2$-fibre product\n$\\mathcal{X} \\times_\\mathcal{Y} (\\Sch/V)_{fppf}$\nis representable by an algebraic space $W$ and the morphism\n$W \\to V$ is surjective and smooth.\nChoose a scheme $U$ and a surjective \\'etale morphism $U \\to W$.\nThen $U \\to V$ is also surjective and smooth\n(see Morphisms of Spaces, Lemmas\n\\ref{spaces-morphisms-lemma-etale-smooth},\n\\ref{spaces-morphisms-lemma-composition-surjective}, and\n\\ref{spaces-morphisms-lemma-composition-smooth}).\nHence $\\{U \\to V\\}$ is a smooth covering. By\nMore on Morphisms, Lemma \\ref{more-morphisms-lemma-etale-dominates-smooth}\nthere exists an \\'etale covering $\\{V_i \\to V\\}$ such that\neach $V_i \\to V$ factors through $U$. Denote $x_i$ the object of\n$\\mathcal{X}$ over $V_i$ corresponding to the $1$-morphism\n$$\n(\\Sch/V_i)_{fppf} \\to (\\Sch/U)_{fppf} \\to \\mathcal{X}.\n$$\nThen $\\{f(x_i) \\to y\\}$ is\nthe desired \\'etale covering of $\\mathcal{Y}$.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-cech-to-cohomology-relative}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ and\n$g : \\mathcal{X} \\to \\mathcal{Y}$\nbe composable $1$-morphisms of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, \\linebreak[0] fppf\\}$.\nAssume\n\\begin{enumerate}\n\\item $\\mathcal{F}$ is an abelian sheaf on $\\mathcal{X}_\\tau$,\n\\item for every object $x$ of $\\mathcal{X}$ there exists a covering\n$\\{x_i \\to x\\}$ in $\\mathcal{X}_\\tau$ such that each $x_i$ is isomorphic\nto $f(u_i)$ for some object $u_i$ of $\\mathcal{U}$,\n\\item the category $\\mathcal{U}$ has equalizers, and\n\\item the functor $f$ is faithful.\n\\end{enumerate}\nThen there is a first quadrant spectral sequence of abelian sheaves\non $\\mathcal{Y}_\\tau$\n$$\nE_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}\n\\Rightarrow\nR^{p + q}g_*\\mathcal{F}\n$$\nwhere all higher direct images are computed in the $\\tau$-topology.\n\\end{lemma}\n\n\\begin{proof}\nNote that the assumptions on $f : \\mathcal{U} \\to \\mathcal{X}$\nand $\\mathcal{F}$ are identical to those in\nLemma \\ref{lemma-cech-to-cohomology}.\nHence the preliminary remarks made in the proof of that lemma\nhold here also. These remarks imply in particular that\n$$\n0 \\to g_*\\mathcal{I} \\to\n(g \\circ f_0)_*f_0^{-1}\\mathcal{I} \\to\n(g \\circ f_1)_*f_1^{-1}\\mathcal{I} \\to \\ldots\n$$\nis exact if $\\mathcal{I}$ is an injective object of\n$\\textit{Ab}(\\mathcal{X}_\\tau)$.\nHaving said this, consider the two spectral sequences of\nHomology, Section \\ref{homology-section-double-complex}\nassociated to the double complex $\\mathcal{C}^{\\bullet, \\bullet}$ with terms\n$$\n\\mathcal{C}^{p, q} = (g \\circ f_p)_*\\mathcal{I}^q\n$$\nwhere $\\mathcal{F} \\to \\mathcal{I}^\\bullet$ is an injective resolution\nin $\\textit{Ab}(\\mathcal{X}_\\tau)$. The first spectral sequence implies, via\nHomology, Lemma \\ref{homology-lemma-double-complex-gives-resolution},\nthat $g_*\\mathcal{I}^\\bullet$ is quasi-isomorphic to the total complex\nassociated to $\\mathcal{C}^{\\bullet, \\bullet}$.\nSince $f_p^{-1}\\mathcal{I}^\\bullet$ is an injective resolution of\n$f_p^{-1}\\mathcal{F}$ (see\nLemma \\ref{lemma-pullback-injective})\nthe second spectral sequence has terms\n$E_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}$ as in the statement\nof the lemma.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-cech-to-cohomology-relative-modules}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ and\n$g : \\mathcal{X} \\to \\mathcal{Y}$\nbe composable $1$-morphisms of categories fibred\nin groupoids over $(\\Sch/S)_{fppf}$. Let\n$\\tau \\in \\{Zar, \\etale, smooth, syntomic, \\linebreak[0] fppf\\}$.\nAssume\n\\begin{enumerate}\n\\item $\\mathcal{F}$ is an object of\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$,\n\\item for every object $x$ of $\\mathcal{X}$ there exists a covering\n$\\{x_i \\to x\\}$ in $\\mathcal{X}_\\tau$ such that each $x_i$ is isomorphic\nto $f(u_i)$ for some object $u_i$ of $\\mathcal{U}$,\n\\item the category $\\mathcal{U}$ has equalizers, and\n\\item the functor $f$ is faithful.\n\\end{enumerate}\nThen there is a first quadrant spectral sequence in\n$\\textit{Mod}(\\mathcal{Y}_\\tau, \\mathcal{O}_\\mathcal{Y})$\n$$\nE_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}\n\\Rightarrow\nR^{p + q}g_*\\mathcal{F}\n$$\nwhere all higher direct images are computed in the $\\tau$-topology.\n\\end{lemma}\n\n\\begin{proof}\nThe proof is identical to the proof of\nLemma \\ref{lemma-cech-to-cohomology-relative}\nexcept that it uses an injective resolution in\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$\nand it uses\nLemma \\ref{lemma-pullback-injective-modules}\ninstead of\nLemma \\ref{lemma-pullback-injective}.\n\\end{proof}\n\n\n\n\n\n\n\\section{Cohomology on algebraic stacks}\n\\label{section-cohomology}\n\n\\noindent\nLet $\\mathcal{X}$ be an algebraic stack over $S$. In the sections above\nwe have seen how to define sheaves for the \\'etale, ..., fppf\ntopologies on $\\mathcal{X}$. In fact, we have constructed a site\n$\\mathcal{X}_\\tau$ for each $\\tau \\in \\{Zar, \\etale, smooth, syntomic,\nfppf\\}$. There is a notion of an abelian sheaf $\\mathcal{F}$ on these sites.\nIn the chapter on cohomology of sites we have explained how to define\ncohomology. Putting all of this together, let's define the\n{\\it derived global sections}\n$$\nR\\Gamma_{Zar}(\\mathcal{X}, \\mathcal{F}),\nR\\Gamma_\\etale(\\mathcal{X}, \\mathcal{F}), \\ldots,\nR\\Gamma_{fppf}(\\mathcal{X}, \\mathcal{F})\n$$\nas $\\Gamma(\\mathcal{X}_\\tau, \\mathcal{I}^\\bullet)$ where\n$\\mathcal{F} \\to \\mathcal{I}^\\bullet$ is an injective resolution\nin $\\textit{Ab}(\\mathcal{X}_\\tau)$. The $i$th cohomology group is the\n$i$th cohomology of the total derived cohomology. We will denote\nthis\n$$\nH^i_{Zar}(\\mathcal{X}, \\mathcal{F}),\nH^i_\\etale(\\mathcal{X}, \\mathcal{F}), \\ldots,\nH^i_{fppf}(\\mathcal{X}, \\mathcal{F}).\n$$\nIt will turn out that $H^i_\\etale = H^i_{smooth}$\nbecause of\nMore on Morphisms, Lemma \\ref{more-morphisms-lemma-etale-dominates-smooth}.\nIf $\\mathcal{F}$ is a presheaf of $\\mathcal{O}_\\mathcal{X}$-modules\nwhich is a sheaf in the $\\tau$-topology, then we use injective\nresolutions in $\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$\nto compute total derived global sections and cohomology groups; of course\nthe end result is quasi-isomorphic resp.\\ isomorphic by the general fact\nCohomology on Sites, Lemma\n\\ref{sites-cohomology-lemma-cohomology-modules-abelian-agree}.\n\n\\medskip\\noindent\nSo far our only tool to compute cohomology groups is the result on\n{\\v C}ech complexes proved above. We rephrase it here in the language\nof algebraic stacks for the \\'etale and the fppf topology. Let\n$f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of algebraic stacks.\nRecall that\n$$\nf_p : \\mathcal{U}_p =\n\\mathcal{U} \\times_\\mathcal{X} \\ldots \\times_\\mathcal{X} \\mathcal{U}\n\\longrightarrow\n\\mathcal{X}\n$$\nis the structure morphism where there are $(p + 1)$-factors. Also, recall\nthat a sheaf on $\\mathcal{X}$ is a sheaf for the fppf topology. Note\nthat if $\\mathcal{U}$ is an algebraic space, then\n$f : \\mathcal{U} \\to \\mathcal{X}$ is representable by algebraic spaces,\nsee\nAlgebraic Stacks, Lemma \\ref{algebraic-lemma-representable-diagonal}.\nThus the proposition applies in particular to a smooth cover of the\nalgebraic stack $\\mathcal{X}$ by a scheme.\n\n\\begin{proposition}\n\\label{proposition-smooth-covering-compute-cohomology}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ be a $1$-morphism of algebraic stacks.\n\\begin{enumerate}\n\\item Let $\\mathcal{F}$ be an abelian \\'etale sheaf on $\\mathcal{X}$.\nAssume that $f$ is representable by algebraic spaces, surjective, and smooth.\nThen there is a spectral sequence\n$$\nE_1^{p, q} = H^q_\\etale(\\mathcal{U}_p, f_p^{-1}\\mathcal{F})\n\\Rightarrow\nH^{p + q}_\\etale(\\mathcal{X}, \\mathcal{F})\n$$\n\\item Let $\\mathcal{F}$ be an abelian sheaf on $\\mathcal{X}$.\nAssume that $f$ is representable by algebraic spaces, surjective, flat,\nand locally of finite presentation. Then there is\na spectral sequence\n$$\nE_1^{p, q} = H^q_{fppf}(\\mathcal{U}_p, f_p^{-1}\\mathcal{F})\n\\Rightarrow\nH^{p + q}_{fppf}(\\mathcal{X}, \\mathcal{F})\n$$\n\\end{enumerate}\n\\end{proposition}\n\n\\begin{proof}\nTo see this we will check the hypotheses (1) -- (4) of\nLemma \\ref{lemma-cech-to-cohomology}.\nThe $1$-morphism $f$ is faithful by\nAlgebraic Stacks, Lemma\n\\ref{algebraic-lemma-characterize-representable-by-algebraic-spaces}.\nThis proves (4).\nHypothesis (3) follows from the fact that $\\mathcal{U}$ is an algebraic\nstack, see\nLemma \\ref{lemma-fibre-products}.\nTo see (2) apply\nLemma \\ref{lemma-surjective-flat-locally-finite-presentation}.\nCondition (1) is satisfied by fiat.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\\section{Higher direct images and algebraic stacks}\n\\label{section-higher-direct-images}\n\n\\noindent\nLet $g : \\mathcal{X} \\to \\mathcal{Y}$ be a $1$-morphism of algebraic stacks\nover $S$. In the sections above we have constructed a morphism of ringed\ntopoi $g : \\Sh(\\mathcal{X}_\\tau) \\to \\Sh(\\mathcal{Y}_\\tau)$\nfor each $\\tau \\in \\{Zar, \\etale, smooth, syntomic, fppf\\}$.\nIn the chapter on cohomology of sites we have explained how to\ndefine higher direct images. Hence the {\\it derived direct image}\n$Rg_*\\mathcal{F}$ is defined as $g_*\\mathcal{I}^\\bullet$ where\n$\\mathcal{F} \\to \\mathcal{I}^\\bullet$ is an injective resolution in\n$\\textit{Ab}(\\mathcal{X}_\\tau)$. The $i$th higher direct image\n$R^ig_*\\mathcal{F}$ is the $i$th cohomology of the derived direct image.\nImportant: it matters which topology $\\tau$ is used here!\n\n\\medskip\\noindent\nIf $\\mathcal{F}$ is a presheaf of $\\mathcal{O}_\\mathcal{X}$-modules\nwhich is a sheaf in the $\\tau$-topology, then we use injective\nresolutions in $\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$\nto compute derived direct image and higher direct images.\n\n\\medskip\\noindent\nSo far our only tool to compute the higher direct images of $g_*$\nis the result on {\\v C}ech complexes proved above. This requires the choice\nof a ``covering'' $f : \\mathcal{U} \\to \\mathcal{X}$. If $\\mathcal{U}$\nis an algebraic space, then $f : \\mathcal{U} \\to \\mathcal{X}$\nis representable by algebraic spaces, see\nAlgebraic Stacks, Lemma \\ref{algebraic-lemma-representable-diagonal}.\nThus the proposition applies in particular to a smooth cover of the\nalgebraic stack $\\mathcal{X}$ by a scheme.\n\n\\begin{proposition}\n\\label{proposition-smooth-covering-compute-direct-image}\nLet $f : \\mathcal{U} \\to \\mathcal{X}$ and $g : \\mathcal{X} \\to \\mathcal{Y}$\nbe composable $1$-morphisms of algebraic stacks.\n\\begin{enumerate}\n\\item Assume that $f$ is representable by algebraic spaces, surjective and\nsmooth.\n\\begin{enumerate}\n\\item If $\\mathcal{F}$ is in $\\textit{Ab}(\\mathcal{X}_\\etale)$\nthen there is a spectral sequence\n$$\nE_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}\n\\Rightarrow\nR^{p + q}g_*\\mathcal{F}\n$$\nin $\\textit{Ab}(\\mathcal{Y}_\\etale)$ with higher direct images\ncomputed in the \\'etale topology.\n\\item If $\\mathcal{F}$ is in\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$ then\nthere is a spectral sequence\n$$\nE_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}\n\\Rightarrow\nR^{p + q}g_*\\mathcal{F}\n$$\nin $\\textit{Mod}(\\mathcal{Y}_\\etale, \\mathcal{O}_\\mathcal{Y})$.\n\\end{enumerate}\n\\item Assume that $f$ is representable by algebraic spaces, surjective,\nflat, and locally of finite presentation.\n\\begin{enumerate}\n\\item If $\\mathcal{F}$ is in $\\textit{Ab}(\\mathcal{X})$ then there is\na spectral sequence\n$$\nE_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}\n\\Rightarrow\nR^{p + q}g_*\\mathcal{F}\n$$\nin $\\textit{Ab}(\\mathcal{Y})$ with higher direct images\ncomputed in the fppf topology.\n\\item If $\\mathcal{F}$ is in $\\textit{Mod}(\\mathcal{O}_\\mathcal{X})$ then\nthere is a spectral sequence\n$$\nE_1^{p, q} = R^q(g \\circ f_p)_*f_p^{-1}\\mathcal{F}\n\\Rightarrow\nR^{p + q}g_*\\mathcal{F}\n$$\nin $\\textit{Mod}(\\mathcal{O}_\\mathcal{Y})$.\n\\end{enumerate}\n\\end{enumerate}\n\\end{proposition}\n\n\\begin{proof}\nTo see this we will check the hypotheses (1) -- (4) of\nLemma \\ref{lemma-cech-to-cohomology-relative} and\nLemma \\ref{lemma-cech-to-cohomology-relative-modules}.\nThe $1$-morphism $f$ is faithful by\nAlgebraic Stacks, Lemma\n\\ref{algebraic-lemma-characterize-representable-by-algebraic-spaces}.\nThis proves (4).\nHypothesis (3) follows from the fact that $\\mathcal{U}$ is an algebraic\nstack, see\nLemma \\ref{lemma-fibre-products}.\nTo see (2) apply\nLemma \\ref{lemma-surjective-flat-locally-finite-presentation}.\nCondition (1) is satisfied by fiat in all four cases.\n\\end{proof}\n\n\\noindent\nHere is a description of higher direct images for a\nmorphism of algebraic stacks.\n\n\\begin{lemma}\n\\label{lemma-pushforward-restriction}\nLet $S$ be a scheme. Let $f : \\mathcal{X} \\to \\mathcal{Y}$ be a\n$1$-morphism of algebraic stacks\\footnote{This result should hold\nfor any $1$-morphism of categories fibred in groupoids over\n$(\\Sch/S)_{fppf}$.} over $S$.\nLet $\\tau \\in \\{Zariski,\\linebreak[0] \\etale,\\linebreak[0]\nsmooth,\\linebreak[0] syntomic,\\linebreak[0] fppf\\}$.\nLet $\\mathcal{F}$ be\nan object of $\\textit{Ab}(\\mathcal{X}_\\tau)$ or\n$\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$.\nThen the sheaf $R^if_*\\mathcal{F}$ is the sheaf associated to the\npresheaf\n$$\ny \\longmapsto\nH^i_\\tau\\Big((\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{F}\\Big)\n$$\nHere $y$ is a typical object of $\\mathcal{Y}$ lying over the scheme $V$.\n\\end{lemma}\n\n\\begin{proof}\nChoose an injective resolution $\\mathcal{F}[0] \\to \\mathcal{I}^\\bullet$.\nBy the formula for pushforward (\\ref{equation-pushforward}) we see that\n$R^if_*\\mathcal{F}$ is the sheaf associated to the presheaf which associates\nto $y$ the cohomology of the complex\n$$\n\\begin{matrix}\n\\Gamma\\Big((\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{I}^{i - 1}\\Big) \\\\\n\\downarrow \\\\\n\\Gamma\\Big((\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{I}^i\\Big) \\\\\n\\downarrow \\\\\n\\Gamma\\Big((\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{I}^{i + 1}\\Big)\n\\end{matrix}\n$$\nSince $\\text{pr}^{-1}$ is exact, it suffices to show that\n$\\text{pr}^{-1}$ preserves injectives. This follows from\nLemmas \\ref{lemma-pullback-injective} and\n\\ref{lemma-pullback-injective-modules}\nas well as the fact that $\\text{pr}$ is a representable morphism of\nalgebraic stacks (so that $\\text{pr}$ is faithful by\nAlgebraic Stacks, Lemma\n\\ref{algebraic-lemma-characterize-representable-by-algebraic-spaces}\nand that\n$(\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X}$\nhas equalizers by \nLemma \\ref{lemma-fibre-products}).\n\\end{proof}\n\n\\noindent\nHere is a trivial base change result.\n\n\\begin{lemma}\n\\label{lemma-base-change-higher-direct-images}\nLet $S$ be a scheme. Let\n$\\tau \\in \\{Zariski,\\linebreak[0] \\etale,\\linebreak[0]\nsmooth,\\linebreak[0] syntomic,\\linebreak[0] fppf\\}$. Let\n$$\n\\xymatrix{\n\\mathcal{Y}' \\times_\\mathcal{Y} \\mathcal{X} \\ar[r]_{g'} \\ar[d]_{f'} &\n\\mathcal{X} \\ar[d]^f \\\\\n\\mathcal{Y}' \\ar[r]^g & \\mathcal{Y}\n}\n$$\nbe a $2$-cartesian diagram of algebraic stacks over $S$. Then the base change\nmap is an isomorphism\n$$\ng^{-1}Rf_*\\mathcal{F} \\longrightarrow Rf'_*(g')^{-1}\\mathcal{F}\n$$\nfunctorial for $\\mathcal{F}$ in $\\textit{Ab}(\\mathcal{X}_\\tau)$\nor $\\mathcal{F}$ in $\\textit{Mod}(\\mathcal{X}_\\tau, \\mathcal{O}_\\mathcal{X})$.\n\\end{lemma}\n\n\\begin{proof}\nThe isomorphism $g^{-1}f_*\\mathcal{F} = f'_*(g')^{-1}\\mathcal{F}$ is\nLemma \\ref{lemma-base-change} (and it holds for arbitrary presheaves).\nFor the derived direct images, there is a base change map because the\nmorphisms $g$ and $g'$ are flat, see\nCohomology on Sites, Section \\ref{sites-cohomology-section-base-change-map}.\nTo see that this map is a quasi-isomorphism we can use that for\nan object $y'$ of $\\mathcal{Y}'$ over a scheme $V$ there is an equivalence\n$$\n(\\Sch/V)_{fppf} \\times_{g(y'), \\mathcal{Y}} \\mathcal{X}\n=\n(\\Sch/V)_{fppf} \\times_{y', \\mathcal{Y}'}\n(\\mathcal{Y}' \\times_\\mathcal{Y} \\mathcal{X})\n$$\nWe conclude that the induced map\n$g^{-1}R^if_*\\mathcal{F} \\to R^if'_*(g')^{-1}\\mathcal{F}$\nis an isomorphism by\nLemma \\ref{lemma-pushforward-restriction}.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\n\n\\section{Comparison}\n\\label{section-compare}\n\n\\noindent\nIn this section we collect some results on comparing cohomology defined\nusing stacks and using algebraic spaces.\n\n\\begin{lemma}\n\\label{lemma-compare-injectives}\nLet $S$ be a scheme. Let $\\mathcal{X}$ be an algebraic stack over $S$\nrepresentable by the algebraic space $F$.\n\\begin{enumerate}\n\\item If $\\mathcal{I}$ injective in $\\textit{Ab}(\\mathcal{X}_\\etale)$, then\n$\\mathcal{I}|_{F_\\etale}$ is injective in $\\textit{Ab}(F_\\etale)$,\n\\item If $\\mathcal{I}^\\bullet$ is a K-injective complex in\n$\\textit{Ab}(\\mathcal{X}_\\etale)$, then $\\mathcal{I}^\\bullet|_{F_\\etale}$\nis a K-injective complex in $\\textit{Ab}(F_\\etale)$.\n\\end{enumerate}\nThe same does not hold for modules.\n\\end{lemma}\n\n\\begin{proof}\nThis follows formally from the fact that the restriction functor\n$\\pi_{F, *} = i_F^{-1}$ (see Lemma \\ref{lemma-compare})\nis right adjoint to the exact functor $\\pi_F^{-1}$, see\nHomology, Lemma \\ref{homology-lemma-adjoint-preserve-injectives} and\nDerived Categories, Lemma \\ref{derived-lemma-adjoint-preserve-K-injectives}.\nTo see that the lemma does not hold for modules, we refer the\nreader to \\'Etale Cohomology, Lemma\n\\ref{etale-cohomology-lemma-compare-injectives}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-compare-morphism-cohomology}\nLet $S$ be a scheme. Let $f : \\mathcal{X} \\to \\mathcal{Y}$ be a morphism\nof algebraic stacks over $S$. Assume $\\mathcal{X}$, $\\mathcal{Y}$ are\nrepresentable by algebraic spaces $F$, $G$. Denote $f : F \\to G$ the\ninduced morphism of algebraic spaces.\n\\begin{enumerate}\n\\item For any $\\mathcal{F} \\in \\textit{Ab}(\\mathcal{X}_\\etale)$\nwe have\n$$\n(Rf_*\\mathcal{F})|_{G_\\etale} =\nRf_{small, *}(\\mathcal{F}|_{F_\\etale})\n$$\nin $D(G_\\etale)$.\n\\item For any object $\\mathcal{F}$ of\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\nwe have\n$$\n(Rf_*\\mathcal{F})|_{G_\\etale} =\nRf_{small, *}(\\mathcal{F}|_{F_\\etale})\n$$\nin $D(\\mathcal{O}_G)$.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nPart (1) follows immediately from\nLemma \\ref{lemma-compare-injectives}\nand (\\ref{equation-compare-big-small})\non choosing an injective resolution of $\\mathcal{F}$.\n\n\\medskip\\noindent\nPart (2) can be proved as follows. In Lemma \\ref{lemma-compare-morphism}\nwe have seen that $\\pi_G \\circ f = f_{small} \\circ \\pi_F$ as morphisms\nof ringed sites. Hence we obtain\n$R\\pi_{G, *} \\circ Rf_* = Rf_{small, *} \\circ R\\pi_{F, *}$\nby Cohomology on Sites, Lemma\n\\ref{sites-cohomology-lemma-derived-pushforward-composition}.\nSince the restriction functors $\\pi_{F, *}$ and $\\pi_{G, *}$\nare exact, we conclude.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-compare-representable-morphism-cohomology}\nLet $S$ be a scheme. Consider a $2$-fibre product square\n$$\n\\xymatrix{\n\\mathcal{X}' \\ar[r]_{g'} \\ar[d]_{f'} & \\mathcal{X} \\ar[d]^f \\\\\n\\mathcal{Y}' \\ar[r]^g & \\mathcal{Y}\n}\n$$\nof algebraic stacks over $S$. Assume that $f$ is representable by algebraic\nspaces and that $\\mathcal{Y}'$ is representable by an algebraic space $G'$.\nThen $\\mathcal{X}'$ is representable by an algebraic space $F'$ and\ndenoting $f' : F' \\to G'$ the induced morphism of algebraic spaces\nwe have\n$$\ng^{-1}(Rf_*\\mathcal{F})|_{G'_\\etale} =\nRf'_{small, *}((g')^{-1}\\mathcal{F}|_{F'_\\etale})\n$$\nfor any $\\mathcal{F}$ in $\\textit{Ab}(\\mathcal{X}_\\etale)$\nor in\n$\\textit{Mod}(\\mathcal{X}_\\etale, \\mathcal{O}_\\mathcal{X})$\n\\end{lemma}\n\n\\begin{proof}\nFollows formally on combining\nLemmas \\ref{lemma-base-change-higher-direct-images} and\n\\ref{lemma-compare-morphism-cohomology}.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\n\n\\section{Change of topology}\n\\label{section-change-topology}\n\n\\noindent\nHere is a technical lemma which tells us that the\nfppf cohomology of a locally quasi-coherent sheaf is equal to its\n\\'etale cohomology provided the comparison maps are isomorphisms\nfor morphisms of $\\mathcal{X}$ lying over flat morphisms.\n\n\\begin{lemma}\n\\label{lemma-lqc-flat-base-change-fppf-sheaf}\nLet $S$ be a scheme. Let $\\mathcal{X}$ be an algebraic stack over $S$.\nLet $\\mathcal{F}$ be a presheaf of $\\mathcal{O}_\\mathcal{X}$-modules.\nAssume\n\\begin{enumerate}\n\\item[(a)] $\\mathcal{F}$ is locally quasi-coherent, and\n\\item[(b)] for any morphism $\\varphi : x \\to y$ of $\\mathcal{X}$ which lies\nover a morphism of schemes $f : U \\to V$ which is flat and\nlocally of finite presentation the comparison map\n$c_\\varphi : f_{small}^*\\mathcal{F}|_{V_\\etale} \\to\n\\mathcal{F}|_{U_\\etale}$ of\n(\\ref{equation-comparison-modules}) is an isomorphism.\n\\end{enumerate}\nThen $\\mathcal{F}$ is a sheaf for the fppf topology.\n\\end{lemma}\n\n\\begin{proof}\nLet $\\{x_i \\to x\\}$ be an fppf covering of $\\mathcal{X}$ lying over the\nfppf covering $\\{f_i : U_i \\to U\\}$ of schemes over $S$.\nBy assumption the restriction $\\mathcal{G} = \\mathcal{F}|_{U_\\etale}$\nis quasi-coherent and the comparison maps\n$f_{i, small}^*\\mathcal{G} \\to \\mathcal{F}|_{U_{i, \\etale}}$\nare isomorphisms. Hence the sheaf condition for $\\mathcal{F}$\nand the covering $\\{x_i \\to x\\}$ is equivalent to the sheaf condition\nfor $\\mathcal{G}^a$ on $(\\Sch/U)_{fppf}$ and the covering $\\{U_i \\to U\\}$\nwhich holds by\nDescent, Lemma \\ref{descent-lemma-sheaf-condition-holds}.\n\\end{proof}\n\n\\begin{lemma}\n\\label{lemma-compare-fppf-etale}\nLet $S$ be a scheme. Let $\\mathcal{X}$ be an algebraic stack over $S$.\nLet $\\mathcal{F}$ be a presheaf $\\mathcal{O}_\\mathcal{X}$-module such that\n\\begin{enumerate}\n\\item[(a)] $\\mathcal{F}$ is locally quasi-coherent, and\n\\item[(b)] for any morphism $\\varphi : x \\to y$ of $\\mathcal{X}$ which lies\nover a morphism of schemes $f : U \\to V$ which is flat and\nlocally of finite presentation, the comparison map\n$c_\\varphi : f_{small}^*\\mathcal{F}|_{V_\\etale} \\to\n\\mathcal{F}|_{U_\\etale}$ of\n(\\ref{equation-comparison-modules}) is an isomorphism.\n\\end{enumerate}\nThen $\\mathcal{F}$ is an $\\mathcal{O}_\\mathcal{X}$-module and\nwe have the following\n\\begin{enumerate}\n\\item If $\\epsilon : \\mathcal{X}_{fppf} \\to \\mathcal{X}_\\etale$\nis the comparison morphism, then\n$R\\epsilon_*\\mathcal{F} = \\epsilon_*\\mathcal{F}$.\n\\item The cohomology groups $H^p_{fppf}(\\mathcal{X}, \\mathcal{F})$ are equal\nto the cohomology groups computed in the \\'etale topology on $\\mathcal{X}$.\nSimilarly for the cohomology groups $H^p_{fppf}(x, \\mathcal{F})$ and the\nderived versions $R\\Gamma(\\mathcal{X}, \\mathcal{F})$ and\n$R\\Gamma(x, \\mathcal{F})$.\n\\item If $f : \\mathcal{X} \\to \\mathcal{Y}$ is a $1$-morphism of\ncategories fibred in groupoids over $(\\Sch/S)_{fppf}$ then\n$R^if_*\\mathcal{F}$ is equal to the fppf-sheafification of the\nhigher direct image computed in the \\'etale cohomology.\nSimilarly for derived pushforward.\n\\end{enumerate}\n\\end{lemma}\n\n\\begin{proof}\nThe assertion that $\\mathcal{F}$ is an $\\mathcal{O}_\\mathcal{X}$-module\nfollows from\nLemma \\ref{lemma-lqc-flat-base-change-fppf-sheaf}.\nNote that $\\epsilon$ is a morphism of sites given by the identity\nfunctor on $\\mathcal{X}$. The sheaf $R^p\\epsilon_*\\mathcal{F}$ is therefore\nthe sheaf associated to the presheaf\n$x \\mapsto H^p_{fppf}(x, \\mathcal{F})$, see\nCohomology on Sites, Lemma \\ref{sites-cohomology-lemma-higher-direct-images}.\nTo prove (1) it suffices to show that\n$H^p_{fppf}(x, \\mathcal{F}) = 0$ for $p > 0$\nwhenever $x$ lies over an affine scheme $U$. By\nLemma \\ref{lemma-cohomology-restriction}\nwe have\n$H^p_{fppf}(x, \\mathcal{F}) = H^p((\\Sch/U)_{fppf}, x^{-1}\\mathcal{F})$.\nCombining\nDescent, Lemma \\ref{descent-lemma-quasi-coherent-and-flat-base-change}\nwith Cohomology of Schemes, Lemma\n\\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}\nwe see that these cohomology groups are zero.\n\n\\medskip\\noindent\nWe have seen above that $\\epsilon_*\\mathcal{F}$ and $\\mathcal{F}$ are the\nsheaves on $\\mathcal{X}_\\etale$ and $\\mathcal{X}_{fppf}$\ncorresponding to the same presheaf on $\\mathcal{X}$ (and this is true more\ngenerally for any sheaf in the fppf topology on $\\mathcal{X}$).\nWe often abusively identify $\\mathcal{F}$ and $\\epsilon_*\\mathcal{F}$\nand this is the sense in which parts (2) and (3) of the lemma should be\nunderstood. Thus part (2) follows formally from (1) and the Leray spectral\nsequence, see\nCohomology on Sites, Lemma \\ref{sites-cohomology-lemma-apply-Leray}.\n\n\\medskip\\noindent\nFinally we prove (3). The sheaf $R^if_*\\mathcal{F}$\n(resp.\\ $Rf_{\\etale, *}\\mathcal{F}$)\nis the sheaf associated to the presheaf\n$$\ny \\longmapsto\nH^i_\\tau\\Big((\\Sch/V)_{fppf} \\times_{y, \\mathcal{Y}} \\mathcal{X},\n\\ \\text{pr}^{-1}\\mathcal{F}\\Big)\n$$\nwhere $\\tau$ is $fppf$ (resp.\\ $\\etale$), see\nLemma \\ref{lemma-pushforward-restriction}.\nNote that $\\text{pr}^{-1}\\mathcal{F}$ satisfies properties (a) and (b)\nalso (by Lemmas \\ref{lemma-pullback-lqc} and \\ref{lemma-comparison}),\nhence these two presheaves are equal by (2).\nThis immediately implies (3).\n\\end{proof}\n\n\\noindent\nWe will use the following lemma to compare \\'etale cohomology of sheaves\non algebraic stacks with cohomology on the lisse-\\'etale topos.\n\n\\begin{lemma}\n\\label{lemma-cohomology-on-subcategory}\nLet $S$ be a scheme. Let $\\mathcal{X}$ be an algebraic stack over $S$.\nLet $\\tau = \\etale$ (resp.\\ $\\tau = fppf$). Let\n$\\mathcal{X}' \\subset \\mathcal{X}$ be a full subcategory with the\nfollowing properties\n\\begin{enumerate}\n\\item if $x \\to x'$ is a morphism of $\\mathcal{X}$ which lies over a\nsmooth (resp.\\ flat and locally finitely presented) morphism of\nschemes and $x' \\in \\Ob(\\mathcal{X}')$, then $x \\in \\Ob(\\mathcal{X}')$, and\n\\item there exists an object $x \\in \\Ob(\\mathcal{X}')$ lying over\na scheme $U$ such that the associated $1$-morphism\n$x : (\\Sch/U)_{fppf} \\to \\mathcal{X}$ is smooth and surjective.\n\\end{enumerate}\nWe get a site $\\mathcal{X}'_\\tau$ by declaring a covering of $\\mathcal{X}'$\nto be any family of morphisms $\\{x_i \\to x\\}$ in $\\mathcal{X}'$ which is a\ncovering in $\\mathcal{X}_\\tau$. Then the inclusion functor\n$\\mathcal{X}' \\to \\mathcal{X}_\\tau$ is fully faithful, cocontinuous, and\ncontinuous, whence defines a morphism of topoi\n$$\ng : \\Sh(\\mathcal{X}'_\\tau) \\longrightarrow \\Sh(\\mathcal{X}_\\tau)\n$$\nand $H^p(\\mathcal{X}'_\\tau, g^{-1}\\mathcal{F}) =\nH^p(\\mathcal{X}_\\tau, \\mathcal{F})$ for all $p \\geq 0$ and all\n$\\mathcal{F} \\in \\textit{Ab}(\\mathcal{X}_\\tau)$.\n\\end{lemma}\n\n\\begin{proof}\nNote that assumption (1) implies that if $\\{x_i \\to x\\}$ is a covering\nof $\\mathcal{X}_\\tau$ and $x \\in \\Ob(\\mathcal{X}')$, then we have\n$x_i \\in \\Ob(\\mathcal{X}')$. Hence we see that $\\mathcal{X}' \\to \\mathcal{X}$\nis continuous and cocontinuous as the coverings of objects of\n$\\mathcal{X}'_\\tau$ agree with their coverings seen as objects of\n$\\mathcal{X}_\\tau$. We obtain the morphism $g$ and the functor\n$g^{-1}$ is identified with the restriction functor, see\nSites, Lemma \\ref{sites-lemma-when-shriek}.\n\n\\medskip\\noindent\nIn particular, if $\\{x_i \\to x\\}$ is a covering in $\\mathcal{X}'_\\tau$,\nthen for any abelian sheaf $\\mathcal{F}$ on $\\mathcal{X}$ then\n$$\n\\check H^p(\\{x_i \\to x\\}, g^{-1}\\mathcal{F}) =\n\\check H^p(\\{x_i \\to x\\}, \\mathcal{F})\n$$\nThus if $\\mathcal{I}$ is an injective abelian sheaf on $\\mathcal{X}_\\tau$\nthen we see that the higher {\\v C}ech cohomology groups are zero\n(Cohomology on Sites,\nLemma \\ref{sites-cohomology-lemma-injective-trivial-cech}).\nHence $H^p(x, g^{-1}\\mathcal{I}) = 0$ for all objects $x$\nof $\\mathcal{X}'$\n(Cohomology on Sites,\nLemma \\ref{sites-cohomology-lemma-cech-vanish-collection}).\nIn other words injective abelian sheaves on $\\mathcal{X}_\\tau$\nare right acyclic for the functor $H^0(x, g^{-1}-)$.\nIt follows that $H^p(x, g^{-1}\\mathcal{F}) = H^p(x, \\mathcal{F})$\nfor all $\\mathcal{F} \\in \\textit{Ab}(\\mathcal{X})$ and all\n$x \\in \\Ob(\\mathcal{X}')$.\n\n\\medskip\\noindent\nChoose an object $x \\in \\mathcal{X}'$ lying over a scheme $U$\nas in assumption (2). In particular $\\mathcal{X}/x \\to \\mathcal{X}$\nis a morphism of algebraic stacks which representable by algebraic spaces,\nsurjective, and smooth. (Note that $\\mathcal{X}/x$ is equivalent to\n$(\\Sch/U)_{fppf}$, see Lemma \\ref{lemma-localizing}.)\nThe map of sheaves\n$$\nh_x \\longrightarrow *\n$$\nin $\\Sh(\\mathcal{X}_\\tau)$ is surjective. Namely, for any object $x'$\nof $\\mathcal{X}$ there exists a $\\tau$-covering $\\{x'_i \\to x'\\}$\nsuch that there exist morphisms $x'_i \\to x$, see\nLemma \\ref{lemma-surjective-flat-locally-finite-presentation}.\nSince $g$ is exact, the map of sheaves\n$$\ng^{-1}h_x \\longrightarrow * = g^{-1}*\n$$\nin $\\Sh(\\mathcal{X}'_\\tau)$ is surjective also. Let $h_{x, n}$ be\nthe $(n + 1)$-fold product $h_x \\times \\ldots \\times h_x$.\nThen we have spectral sequences\n\\begin{equation}\n\\label{equation-spectral-sequence-one}\nE_1^{p, q} = H^q(h_{x, p}, \\mathcal{F}) \\Rightarrow\nH^{p + q}(\\mathcal{X}_\\tau, \\mathcal{F})\n\\end{equation}\nand\n\\begin{equation}\n\\label{equation-spectral-sequence-two}\nE_1^{p, q} = H^q(g^{-1}h_{x, p}, g^{-1}\\mathcal{F}) \\Rightarrow\nH^{p + q}(\\mathcal{X}'_\\tau, g^{-1}\\mathcal{F})\n\\end{equation}\nsee Cohomology on Sites,\nLemma \\ref{sites-cohomology-lemma-cech-to-cohomology-sheaf-sets}.\n\n\\medskip\\noindent\nCase I: $\\mathcal{X}$ has a final object $x$ which is also an object of\n$\\mathcal{X}'$. This case follows immediately from the discussion\nin the second paragraph above.\n\n\\medskip\\noindent\nCase II: $\\mathcal{X}$ is representable by an algebraic space $F$.\nIn this case the sheaves $h_{x, n}$ are representable by an\nobject $x_n$ in $\\mathcal{X}$. (Namely, if $\\mathcal{S}_F = \\mathcal{X}$\nand $x : U \\to F$ is the given object, then $h_{x, n}$ is representable\nby the object $U \\times_F \\ldots \\times_F U \\to F$ of $\\mathcal{S}_F$.)\nIt follows that $H^q(h_{x, p}, \\mathcal{F}) = H^q(x_p, \\mathcal{F})$.\nThe morphisms $x_n \\to x$ lie over smooth morphisms of schemes, hence\n$x_n \\in \\mathcal{X}'$ for all $n$. Hence\n$H^q(g^{-1}h_{x, p}, g^{-1}\\mathcal{F}) = H^q(x_p, g^{-1}\\mathcal{F})$.\nThus in the two spectral sequences\n(\\ref{equation-spectral-sequence-one}) and\n(\\ref{equation-spectral-sequence-two}) above the $E_1^{p, q}$ terms agree\nby the discussion in the second paragraph. The lemma follows in Case II\nas well.\n\n\\medskip\\noindent\nCase III: $\\mathcal{X}$ is an algebraic stack. We claim that in this case\nthe cohomology groups $H^q(h_{x, p}, \\mathcal{F})$ and\n$H^q(g^{-1}h_{x, n}, g^{-1}\\mathcal{F})$ agree by Case II above.\nOnce we have proved this the result will follow as before.\n\n\\medskip\\noindent\nNamely, consider the category $\\mathcal{X}/h_{x, n}$, see\nSites, Lemma \\ref{sites-lemma-localize-topos-site}.\nSince $h_{x, n}$ is the $(n + 1)$-fold product of $h_x$ an\nobject of this category is an $(n + 2)$-tuple\n$(y, s_0, \\ldots, s_n)$ where $y$ is an object of $\\mathcal{X}$ and each\n$s_i : y \\to x$ is a morphism of $\\mathcal{X}$.\nThis is a category over $(\\Sch/S)_{fppf}$. There is an equivalence\n$$\n\\mathcal{X}/h_{x, n}\n\\longrightarrow\n(\\Sch/U)_{fppf} \\times_\\mathcal{X} \\ldots \\times_\\mathcal{X} (\\Sch/U)_{fppf}\n=: \\mathcal{U}_n\n$$\nover $(\\Sch/S)_{fppf}$. Namely, if $x : (\\Sch/U)_{fppf} \\to \\mathcal{X}$ also\ndenotes the $1$-morphism associated with $x$ and\n$p : \\mathcal{X} \\to (\\Sch/S)_{fppf}$ the structure functor,\nthen we can think of $(y, s_0, \\ldots, s_n)$ as\n$(y, f_0, \\ldots, f_n, \\alpha_0, \\ldots, \\alpha_n)$\nwhere $y$ is an object of $\\mathcal{X}$, $f_i : p(y) \\to p(x)$ is a\nmorphism of schemes, and $\\alpha_i : y \\to x(f_i)$ an isomorphism.\nThe category of $2n+3$-tuples\n$(y, f_0, \\ldots, f_n, \\alpha_0, \\ldots, \\alpha_n)$\nis an incarnation of the $(n + 1)$-fold fibred product $\\mathcal{U}_n$\nof algebraic stacks displayed above, as we discussed in\nSection \\ref{section-cech}.\nBy Cohomology on Sites, Lemma\n\\ref{sites-cohomology-lemma-cohomology-on-sheaf-sets}\nwe have\n$$\nH^p(\\mathcal{U}_n, \\mathcal{F}|_{\\mathcal{U}_n}) =\nH^p(\\mathcal{X}/h_{x, n}, \\mathcal{F}|_{\\mathcal{X}/h_{x, n}}) =\nH^p(h_{x, n}, \\mathcal{F}).\n$$\nFinally, we discuss the ``primed'' analogue of this. Namely,\n$\\mathcal{X}'/h_{x, n}$ corresponds, via the equivalence above\nto the full subcategory $\\mathcal{U}'_n \\subset \\mathcal{U}_n$\nconsisting of those tuples\n$(y, f_0, \\ldots, f_n, \\alpha_0, \\ldots, \\alpha_n)$\nwith $y \\in \\mathcal{X}'$. Hence certainly property (1) of the\nstatement of the lemma holds\nfor the inclusion $\\mathcal{U}'_n \\subset \\mathcal{U}_n$.\nTo see property (2) choose an object $\\xi = (y, s_0, \\ldots, s_n)$ which\nlies over a scheme $W$ such that $(\\Sch/W)_{fppf} \\to \\mathcal{U}_n$\nis smooth and surjective (this is possible as $\\mathcal{U}_n$ is\nan algebraic stack). Then\n$(\\Sch/W)_{fppf} \\to \\mathcal{U}_n \\to (\\Sch/U)_{fppf}$\nis smooth as a composition of base changes of the morphism\n$x : (\\Sch/U)_{fppf} \\to \\mathcal{X}$, see\nAlgebraic Stacks, Lemmas\n\\ref{algebraic-lemma-base-change-representable-transformations-property} and\n\\ref{algebraic-lemma-composition-representable-transformations-property}.\nThus axiom (1) for $\\mathcal{X}$ implies that $y$ is an object of\n$\\mathcal{X}'$ whence $\\xi$ is an object of $\\mathcal{U}'_n$.\nUsing again\n$$\nH^p(\\mathcal{U}'_n, \\mathcal{F}|_{\\mathcal{U}'_n}) =\nH^p(\\mathcal{X}'/h_{x, n}, \\mathcal{F}|_{\\mathcal{X}'/h_{x, n}}) =\nH^p(g^{-1}h_{x, n}, g^{-1}\\mathcal{F}).\n$$\nwe now can use Case II for \n$\\mathcal{U}'_n \\subset \\mathcal{U}_n$\nto conclude.\n\\end{proof}\n\n\n\n\n\n\n\n\n\n\\input{chapters}\n\n\\bibliography{my}\n\\bibliographystyle{amsalpha}\n\n\\end{document}\n", [(5839, 5850, 'VAR'), (5857, 5865, 'TYPE'), (6252, 6263, 'VAR'), (6270, 6278, 'TYPE'), (8596, 8607, 'VAR'), (8614, 8622, 'TYPE'), (13009, 13020, 'VAR'), (13027, 13035, 'TYPE'), (14801, 14812, 'VAR'), (14819, 14827, 'TYPE'), (14877, 14888, 'VAR'), (14895, 14903, 'TYPE'), (20463, 20464, 'VAR'), (20471, 20478, 'TYPE'), (24748, 24761, 'VAR'), (24768, 24783, 'TYPE'), (29190, 29201, 'VAR'), (29208, 29216, 'TYPE'), (33845, 33846, 'VAR'), (33853, 33860, 'TYPE'), (33866, 33877, 'VAR'), (33884, 33892, 'TYPE'), (34549, 34550, 'VAR'), (34557, 34564, 'TYPE'), (36248, 36259, 'VAR'), (36266, 36274, 'TYPE'), (37738, 37749, 'VAR'), (37756, 37764, 'TYPE'), (39456, 39467, 'VAR'), (39475, 39482, 'TYPE'), (41553, 41564, 'VAR'), (41571, 41579, 'TYPE'), (41629, 41640, 'VAR'), (41647, 41657, 'TYPE'), (41734, 41735, 'VAR'), (41743, 41749, 'TYPE'), (44132, 44133, 'VAR'), (44140, 44147, 'TYPE'), (44153, 44184, 'VAR'), (44191, 44199, 'TYPE'), (46300, 46301, 'VAR'), (46308, 46314, 'TYPE'), (47907, 47908, 'VAR'), (47915, 47922, 'TYPE'), (49721, 49732, 'VAR'), (49739, 49744, 'TYPE'), (49878, 49885, 'VAR'), (49893, 49899, 'TYPE'), (59964, 59965, 'VAR'), (59973, 59979, 'TYPE'), (60463, 60464, 'VAR'), (60472, 60478, 'TYPE'), (69587, 69588, 'VAR'), (69596, 69602, 'TYPE'), (72250, 72261, 'VAR'), (72268, 72282, 'TYPE'), (76476, 76487, 'VAR'), (76494, 76508, 'TYPE'), (79271, 79282, 'VAR'), (79290, 79299, 'TYPE'), (80960, 80971, 'VAR'), (80979, 80988, 'TYPE'), (82318, 82329, 'VAR'), (82337, 82346, 'TYPE'), (86070, 86071, 'VAR'), (86078, 86084, 'TYPE'), (86094, 86105, 'VAR'), (86112, 86120, 'TYPE'), (87435, 87436, 'VAR'), (87443, 87450, 'TYPE'), (87456, 87467, 'VAR'), (87474, 87482, 'TYPE'), (87592, 87614, 'VAR'), (87622, 87628, 'TYPE'), (92854, 92864, 'VAR'), (92871, 92879, 'TYPE'), (98490, 98491, 'VAR'), (98499, 98505, 'TYPE'), (111827, 111838, 'VAR'), (111846, 111853, 'TYPE'), (112115, 112116, 'VAR'), (112124, 112130, 'TYPE'), (113971, 113972, 'VAR'), (113980, 113986, 'TYPE'), (117562, 117573, 'VAR'), (117581, 117590, 'TYPE'), (127287, 127298, 'VAR'), (127306, 127315, 'TYPE'), (129954, 129965, 'VAR'), (129973, 129980, 'TYPE'), (130257, 130268, 'VAR'), (130276, 130283, 'TYPE'), (135069, 135070, 'VAR'), (135077, 135084, 'TYPE'), (137109, 137110, 'VAR'), (137117, 137124, 'TYPE'), (138746, 138747, 'VAR'), (138754, 138761, 'TYPE'), (138767, 138778, 'VAR'), (138786, 138795, 'TYPE'), (139823, 139824, 'VAR'), (139831, 139838, 'TYPE'), (141186, 141187, 'VAR'), (141194, 141201, 'TYPE'), (142425, 142426, 'VAR'), (142433, 142440, 'TYPE'), (142446, 142457, 'VAR'), (142465, 142474, 'TYPE'), (142496, 142507, 'VAR'), (142514, 142522, 'TYPE'), (143063, 143076, 'VAR'), (143084, 143088, 'TYPE'), (143704, 143705, 'VAR'), (143712, 143719, 'TYPE'), (143725, 143736, 'VAR'), (143744, 143753, 'TYPE'), (143775, 143786, 'VAR'), (143793, 143801, 'TYPE'), (147425, 147426, 'VAR'), (147433, 147440, 'TYPE'), (147446, 147457, 'VAR'), (147465, 147474, 'TYPE')])
In [38]:
random.shuffle(annotated_data)
train_data = annotated_data[:-1]
test_data = annotated_data[-1:] #we hold out one tex file for testing
In [35]:
def train_ner(nlp, train_data, entity_types):
# Add new words to vocab.
for raw_text, _ in train_data:
doc = nlp.make_doc(raw_text)
for word in doc:
_ = nlp.vocab[word.orth]
# Train NER.
ner = EntityRecognizer(nlp.vocab, entity_types=entity_types)
for itn in range(5):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
ner.update(doc, gold)
return ner
In [36]:
ner = train_ner(nlp, train_data, ['VAR', 'TYPE'])
In [37]:
#first test on a simple sentence
doc = nlp.make_doc('Let $S$ be a scheme.')
nlp.tagger(doc)
ner(doc)
for word in doc:
print(word.text, word.ent_type_)
Let
$
S$
be
a
scheme TYPE
. TYPE
In [47]:
#then test on the hold out tex file; there are no 'VAR' tags detected, maybe something to do with dollar sign tokenization...
doc = nlp.make_doc(test_data[0][0])
nlp.tagger(doc)
ner(doc)
for word in doc:
print(word.text, "\t" + word.ent_type_)
\input{preamble
}
%
OK
,
start
here
.
%
\begin{document
}
\title{More
on
Cohomology
of
Spaces
}
\maketitle
\phantomsection
\label{section
-
phantom
}
\tableofcontents
\section{Introduction
}
\label{section
-
introduction
}
\noindent
In
this
chapter
continues
the
discussion
started
in
Cohomology
of
Spaces
,
Section
\ref{spaces
-
cohomology
-
section
-
introduction}.
One
can
also
view
this
chapter
as
the
analogue
for
algebraic
spaces
of
the
chapter
on
\'etale
cohomology
for
schemes
,
see
\'Etale
Cohomology
,
Section
\ref{etale
-
cohomology
-
section
-
introduction}.
\medskip\noindent
In
fact
,
we
intend
this
chapter
to
be
mainly
a
translation
of
the
results
already
proved
for
schemes
into
the
language
of
algebraic
spaces
.
Some
of
our
results
can
be
found
in
\cite{Kn}.
\section{Conventions
}
\label{section
-
conventions
}
\noindent
The
standing
assumption
is
that
all
schemes
are
contained
in
a
big
fppf
site
$
\Sch_{fppf}$.
And
all
rings
$
A$
considered
have
the
property
that
$
\Spec(A)$
is
(
isomorphic
)
to
an
object
of
this
big
site
.
\medskip\noindent
Let
$
S$
be
a
scheme TYPE
and
let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
In
this
chapter
and
the
following
we
will
write
$
X
\times_S
X$
for
the
product
of
$
X$
with
itself
(
in
the
category
of
algebraic
spaces
over
$
S$
)
,
instead
of
$
X
\times
X$.
\section{Transporting
results
from
schemes
}
\label{section
-
api
}
\noindent
In
this
section
we
explain
briefly
how
results
for
schemes
imply
results
for
(
representable
)
algebraic
spaces
and
(
representable
)
morphisms
of
algebraic
spaces
.
For
quasi
-
coherent
modules
more
is
true
(
because
\'etale
cohomology
of
a
quasi
-
coherent
module
over
a
scheme
agrees
with
Zariski
cohomology
)
and
this
has
already
been
discussed
in
Cohomology
of
Spaces
,
Section
\ref{spaces
-
cohomology
-
section
-
higher
-
direct
-
image}.
\medskip\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Now
suppose
that
$
X$
is
representable
by
the
scheme
$
X_0
$
(
awkward
but
temporary
notation
;
we
usually
just
say
``
$
X$
is
a
scheme
''
)
.
In
this
case
$
X$
and
$
X_0
$
have
the
same
small
\'etale
sites
:
$
$
X_\etale
=
(
X_0)_\etale
$
$
This
is
pointed
out
in
Properties
of
Spaces
,
Section
\ref{spaces
-
properties
-
section
-
etale
-
site}.
Moreover
,
if
$
f
:
X
\to
Y$
is
a
morphism
of
representable
algebraic
spaces
over
$
S$
and
if
$
f_0
:
X_0
\to
Y_0
$
is
a
morphism
of
schemes
representing
$
f$
,
then
the
induced
morphisms
of
small
\'etale
topoi
agree
:
$
$
\xymatrix
{
\Sh(X_\etale
)
\ar[rr]_{f_{small
}
}
\ar@{=}[d
]
&
&
\Sh(Y_\etale
)
\ar@{=}[d
]
\\
\Sh((X_0)_\etale
)
\ar[rr]^{(f_0)_{small
}
}
&
&
\Sh((Y_0)_\etale
)
}
$
$
See
Properties
of
Spaces
,
Lemma
\ref{spaces
-
properties
-
lemma
-
functoriality
-
etale
-
site
}
and
Topologies
,
Lemma
\ref{topologies
-
lemma
-
morphism
-
big
-
small
-
etale}.
\medskip\noindent
Thus
there
is
absolutely
no
difference
between
\'etale
cohomology
of
a
scheme
and
the
\'etale
cohomology
of
the
corresponding
algebraic
space
.
Similarly
for
higher
direct
images
along
morphisms
of
schemes
.
In
fact
,
if
$
f
:
X
\to
Y$
is
a
morphism
of
algebraic
spaces
over
$
S$
which
is
representable
(
by
schemes
)
,
then
the
higher
direct
images
$
R^if_*\mathcal{F}$
of
a
sheaf
$
\mathcal{F}$
on
$
X_\etale$
can
be
computed
\'etale
locally
on
$
Y$
(
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
higher
-
direct
-
images
}
)
hence
this
often
reduces
computations
and
proofs
to
the
case
where
$
Y$
and
$
X$
are
schemes
.
\medskip\noindent
We
will
use
the
above
without
further
mention
in
this
chapter
.
For
other
topologies
the
same
thing
is
true
;
we
state
it
explicitly
as
a
lemma
for
cohomology
here
.
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
other
-
topologies
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
\tau
\in
\{\etale
,
fppf
,
ph\}$
(
add
more
here
)
.
The
inclusion
functor
$
$
(
\Sch
/
S)_\tau
\longrightarrow
(
\textit{Spaces}/S)_\tau
$
$
is
a
special
cocontinuous
functor
(
Sites
,
Definition
\ref{sites
-
definition
-
special
-
cocontinuous
-
functor
}
)
and
hence
identifies
topoi
.
\end{lemma
}
\begin{proof
}
The
conditions
of
Sites
,
Lemma
\ref{sites
-
lemma
-
equivalence
}
are
immediately
verified
as
our
functor
is
fully
faithful
and
as
every
algebraic
space
has
an
\'etale
covering
by
schemes
.
\end{proof
}
\section{Proper
base
change
}
\label{section
-
proper
-
base
-
change
}
\noindent
The
proper
base
change
theorem
for
algebraic
spaces
follows
from
the
proper
base
change
theorem
for
schemes
and
Chow
's
lemma
with
a
little
bit
of
work
.
\begin{lemma
}
\label{lemma
-
surjective
-
proper
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
surjective TYPE
proper
morphism
of
algebraic
spaces
over
$
S$.
Let
$
\mathcal{F}$
be
a
sheaf TYPE
on
$
X_\etale$.
Then
$
\mathcal{F
}
\to
f_*f^{-1}\mathcal{F}$
is
injective
with
image
the
equalizer
of
the
two
maps
$
f_*f^{-1}\mathcal{F
}
\to
g_*g^{-1}\mathcal{F}$
where
$
g$
is
the
structure
morphism
$
g
:
Y
\times_X
Y
\to
X$.
\end{lemma
}
\begin{proof
}
For
any
surjective
morphism
$
f
:
Y
\to
X$
of
algebraic
spaces
over
$
S$
,
the
map
$
\mathcal{F
}
\to
f_*f^{-1}\mathcal{F}$
is
injective
.
Namely
,
if
$
\overline{x}$
is
a
geometric
point
of
$
X$
,
then
we
choose
a
geometric
point
$
\overline{y}$
of
$
Y$
lying
over
$
\overline{x}$
and
we
consider
$
$
\mathcal{F}_{\overline{x
}
}
\to
(
f_*f^{-1}\mathcal{F})_{\overline{x
}
}
\to
(
f^{-1}\mathcal{F})_{\overline{y
}
}
=
\mathcal{F}_{\overline{x
}
}
$
$
See
Properties
of
Spaces
,
Lemma
\ref{spaces
-
properties
-
lemma
-
stalk
-
pullback
}
for
the
last
equality
.
\medskip\noindent
The
second
statement
is
local
on
$
X$
in
the
\'etale
topology
,
hence
we
may
and
do
assume
$
Y$
is
an
affine
scheme
.
\medskip\noindent
Choose
a
surjective
proper
morphism
$
Z
\to
Y$
where
$
Z$
is
a
scheme
,
see
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
cohomology
-
lemma
-
weak
-
chow}.
The
result
for
$
Z
\to
X$
implies
the
result
for
$
Y
\to
X$.
Since
$
Z
\to
X$
is
a
surjective
proper
morphism
of
schemes
and
hence
a
ph
covering
(
Topologies
,
Lemma
\ref{topologies
-
lemma
-
surjective
-
proper
-
ph
}
)
the
result
for
$
Z
\to
X$
follows
from
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
describe
-
pullback
-
pi
-
ph
}
(
in
fact
it
is
in
some
sense
equivalent
to
this
lemma
)
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
h0-proper
-
over
-
henselian
-
pair
}
Let
$
(
A
,
I)$
be
a
henselian TYPE
pair
.
Let
$
X$
be
an
algebraic TYPE
space
over
$
A$
such
that
the
structure
morphism
$
f
:
X
\to
\Spec(A)$
is
proper
.
Let
$
i
:
X_0
\to
X$
be
the
inclusion
of
$
X
\times_{\Spec(A
)
}
\Spec(A
/
I)$.
For
any
sheaf
$
\mathcal{F}$
on
$
X_\etale$
we
have
$
\Gamma(X
,
\mathcal{F
}
)
=
\Gamma(Z
,
i^{-1}\mathcal{F})$.
\end{lemma
}
\begin{proof
}
Choose
a
surjective
proper
morphism
$
Y
\to
X$
where
$
Y$
is
a
scheme
,
see
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
cohomology
-
lemma
-
weak
-
chow}.
Consider
the
diagram
$
$
\xymatrix
{
\Gamma(X_0
,
\mathcal{F}_0
)
\ar[r
]
\ar[d
]
&
\Gamma(Y_0
,
\mathcal{G}_0
)
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
\ar[d
]
&
\Gamma((Y
\times_X
Y)_0
,
\mathcal{H}_0
)
\ar[d
]
\\
\Gamma(X
,
\mathcal{F
}
)
\ar[r
]
&
\Gamma(Y
,
\mathcal{G
}
)
\ar@<1ex>[r
]
\ar@<-1ex>[r
]
&
\Gamma(Y
\times_X
Y
,
\mathcal{H
}
)
}
$
$
Here
$
\mathcal{G}$
,
resp.\
$
\mathcal{H}$
is
the
pullbackf
or
$
\mathcal{F}$
to
$
Y$
,
resp.\
$
Y
\times_X
Y$
and
the
index
$
0
$
indicates
base
change
to
$
\Spec(A
/
I)$.
By
the
case
of
schemes
(
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
h0-proper
-
over
-
henselian
-
pair
}
)
we
see
that
the
middle
and
right
vertical
arrows
are
bijective
.
By
Lemma
\ref{lemma
-
surjective
-
proper
}
it
follows
that
the
left
one
is
too
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
h0-proper
-
over
-
henselian
-
local
}
Let
$
A$
be
a
henselian TYPE
local
ring
.
Let
$
X$
be
an
algebraic TYPE
space
over
$
A$
such
that
$
f
:
X
\to
\Spec(A)$
be
a
proper
morphism
.
Let
$
X_0
\subset
X$
be
the
fibre
of
$
f$
over
the
closed
point
.
For
any
sheaf
$
\mathcal{F}$
on
$
X_\etale$
we
have
$
\Gamma(X
,
\mathcal{F
}
)
=
\Gamma(X_0
,
\mathcal{F}|_{X_0})$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
h0-proper
-
over
-
henselian
-
pair}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
proper
-
base
-
change
-
f
-
star
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
X
\to
Y$
and
$
g
:
Y
'
\to
Y$
be
a
morphisms TYPE
of
algebraic
spaces
over
$
S$.
Assume
$
f$
is
proper
.
Set
$
X
'
=
Y
'
\times_Y
X$
with
projections
$
f
'
:
X
'
\to
Y'$
and
$
g
'
:
X
'
\to
X$.
Let
$
\mathcal{F}$
be
any
sheaf
on
$
X_\etale$.
Then
$
g^{-1}f_*\mathcal{F
}
=
f'_*(g')^{-1}\mathcal{F}$.
\end{lemma
}
\begin{proof
}
The
question
is
\'etale
local
on
$
Y'$.
Choose
a
scheme
$
V$
and
a
surjective
\'etale
morphism
$
V
\to
Y$.
Choose
a
scheme
$
V'$
and
a
surjective
\'etale
morphism
$
V
'
\to
V
\times_Y
Y'$.
Then
we
may
replace
$
Y'$
by
$
V'$
and
$
Y$
by
$
V$.
Hence
we
may
assume
$
Y$
and
$
Y'$
are
schemes
.
Then
we
may
work
Zariski
locally
on
$
Y$
and
$
Y'$
and
hence
we
may
assume
$
Y$
and
$
Y'$
are
affine
schemes
.
\medskip\noindent
Assume
$
Y$
and
$
Y'$
are
affine
schemes
.
Choose
a
surjective
proper
morphism
$
h_1
:
X_1
\to
X$
where
$
X_1
$
is
a
scheme
,
see
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
cohomology
-
lemma
-
weak
-
chow}.
Set
$
X_2
=
X_1
\times_X
X_1
$
and
denote
$
h_2
:
X_2
\to
X$
the
structure
morphism
.
Observe
this
is
a
scheme
.
By
the
case
of
schemes
(
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
proper
-
base
-
change
-
f
-
star
}
)
we
know
the
lemma
is
true
for
the
cartesian
diagrams
$
$
\vcenter
{
\xymatrix
{
X'_1
\ar[r
]
\ar[d
]
&
X_1
\ar[d
]
\\
Y
'
\ar[r
]
&
Y
}
}
\quad\text{and}\quad
\vcenter
{
\xymatrix
{
X'_2
\ar[r
]
\ar[d
]
&
X_2
\ar[d
]
\\
Y
'
\ar[r
]
&
Y
}
}
$
$
and
the
sheaves
$
\mathcal{F}_i
=
(
X_i
\to
X)^{-1}\mathcal{F}$.
By
Lemma
\ref{lemma
-
surjective
-
proper
}
we
have
an
exact
sequence
$
0
\to
\mathcal{F
}
\to
h_{1
,
*
}
\mathcal{F}_1
\to
h_{2
,
*
}
\mathcal{F}_2
$
and
similarly
for
$
(
g')^{-1}\mathcal{F}$
because
$
X'_2
=
X'_1
\times_{X
'
}
X'_1$.
Hence
we
conlude
that
the
lemma
is
true
(
some
details
omitted
)
.
\end{proof
}
\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
morphism
of
algebraic
spaces
over
$
S$.
Let
$
\overline{x
}
:
\Spec(k
)
\to
S$
be
a
geometric
point
.
The
fibre
of
$
f$
at
$
\overline{x}$
is
the
algebraic
space
$
Y_{\overline{x
}
}
=
\Spec(k
)
\times_{\overline{x
}
,
X
}
Y$
over
$
\Spec(k)$.
If
$
\mathcal{F}$
is
a
sheaf
on
$
Y_\etale$
,
then
denote
$
\mathcal{F}_{\overline{x
}
}
=
p^{-1}\mathcal{F}$
the
pullback
of
$
\mathcal{F}$
to
$
(
Y_{\overline{x}})_\etale$.
Here
$
p
:
Y_{\overline{x
}
}
\to
Y$
is
the
projection
.
In
the
following
we
will
consider
the
set
$
\Gamma(Y_{\overline{x
}
}
,
\mathcal{F}_{\overline{x}})$.
\begin{lemma
}
\label{lemma
-
proper
-
pushforward
-
stalk
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
proper
morphism
of
algebraic
spaces
over
$
S$.
Let
$
\overline{x
}
\to
X$
be
a
geometric
point
.
For
any
sheaf
$
\mathcal{F}$
on
$
Y_\etale$
the
canonical
map
$
$
(
f_*\mathcal{F})_{\overline{x
}
}
\longrightarrow
\Gamma(Y_{\overline{x
}
}
,
\mathcal{F}_{\overline{x
}
}
)
$
$
is
bijective
.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Lemma
\ref{lemma
-
proper
-
base
-
change
-
f
-
star}.
\end{proof
}
\begin{theorem
}
\label{theorem
-
proper
-
base
-
change
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
$
\xymatrix
{
X
'
\ar[r]_{g
'
}
\ar[d]_{f
'
}
&
X
\ar[d]^f
\\
Y
'
\ar[r]^g
&
Y
}
$
$
be
a
cartesian TYPE
square
of
algebraic
spaces
over
$
S$.
Assume
$
f$
is
proper
.
Let
$
\mathcal{F}$
be
an
abelian TYPE
torsion
sheaf
on
$
X_\etale$.
Then
the
base
change
map
$
$
g^{-1}Rf_*\mathcal{F
}
\longrightarrow
Rf'_*(g')^{-1}\mathcal{F
}
$
$
is
an
isomorphism
.
\end{theorem
}
\begin{proof
}
This
proof
repeats
a
few
of
the
arguments
given
in
the
proof
of
the
proper
base
change
theorem
for
schemes
.
See
\'Etale
Cohomology
,
Section
\ref{etale
-
cohomology
-
section
-
proper
-
base
-
change
}
for
more
details
.
\medskip\noindent
The
statement
is
\'etale
local
on
$
Y'$
and
$
Y$
,
hence
we
may
assume
both
$
Y$
and
$
Y'$
are
affine
schemes
.
Observe
that
this
in
particular
proves
the
theorem
in
case
$
f$
is
representable
(
we
will
use
this
below
)
.
\medskip\noindent
For
every
$
n
\geq
1
$
let
$
\mathcal{F}[n]$
be
the
subsheaf
of
sections
of
$
\mathcal{F}$
annihilated
by
$
n$.
Then
$
\mathcal{F
}
=
\colim
\mathcal{F}[n]$.
By
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
cohomology
-
lemma
-
colimit
-
cohomology
}
the
functors
$
g^{-1}R^pf_*$
and
$
R^pf'_*(g')^{-1}$
commute
with
filtered
colimits
.
Hence
it
suffices
to
prove
the
theorem
if
$
\mathcal{F}$
is
killed
by
$
n$.
\medskip\noindent
Let
$
\mathcal{F
}
\to
\mathcal{I}^\bullet$
be
a
resolution TYPE
by
injective
sheaves
of
$
\mathbf{Z}/n\mathbf{Z}$-modules
.
Observe
that
$
g^{-1}f_*\mathcal{I}^\bullet
=
f'_*(g')^{-1}\mathcal{I}^\bullet$
by
Lemma
\ref{lemma
-
proper
-
base
-
change
-
f
-
star}.
Applying
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
we
conclude
it
suffices
to
prove
$
R^pf'_*(g')^{-1}\mathcal{I}^m
=
0
$
for
$
p
>
0
$
and
$
m
\in
\mathbf{Z}$.
\medskip\noindent
Choose
a
surjective
proper
morphism
$
h
:
Z
\to
X$
where
$
Z$
is
a
scheme
,
see
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
cohomology
-
lemma
-
weak
-
chow}.
Choose
an
injective
map
$
h^{-1}\mathcal{I}^m
\to
\mathcal{J}$
where
$
\mathcal{J}$
is
an
injective
sheaf
of
$
\mathbf{Z}/n\mathbf{Z}$-modules
on
$
Z_\etale$.
Since
$
h$
is
surjective
the
map
$
\mathcal{I}^m
\to
h_*\mathcal{J}$
is
injective
(
see
Lemma
\ref{lemma
-
surjective
-
proper
}
)
.
Since
$
\mathcal{I}^m$
is
injective
we
see
that
$
\mathcal{I}^m$
is
a
direct
summand
of
$
h_*\mathcal{J}$.
Thus
it
suffices
to
prove
the
desired
vanishing
for
$
h_*\mathcal{J}$.
\medskip\noindent
Denote
$
h'$
the
base
change
by
$
g$
and
denote
$
g
''
:
Z
'
\to
Z$
the
projection
.
There
is
a
spectral
sequence
$
$
E_2^{p
,
q
}
=
R^pf
'
_
*
R^qh
'
_
*
(
g'')^{-1}\mathcal{J
}
$
$
converging
to
$
R^{p
+
q}(f
'
\circ
h')_*(g'')^{-1}\mathcal{J}$.
Since
$
h$
and
$
f
\circ
h$
are
representable
(
by
schemes
)
we
know
the
result
we
want
holds
for
them
.
Thus
in
the
spectral
sequence
we
see
that
$
E_2^{p
,
q
}
=
0
$
for
$
q
>
0
$
and
$
R^{p
+
q}(f
'
\circ
h')_*(g'')^{-1}\mathcal{J
}
=
0
$
for
$
p
+
q
>
0$.
It
follows
that
$
E_2^{p
,
0
}
=
0
$
for
$
p
>
0$.
Now
$
$
E_2^{p
,
0
}
=
R^pf
'
_
*
h
'
_
*
(
g'')^{-1}\mathcal{J
}
=
R^pf
'
_
*
(
g')^{-1}h_*\mathcal{J
}
$
$
by
Lemma
\ref{lemma
-
proper
-
base
-
change
-
f
-
star}.
This
finishes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
proper
-
base
-
change
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
$
\xymatrix
{
X
'
\ar[r]_{g
'
}
\ar[d]_{f
'
}
&
X
\ar[d]^f
\\
Y
'
\ar[r]^g
&
Y
}
$
$
be
a
cartesian TYPE
square
of
algebraic
spaces
over
$
S$.
Assume
$
f$
is
proper
.
Let
$
E
\in
D^+(X_\etale)$
have
torsion
cohomology
sheaves
.
Then
the
base
change
map
$
g^{-1}Rf_*E
\to
Rf'_*(g')^{-1}E$
is
an
isomorphism
.
\end{lemma
}
\begin{proof
}
This
is
a
simple
consequence
of
the
proper
base
change
theorem
(
Theorem
\ref{theorem
-
proper
-
base
-
change
}
)
using
the
spectral
sequences
$
$
E_2^{p
,
q
}
=
R^pf_*H^q(E
)
\quad\text{and}\quad
{
E'}_2^{p
,
q
}
=
R^pf'_*(g')^{-1}H^q(E
)
$
$
converging
to
$
R^nf_*E$
and
$
R^nf'_*(g')^{-1}E$.
The
spectral
sequences
are
constructed
in
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
two
-
ss
-
complex
-
functor}.
Some
details
omitted
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
proper
-
base
-
change
-
stalk
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
X
\to
Y$
be
a
proper
morphism
of
algebraic
spaces
.
Let
$
\overline{y
}
\to
Y$
be
a
geometric
point
.
\begin{enumerate
}
\item
For
a
torsion TYPE
abelian
sheaf
$
\mathcal{F}$
on
$
X_\etale$
we
have
$
(
R^nf_*\mathcal{F})_{\overline{y
}
}
=
H^n_\etale(X_{\overline{y
}
}
,
\mathcal{F}_{\overline{y}})$.
\item
For
$
E
\in
D^+(X_\etale)$
with
torsion
cohomology
sheaves
we
have
$
(
R^nf_*E)_{\overline{y
}
}
=
H^n_\etale(X_{\overline{y
}
}
,
E_{\overline{y}})$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
In
the
statement
,
$
\mathcal{F}_{\overline{y}}$
denotes
the
pullback
of
$
\mathcal{F}$
to
$
X_{\overline{y
}
}
=
\overline{y
}
\times_Y
X$.
Since
pulling
back
by
$
\overline{y
}
\to
Y$
produces
the
stalk
of
$
\mathcal{F}$
,
the
first
statement
of
the
lemma
is
a
special
case
of
Theorem
\ref{theorem
-
proper
-
base
-
change}.
The
second
one
is
a
special
case
of
Lemma
\ref{lemma
-
proper
-
base
-
change}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
base
-
change
-
separably
-
closed
}
Let
$
k
\subset
k'$
be
an
extension
of
separably
closed
fields
.
Let
$
X$
be
a
proper TYPE
algebraic
space
over
$
k$.
Let
$
\mathcal{F}$
be
a
torsion TYPE
abelian
sheaf
on
$
X$.
Then
the
map
$
H^q_\etale(X
,
\mathcal{F
}
)
\to
H^q_\etale(X_{k
'
}
,
\mathcal{F}|_{X_{k'}})$
is
an
isomorphism
for
$
q
\geq
0$.
\end{lemma
}
\begin{proof
}
This
is
a
special
case
of
Theorem
\ref{theorem
-
proper
-
base
-
change}.
\end{proof
}
\section{Comparing
big
and
small
topoi
}
\label{section
-
compare
}
\noindent
Let
$
S$
be
a
scheme TYPE
and
let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
In
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
at
-
the
-
bottom
-
etale
}
we
have
introduced
comparison
morphisms
$
\pi_X
:
(
\textit{Spaces}/X)_\etale
\to
X_{spaces
,
\etale}$
and
$
i_X
:
\Sh(X_\etale
)
\to
\Sh((\textit{Spaces}/X)_\etale)$
with
$
\pi_X
\circ
i_X
=
\text{id}$
as
morphisms
of
topoi
and
$
\pi_{X
,
*
}
=
i_X^{-1}$.
More
generally
,
if
$
f
:
Y
\to
X$
is
an
object
of
$
(
\textit{Spaces}/X)_\etale$
,
then
there
is
a
morphism
$
i_f
:
\Sh(Y_\etale
)
\to
\Sh((\textit{Spaces}/X)_\etale)$
such
that
$
f_{small
}
=
\pi_X
\circ
i_f$
,
see
Topologies
on
Spaces
,
Lemmas
\ref{spaces
-
topologies
-
lemma
-
put
-
in
-
T
-
etale
}
and
\ref{spaces
-
topologies
-
lemma
-
morphism
-
big
-
small
-
etale}.
In
Topologies
on
Spaces
,
Remark
\ref{spaces
-
topologies
-
remark
-
change
-
topologies
-
ringed
}
we
have
extended
these
to
a
morphism
of
ringed
sites
$
$
\pi_X
:
(
(
\textit{Spaces}/X)_\etale
,
\mathcal{O
}
)
\to
(
X_{spaces
,
\etale
}
,
\mathcal{O}_X
)
$
$
and
morphisms
of
ringed
topoi
$
$
i_X
:
(
\Sh(X_\etale
)
,
\mathcal{O}_X
)
\to
(
\Sh((\textit{Spaces}/X)_\etale
)
,
\mathcal{O
}
)
$
$
and
$
$
i_f
:
(
\Sh(Y_\etale
)
,
\mathcal{O}_Y
)
\to
(
\Sh((\textit{Spaces}/X)_\etale
,
\mathcal{O
}
)
)
$
$
Note
that
the
restriction
$
i_X^{-1
}
=
\pi_{X
,
*
}
$
(
see
Topologies
,
Definition
\ref{topologies
-
definition
-
restriction
-
small
-
etale
}
)
transforms
$
\mathcal{O}$
into
$
\mathcal{O}_X$.
Similarly
,
$
i_f^{-1}$
transforms
$
\mathcal{O}$
into
$
\mathcal{O}_Y$.
See
Topologies
on
Spaces
,
Remark
\ref{spaces
-
topologies
-
remark
-
change
-
topologies
-
ringed}.
Hence
$
i_X^*\mathcal{F
}
=
i_X^{-1}\mathcal{F}$
and
$
i_f^*\mathcal{F
}
=
i_f^{-1}\mathcal{F}$
for
any
$
\mathcal{O}$-module
$
\mathcal{F}$
on
$
(
\textit{Spaces}/X)_\etale$.
In
particular
$
i_X^*$
and
$
i_f^*$
are
exact
functors
.
The
functor
$
i_X^*$
is
often
denoted
$
\mathcal{F
}
\mapsto
\mathcal{F}|_{X_\etale}$
(
and
this
does
not
conflict
with
the
notation
in
Topologies
on
Spaces
,
Definition
\ref{spaces
-
topologies
-
definition
-
restriction
-
small
-
etale
}
)
.
\begin{lemma
}
\label{lemma
-
describe
-
pullback
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
\mathcal{F}$
be
a
sheaf TYPE
on
$
X_\etale$.
Then
$
\pi_X^{-1}\mathcal{F}$
is
given
by
the
rule
$
$
(
\pi_X^{-1}\mathcal{F})(Y
)
=
\Gamma(Y_\etale
,
f_{small}^{-1}\mathcal{F
}
)
$
$
for
$
f
:
Y
\to
X$
in
$
(
\textit{Spaces}/X)_\etale$.
Moreover
,
$
\pi_Y^{-1}\mathcal{F}$
satisfies
the
sheaf
condition
with
respect
to
smooth
,
syntomic
,
fppf
,
fpqc
,
and
ph
coverings
.
\end{lemma
}
\begin{proof
}
Since
pullback
is
transitive
and
$
f_{small
}
=
\pi_X
\circ
i_f$
(
see
above
)
we
see
that
$
i_f^{-1
}
\pi_X^{-1}\mathcal{F
}
=
f_{small}^{-1}\mathcal{F}$.
This
shows
that
$
\pi_X^{-1}$
has
the
description
given
in
the
lemma
.
\medskip\noindent
To
prove
that
$
\pi_X^{-1}\mathcal{F}$
is
a
sheaf
for
the
ph
topology
it
suffices
by
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
characterize
-
sheaf
}
to
show
that
for
a
surjective
proper
morphism
$
V
\to
U$
of
algebraic
spaces
over
$
X$
we
have
$
(
\pi_X^{-1}\mathcal{F})(U)$
is
the
equalizer
of
the
two
maps
$
(
\pi_X^{-1}\mathcal{F})(V
)
\to
(
\pi_X^{-1}\mathcal{F})(V
\times_U
V)$.
This
we
have
seen
in
Lemma
\ref{lemma
-
surjective
-
proper}.
\medskip\noindent
The
case
of
smooth
,
syntomic
,
fppf
coverings
follows
from
the
case
of
ph
coverings
by
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
zariski
-
etale
-
smooth
-
syntomic
-
fppf
-
ph}.
\medskip\noindent
Let
$
\mathcal{U
}
=
\{U_i
\to
U\}_{i
\in
I}$
be
an
fpqc TYPE
covering
of
algebraic
spaces
over
$
X$.
Let
$
s_i
\in
(
\pi_X^{-1}\mathcal{F})(U_i)$
be
sections
which
agree
over
$
U_i
\times_U
U_j$.
We
have
to
prove
there
exists
a
unique
$
s
\in
(
\pi_X^{-1}\mathcal{F})(U)$
restricting
to
$
s_i$
over
$
U_i$.
Case
I
:
$
U$
and
$
U_i$
are
schemes
.
This
case
follows
from
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
describe
-
pullback}.
Case
II
:
$
U$
is
a
scheme
.
Here
we
choose
surjective
\'etale
morphisms
$
T_i
\to
U_i$
where
$
T_i$
is
a
scheme
.
Then
$
\mathcal{T
}
=
\{T_i
\to
U\}$
is
an
fpqc
covering
by
schemes
and
by
case
I
the
result
holds
for
$
\mathcal{T}$.
We
omit
the
verification
that
this
implies
the
result
for
$
\mathcal{U}$.
Case
III
:
general
case
.
Let
$
W
\to
U$
be
a
surjective
\'etale
morphism
,
where
$
W$
is
a
scheme
.
Then
$
\mathcal{W
}
=
\{U_i
\times_U
W
\to
W\}$
is
an
fpqc
covering
(
by
algebraic
spaces
)
of
the
scheme
$
W$.
By
case
II
the
result
hold
for
$
\mathcal{W}$.
We
omit
the
verification
that
this
implies
the
result
for
$
\mathcal{U}$.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
injectives
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
Y
\to
X$
be
a
morphism
of
$
(
\textit{Spaces}/S)_\etale$.
\begin{enumerate
}
\item
If
$
\mathcal{I}$
is
injective
in
$
\textit{Ab}((\textit{Spaces}/X)_\etale)$
,
then
\begin{enumerate
}
\item
$
i_f^{-1}\mathcal{I}$
is
injective
in
$
\textit{Ab}(Y_\etale)$
,
\item
$
\mathcal{I}|_{X_\etale}$
is
injective
in
$
\textit{Ab}(X_\etale)$
,
\end{enumerate
}
\item
If
$
\mathcal{I}^\bullet$
is
a
K
-
injective
complex
in
$
\textit{Ab}((\textit{Spaces}/X)_\etale)$
,
then
\begin{enumerate
}
\item
$
i_f^{-1}\mathcal{I}^\bullet$
is
a
K
-
injective
complex
in
$
\textit{Ab}(Y_\etale)$
,
\item
$
\mathcal{I}^\bullet|_{X_\etale}$
is
a
K
-
injective
complex
in
$
\textit{Ab}(X_\etale)$
,
\end{enumerate
}
\end{enumerate
}
The
corresponding
statements
for
modules
do
not
hold
.
\end{lemma
}
\begin{proof
}
Parts
(
1)(b
)
and
(
2)(b
)
follow
formally
from
the
fact
that
the
restriction
functor
$
\pi_{X
,
*
}
=
i_X^{-1}$
is
a
right
adjoint
of
the
exact
functor
$
\pi_X^{-1}$
,
see
Homology
,
Lemma
\ref{homology
-
lemma
-
adjoint
-
preserve
-
injectives
}
and
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
adjoint
-
preserve
-
K
-
injectives}.
\medskip\noindent
Parts
(
1)(a
)
and
(
2)(a
)
can
be
seen
in
two
ways
.
First
proof
:
We
can
use
that
$
i_f^{-1}$
is
a
right
adjoint
of
the
exact
functor
$
i_{f
,
!
}
$
.
This
functor
is
constructed
in
Topologies
,
Lemma
\ref{topologies
-
lemma
-
put
-
in
-
T
-
etale
}
for
sheaves
of
sets
and
for
abelian
sheaves
in
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
g
-
shriek
-
adjoint}.
It
is
shown
in
Modules
on
Sites
,
Lemma
\ref{sites
-
modules
-
lemma
-
exactness
-
lower
-
shriek
}
that
it
is
exact
.
Second
proof
.
We
can
use
that
$
i_f
=
i_Y
\circ
f_{big}$
as
is
shown
in
Topologies
,
Lemma
\ref{topologies
-
lemma
-
morphism
-
big
-
small
-
etale}.
Since
$
f_{big}$
is
a
localization
,
we
see
that
pullback
by
it
preserves
injectives
and
K
-
injectives
,
see
Cohomology
on
Sites
,
Lemmas
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
and
\ref{sites
-
cohomology
-
lemma
-
restrict
-
K
-
injective
-
to
-
open}.
Then
we
apply
the
already
proved
parts
(
1)(b
)
and
(
2)(b
)
to
the
functor
$
i_Y^{-1}$
to
conclude
.
\medskip\noindent
To
see
a
counter
example
for
the
case
of
modules
we
refer
to
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
compare
-
injectives}.
\end{proof
}
\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
morphism
of
algebraic
spaces
over
$
S$.
The
commutative
diagram
of
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
morphism
-
big
-
small
-
etale
}
(
3
)
leads
to
a
commutative
diagram
of
ringed
sites
$
$
\xymatrix
{
(
Y_{spaces
,
\etale
}
,
\mathcal{O}_Y
)
\ar[d]_{f_{spaces
,
\etale
}
}
&
(
(
\textit{Spaces}/Y)_\etale
,
\mathcal{O
}
)
\ar[d]^{f_{big
}
}
\ar[l]^{\pi_Y
}
\\
(
X_{spaces
,
\etale
}
,
\mathcal{O}_X
)
&
(
(
\textit{Spaces}/X)_\etale
,
\mathcal{O
}
)
\ar[l]_{\pi_X
}
}
$
$
as
one
easily
sees
by
writing
out
the
definitions
of
$
f_{small}^\sharp$
,
$
f_{big}^\sharp$
,
$
\pi_X^\sharp$
,
and
$
\pi_Y^\sharp$.
In
particular
this
means
that
\begin{equation
}
\label{equation
-
compare
-
big
-
small
}
(
f_{big
,
*
}
\mathcal{F})|_{X_\etale
}
=
f_{small
,
*
}
(
\mathcal{F}|_{Y_\etale
}
)
\end{equation
}
for
any
sheaf
$
\mathcal{F}$
on
$
(
\textit{Spaces}/Y)_\etale$
and
if
$
\mathcal{F}$
is
a
sheaf
of
$
\mathcal{O}$-modules
,
then
(
\ref{equation
-
compare
-
big
-
small
}
)
is
an
isomorphism
of
$
\mathcal{O}_X$-modules
on
$
X_\etale$.
\begin{lemma
}
\label{lemma
-
compare
-
higher
-
direct
-
image
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
morphism
of
algebraic
spaces
over
$
S$.
\begin{enumerate
}
\item
For
$
K$
in
$
D((\textit{Spaces}/Y)_\etale)$
we
have
$
(
Rf_{big
,
*
}
K)|_{X_\etale
}
=
Rf_{small
,
*
}
(
K|_{Y_\etale
}
)
$
in
$
D(X_\etale)$.
\item
For
$
K$
in
$
D((\textit{Spaces}/Y)_\etale
,
\mathcal{O})$
we
have
$
(
Rf_{big
,
*
}
K)|_{X_\etale
}
=
Rf_{small
,
*
}
(
K|_{Y_\etale
}
)
$
in
$
D(\textit{Mod}(X_\etale
,
\mathcal{O}_X))$.
\end{enumerate
}
More
generally
,
let
$
g
:
X
'
\to
X$
be
an
object TYPE
of
$
(
\textit{Spaces}/X)_\etale$.
Consider
the
fibre
product
$
$
\xymatrix
{
Y
'
\ar[r]_{g
'
}
\ar[d]_{f
'
}
&
Y
\ar[d]^f
\\
X
'
\ar[r]^g
&
X
}
$
$
Then
\begin{enumerate
}
\item[(3
)
]
For
$
K$
in
$
D((\textit{Spaces}/Y)_\etale)$
we
have
$
i_g^{-1}(Rf_{big
,
*
}
K
)
=
Rf'_{small
,
*
}
(
i_{g'}^{-1}K)$
in
$
D(X'_\etale)$.
\item[(4
)
]
For
$
K$
in
$
D((\textit{Spaces}/Y)_\etale
,
\mathcal{O})$
we
have
$
i_g^*(Rf_{big
,
*
}
K
)
=
Rf'_{small
,
*
}
(
i_{g'}^*K)$
in
$
D(\textit{Mod}(X'_\etale
,
\mathcal{O}_{X'}))$.
\item[(5
)
]
For
$
K$
in
$
D((\textit{Spaces}/Y)_\etale)$
we
have
$
g_{big}^{-1}(Rf_{big
,
*
}
K
)
=
Rf'_{small
,
*
}
(
(
g'_{big})^{-1}K)$
in
$
D((\textit{Spaces}/X')_\etale)$.
\item[(6
)
]
For
$
K$
in
$
D((\textit{Spaces}/Y)_\etale
,
\mathcal{O})$
we
have
$
g_{big}^*(Rf_{big
,
*
}
K
)
=
Rf'_{small
,
*
}
(
(
g'_{big})^*K)$
in
$
D(\textit{Mod}(X'_\etale
,
\mathcal{O}_{X'}))$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Part
(
1
)
follows
from
Lemma
\ref{lemma
-
compare
-
injectives
}
and
(
\ref{equation
-
compare
-
big
-
small
}
)
on
choosing
a
K
-
injective
complex
of
abelian
sheaves
representing
$
K$.
\medskip\noindent
Part
(
3
)
follows
from
Lemma
\ref{lemma
-
compare
-
injectives
}
and
Topologies
,
Lemma
\ref{topologies
-
lemma
-
morphism
-
big
-
small
-
cartesian
-
diagram
-
etale
}
on
choosing
a
K
-
injective
complex
of
abelian
sheaves
representing
$
K$.
\medskip\noindent
Part
(
5
)
follows
from
Cohomology
on
Sites
,
Lemmas
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
and
\ref{sites
-
cohomology
-
lemma
-
restrict
-
K
-
injective
-
to
-
open
}
and
Topologies
,
Lemma
\ref{topologies
-
lemma
-
morphism
-
big
-
small
-
cartesian
-
diagram
-
etale
}
on
choosing
a
K
-
injective
complex
of
abelian
sheaves
representing
$
K$.
\medskip\noindent
Part
(
6
)
:
Observe
that
$
g_{big}$
and
$
g'_{big}$
are
localizations
and
hence
$
g_{big}^{-1
}
=
g_{big}^*$
and
$
(
g'_{big})^{-1
}
=
(
g'_{big})^*$
are
the
restriction
functors
.
Hence
(
6
)
follows
from
Cohomology
on
Sites
,
Lemmas
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
and
\ref{sites
-
cohomology
-
lemma
-
restrict
-
K
-
injective
-
to
-
open
}
and
Topologies
,
Lemma
\ref{topologies
-
lemma
-
morphism
-
big
-
small
-
cartesian
-
diagram
-
etale
}
on
choosing
a
K
-
injective
complex
of
modules
representing
$
K$.
\medskip\noindent
Part
(
2
)
can
be
proved
as
follows
.
Above
we
have
seen
that
$
\pi_X
\circ
f_{big
}
=
f_{small
}
\circ
\pi_Y$
as
morphisms
of
ringed
sites
.
Hence
we
obtain
$
R\pi_{X
,
*
}
\circ
Rf_{big
,
*
}
=
Rf_{small
,
*
}
\circ
R\pi_{Y
,
*
}
$
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
derived
-
pushforward
-
composition}.
Since
the
restriction
functors
$
\pi_{X
,
*
}
$
and
$
\pi_{Y
,
*
}
$
are
exact
,
we
conclude
.
\medskip\noindent
Part
(
4
)
follows
from
part
(
6
)
and
part
(
2
)
applied
to
$
f
'
:
Y
'
\to
X'$.
\end{proof
}
\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
\mathcal{H}$
be
an
abelian TYPE
sheaf
on
$
(
\textit{Spaces}/X)_\etale$.
Recall
that
$
H^n_\etale(U
,
\mathcal{H})$
denotes
the
cohomology
of
$
\mathcal{H}$
over
an
object
$
U$
of
$
(
\textit{Spaces}/X)_\etale$.
\begin{lemma
}
\label{lemma
-
compare
-
cohommology
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
morphism
of
algebraic
spaces
over
$
S$.
Then
\begin{enumerate
}
\item
For
$
K$
in
$
D(X_\etale)$
we
have
$
H^n_\etale(X
,
\pi_X^{-1}K
)
=
H^n(X_\etale
,
K)$.
\item
For
$
K$
in
$
D(X_\etale
,
\mathcal{O}_X)$
we
have
$
H^n_\etale(X
,
L\pi_X^*K
)
=
H^n(X_\etale
,
K)$.
\item
For
$
K$
in
$
D(X_\etale)$
we
have
$
H^n_\etale(Y
,
\pi_X^{-1}K
)
=
H^n(Y_\etale
,
f_{small}^{-1}K)$.
\item
For
$
K$
in
$
D(X_\etale
,
\mathcal{O}_X)$
we
have
$
H^n_\etale(Y
,
L\pi_X^*K
)
=
H^n(Y_\etale
,
Lf_{small}^*K)$.
\item
For
$
M$
in
$
D((\textit{Spaces}/X)_\etale)$
we
have
$
H^n_\etale(Y
,
M
)
=
H^n(Y_\etale
,
i_f^{-1}M)$.
\item
For
$
M$
in
$
D((\textit{Spaces}/X)_\etale
,
\mathcal{O})$
we
have
$
H^n_\etale(Y
,
M
)
=
H^n(Y_\etale
,
i_f^*M)$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
To
prove
(
5
)
represent
$
M$
by
a
K
-
injective
complex
of
abelian
sheaves
and
apply
Lemma
\ref{lemma
-
compare
-
injectives
}
and
work
out
the
definitions
.
Part
(
3
)
follows
from
this
as
$
i_f^{-1}\pi_X^{-1
}
=
f_{small}^{-1}$.
Part
(
1
)
is
a
special
case
of
(
3
)
.
\medskip\noindent
Part
(
6
)
follows
from
the
very
general
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
pullback
-
same
-
cohomology}.
Then
part
(
4
)
follows
because
$
Lf_{small}^
*
=
i_f^
*
\circ
L\pi_X^*$.
Part
(
2
)
is
a
special
case
of
(
4
)
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
For
$
K
\in
D(X_\etale)$
the
map
$
$
K
\longrightarrow
R\pi_{X
,
*
}
\pi_X^{-1}K
$
$
is
an
isomorphism
where
$
\pi_X
:
\Sh((\textit{Spaces}/X)_\etale
)
\to
\Sh(X_\etale)$
is
as
above
.
\end{lemma
}
\begin{proof
}
This
is
true
because
both
$
\pi_X^{-1}$
and
$
\pi_{X
,
*
}
=
i_X^{-1}$
are
exact
functors
and
the
composition
$
\pi_{X
,
*
}
\circ
\pi_X^{-1}$
is
the
identity
functor
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
higher
-
direct
-
image
-
proper
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
Y
\to
X$
be
a
proper
morphism
of
algebraic
spaces
over
$
S$.
Then
we
have
\begin{enumerate
}
\item
$
\pi_X^{-1
}
\circ
f_{small
,
*
}
=
f_{big
,
*
}
\circ
\pi_Y^{-1}$
as
functors
$
\Sh(Y_\etale
)
\to
\Sh((\textit{Spaces}/X)_\etale)$
,
\item
$
\pi_X^{-1}Rf_{small
,
*
}
K
=
Rf_{big
,
*
}
\pi_Y^{-1}K$
for
$
K$
in
$
D^+(Y_\etale)$
whose
cohomology
sheaves
are
torsion
,
and
\item
$
\pi_X^{-1}Rf_{small
,
*
}
K
=
Rf_{big
,
*
}
\pi_Y^{-1}K$
for
all
$
K$
in
$
D(Y_\etale)$
if
$
f$
is
finite
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Proof
of
(
1
)
.
Let
$
\mathcal{F}$
be
a
sheaf TYPE
on
$
Y_\etale$.
Let
$
g
:
X
'
\to
X$
be
an
object
of
$
(
\textit{Spaces}/X)_\etale$.
Consider
the
fibre
product
$
$
\xymatrix
{
Y
'
\ar[r]_{f
'
}
\ar[d]_{g
'
}
&
X
'
\ar[d]^g
\\
Y
\ar[r]^f
&
X
}
$
$
Then
we
have
$
$
(
f_{big
,
*
}
\pi_Y^{-1}\mathcal{F})(X
'
)
=
(
\pi_Y^{-1}\mathcal{F})(Y
'
)
=
(
(
g'_{small})^{-1}\mathcal{F})(Y
'
)
=
(
f'_{small
,
*
}
(
g'_{small})^{-1}\mathcal{F})(X
'
)
$
$
the
second
equality
by
Lemma
\ref{lemma
-
describe
-
pullback}.
On
the
other
hand
$
$
(
\pi_X^{-1}f_{small
,
*
}
\mathcal{F})(X
'
)
=
(
g_{small}^{-1}f_{small
,
*
}
\mathcal{F})(X
'
)
$
$
again
by
Lemma
\ref{lemma
-
describe
-
pullback}.
Hence
by
proper
base
change
for
sheaves
of
sets
(
Lemma
\ref{lemma
-
proper
-
base
-
change
-
f
-
star
}
)
we
conclude
the
two
sets
are
canonically
isomorphic
.
The
isomorphism
is
compatible
with
restriction
mappings
and
defines
an
isomorphism
$
\pi_X^{-1}f_{small
,
*
}
\mathcal{F
}
=
f_{big
,
*
}
\pi_Y^{-1}\mathcal{F}$.
Thus
an
isomorphism
of
functors
$
\pi_X^{-1
}
\circ
f_{small
,
*
}
=
f_{big
,
*
}
\circ
\pi_Y^{-1}$.
\medskip\noindent
Proof
of
(
2
)
.
There
is
a
canonical
base
change
map
$
\pi_X^{-1}Rf_{small
,
*
}
K
\to
Rf_{big
,
*
}
\pi_Y^{-1}K$
for
any
$
K$
in
$
D(Y_\etale)$
,
see
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
base
-
change}.
To
prove
it
is
an
isomorphism
,
it
suffices
to
prove
the
pull
back
of
the
base
change
map
by
$
i_g
:
\Sh(X'_\etale
)
\to
\Sh((\Sch
/
X)_\etale)$
is
an
isomorphism
for
any
object
$
g
:
X
'
\to
X$
of
$
(
\Sch
/
X)_\etale$.
Let
$
T
'
,
g
'
,
f'$
be
as
in
the
previous
paragraph
.
The
pullback
of
the
base
change
map
is
\begin{align
*
}
g_{small}^{-1}Rf_{small
,
*
}
K
&
=
i_g^{-1}\pi_X^{-1}Rf_{small
,
*
}
K
\\
&
\to
i_g^{-1}Rf_{big
,
*
}
\pi_Y^{-1}K
\\
&
=
Rf'_{small
,
*
}
(
i_{g'}^{-1}\pi_Y^{-1}K
)
\\
&
=
Rf'_{small
,
*
}
(
(
g'_{small})^{-1}K
)
\end{align
*
}
where
we
have
used
$
\pi_X
\circ
i_g
=
g_{small}$
,
$
\pi_Y
\circ
i_{g
'
}
=
g'_{small}$
,
and
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image}.
This
map
is
an
isomorphism
by
the
proper
base
change
theorem
(
Lemma
\ref{lemma
-
proper
-
base
-
change
}
)
provided
$
K$
is
bounded
below
and
the
cohomology
sheaves
of
$
K$
are
torsion
.
\medskip\noindent
Proof
of
(
3
)
.
If
$
f$
is
finite
,
then
the
functors
$
f_{small
,
*
}
$
and
$
f_{big
,
*
}
$
are
exact
.
This
follows
from
Cohomology
of
Spaces
,
Lemma
\ref{spaces
-
cohomology
-
lemma
-
finite
-
higher
-
direct
-
image
-
zero
}
for
$
f_{small}$.
Since
any
base
change
$
f'$
of
$
f$
is
finite
too
,
we
conclude
from
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
}
part
(
3
)
that
$
f_{big
,
*
}
$
is
exact
too
(
as
the
higher
derived
functors
are
zero
)
.
Thus
this
case
follows
from
part
(
1
)
.
\end{proof
}
\section{Comparing
fppf
and
\'etale
topologies
}
\label{section
-
fppf
-
etale
}
\noindent
This
section
is
the
analogue
of
\'Etale
Cohomology
,
Section
\ref{etale
-
cohomology
-
section
-
fppf
-
etale}.
\medskip\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
On
the
category
$
\textit{Spaces}/X$
we
consider
the
fppf
and
\'etale
topologies
.
The
identity
functor
$
(
\textit{Spaces}/X)_\etale
\to
(
\textit{Spaces}/X)_{fppf}$
is
continuous
and
defines
a
morphism
of
sites
$
$
\epsilon_X
:
(
\textit{Spaces}/X)_{fppf
}
\longrightarrow
(
\textit{Spaces}/X)_\etale
$
$
by
an
application
of
Sites
,
Proposition
\ref{sites
-
proposition
-
get
-
morphism}.
Please
note
that
$
\epsilon_{X
,
*
}
$
is
the
identity
functor
on
underlying
presheaves
and
that
$
\epsilon_X^{-1}$
associates
to
an
\'etale
sheaf
the
fppf
sheafification
.
Consider
the
morphism
of
sites
$
$
\pi_X
:
(
\textit{Spaces}/X)_\etale
\longrightarrow
X_{spaces
,
\etale
}
$
$
comparing
big
and
small
\'etale
sites
,
see
Section
\ref{section
-
compare}.
The
composition
determines
a
morphism
of
sites
$
$
a_X
=
\pi_X
\circ
\epsilon_X
:
(
\textit{Spaces}/X)_{fppf
}
\longrightarrow
X_{spaces
,
\etale
}
$
$
If
$
\mathcal{H}$
is
an
abelian
sheaf
on
$
(
\textit{Spaces}/X)_{fppf}$
,
then
we
will
write
$
H^n_{fppf}(U
,
\mathcal{H})$
for
the
cohomology
of
$
\mathcal{H}$
over
an
object
$
U$
of
$
(
\textit{Spaces}/X)_{fppf}$.
\begin{lemma
}
\label{lemma
-
comparison
-
fppf
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
\begin{enumerate
}
\item
For
$
\mathcal{F
}
\in
\Sh(X_\etale)$
we
have
$
\epsilon_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\pi_X^{-1}\mathcal{F}$
and
$
a_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\mathcal{F}$.
\item
For
$
\mathcal{F
}
\in
\textit{Ab}(X_\etale)$
we
have
$
R^i\epsilon_{X
,
*
}
(
a_X^{-1}\mathcal{F
}
)
=
0
$
for
$
i
>
0$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
We
have
$
a_X^{-1}\mathcal{F
}
=
\epsilon_X^{-1
}
\pi_X^{-1}\mathcal{F}$.
By
Lemma
\ref{lemma
-
describe
-
pullback
}
the
\'etale
sheaf
$
\pi_X^{-1}\mathcal{F}$
is
a
sheaf
for
the
fppf
topology
and
therefore
is
equal
to
$
a_X^{-1}\mathcal{F}$
(
as
pulling
back
by
$
\epsilon_X$
is
given
by
fppf
sheafification
)
.
Recall
moreover
that
$
\epsilon_{X
,
*
}
$
is
the
identity
on
underlying
presheaves
.
Now
part
(
1
)
is
immediate
from
the
explicit
description
of
$
\pi_X^{-1}$
in
Lemma
\ref{lemma
-
describe
-
pullback}.
\medskip\noindent
We
will
prove
part
(
2
)
by
reducing
it
to
the
case
of
schemes
--
see
part
(
1
)
of
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
V
-
C
-
all
-
n
-
etale
-
fppf}.
This
will
``
clearly
work
''
as
every
algebraic
space
is
\'etale
locally
a
scheme
.
The
details
are
given
below
but
we
urge
the
reader
to
skip
the
proof
.
\medskip\noindent
For
an
abelian
sheaf
$
\mathcal{H}$
on
$
(
\textit{Spaces}/X)_{fppf}$
the
higher
direct
image
$
R^p\epsilon_{X
,
*
}
\mathcal{H}$
is
the
sheaf
associated
to
the
presheaf
$
U
\mapsto
H^p_{fppf}(U
,
\mathcal{H})$
on
$
(
\textit{Spaces}/X)_\etale$.
See
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
higher
-
direct
-
images}.
Since
every
object
of
$
(
\textit{Spaces}/X)_\etale$
has
a
covering
by
schemes
,
it
suffices
to
prove
that
given
$
U
/
X$
a
scheme
and
$
\xi
\in
H^p_{fppf}(U
,
a_X^{-1}\mathcal{F})$
we
can
find
an
\'etale
covering
$
\{U_i
\to
U\}$
such
that
$
\xi$
restricts
to
zero
on
$
U_i$.
We
have
\begin{align
*
}
H^p_{fppf}(U
,
a_X^{-1}\mathcal{F
}
)
&
=
H^p((\textit{Spaces}/U)_{fppf
}
,
(
a_X^{-1}\mathcal{F})|_{\textit{Spaces}/U
}
)
\\
&
=
H^p((\Sch
/
U)_{fppf
}
,
(
a_X^{-1}\mathcal{F})|_{\Sch
/
U
}
)
\end{align
*
}
where
the
second
identification
is
Lemma
\ref{lemma
-
compare
-
cohomology
-
other
-
topologies
}
and
the
first
is
a
general
fact
about
restriction
(
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
)
.
Looking
at
the
first
paragraph
and
the
corresponding
result
in
the
case
of
schemes
(
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
describe
-
pullback
-
pi
-
fppf
}
)
we
conclude
that
the
sheaf
$
(
a_X^{-1}\mathcal{F})|_{\Sch
/
U}$
matches
the
pullback
by
the
``
schemes
version
of
$
a_U$
''
.
Therefore
we
can
find
an
\'etale
covering
$
\{U_i
\to
U\}$
such
that
our
class
dies
in
$
H^p((\Sch
/
U_i)_{fppf
}
,
(
a_X^{-1}\mathcal{F})|_{\Sch
/
U_i})$
for
each
$
i$
,
see
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
V
-
C
-
all
-
n
-
etale
-
fppf
}
(
the
precise
statement
one
should
use
here
is
that
$
V_n$
holds
for
all
$
n$
which
is
the
statement
of
part
(
2
)
for
the
case
of
schemes
)
.
Transporting
back
(
using
the
same
formulas
as
above
but
now
for
$
U_i$
)
we
conclude
$
\xi$
restricts
to
zero
over
$
U_i$
as
desired
.
\end{proof
}
\noindent
The
hard
work
done
in
the
case
of
schemes
now
tells
us
that
\'etale
and
fppf
cohomology
agree
for
sheaves
coming
from
the
small
\'etale
site
.
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
etale
-
fppf
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
For
$
K
\in
D^+(X_\etale)$
the
maps
$
$
\pi_X^{-1}K
\longrightarrow
R\epsilon_{X
,
*
}
a_X^{-1}K
\quad\text{and}\quad
K
\longrightarrow
Ra_{X
,
*
}
a_X^{-1}K
$
$
are
isomorphisms
with
$
a_X
:
\Sh((\textit{Spaces}/X)_{fppf
}
)
\to
\Sh(X_\etale)$
as
above
.
\end{lemma
}
\begin{proof
}
We
only
prove
the
second
statement
;
the
first
is
easier
and
proved
in
exactly
the
same
manner
.
There
is
an
immediate
reduction
to
the
case
where
$
K$
is
given
by
a
single
abelian
sheaf
.
Namely
,
represent
$
K$
by
a
bounded
below
complex
$
\mathcal{F}^\bullet$.
By
the
case
of
a
sheaf
we
see
that
$
\mathcal{F}^n
=
a_{X
,
*
}
a_X^{-1
}
\mathcal{F}^n$
and
that
the
sheaves
$
R^qa_{X
,
*
}
a_X^{-1}\mathcal{F}^n$
are
zero
for
$
q
>
0$.
By
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
applied
to
$
a_X^{-1}\mathcal{F}^\bullet$
and
the
functor
$
a_{X
,
*
}
$
we
conclude
.
From
now
on
assume
$
K
=
\mathcal{F}$.
\medskip\noindent
By
Lemma
\ref{lemma
-
comparison
-
fppf
-
etale
}
we
have
$
a_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\mathcal{F}$.
Thus
it
suffices
to
show
that
$
R^qa_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
0
$
for
$
q
>
0$.
For
this
we
can
use
$
a_X
=
\epsilon_X
\circ
\pi_X$
and
the
Leray
spectral
sequence
(
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
relative
-
Leray
}
)
.
By
Lemma
\ref{lemma
-
comparison
-
fppf
-
etale
}
we
have
$
R^i\epsilon_{X
,
*
}
(
a_X^{-1}\mathcal{F
}
)
=
0
$
for
$
i
>
0$.
We
have
$
\epsilon_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\pi_X^{-1}\mathcal{F}$
and
by
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
}
we
have
$
R^j\pi_{X
,
*
}
(
\pi_X^{-1}\mathcal{F
}
)
=
0
$
for
$
j
>
0$.
This
concludes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
etale
-
fppf
}
Let
$
S$
be
a
scheme TYPE
and
let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
With
$
a_X
:
\Sh((\textit{Spaces}/X)_{fppf
}
)
\to
\Sh(X_\etale)$
as
above
:
\begin{enumerate
}
\item
$
H^q(X_\etale
,
\mathcal{F
}
)
=
H^q_{fppf}(X
,
a_X^{-1}\mathcal{F})$
for
an
abelian
sheaf
$
\mathcal{F}$
on
$
X_\etale$
,
\item
$
H^q(X_\etale
,
K
)
=
H^q_{fppf}(X
,
a_X^{-1}K)$
for
$
K
\in
D^+(X_\etale)$.
\end{enumerate
}
Example
:
if
$
A$
is
an
abelian
group
,
then
$
H^q_\etale(X
,
\underline{A
}
)
=
H^q_{fppf}(X
,
\underline{A})$.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
-
fppf
}
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
push
-
pull
-
fppf
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
X
\to
Y$
be
a
morphism
of
algebraic
spaces
over
$
S$.
Then
there
are
commutative
diagrams
of
topoi
$
$
\xymatrix
{
\Sh((\textit{Spaces}/X)_{fppf
}
)
\ar[rr]_{f_{big
,
fppf
}
}
\ar[d]_{\epsilon_X
}
&
&
\Sh((\textit{Spaces}/Y)_{fppf
}
)
\ar[d]^{\epsilon_Y
}
\\
\Sh((\textit{Spaces}/X)_\etale
)
\ar[rr]^{f_{big
,
\etale
}
}
&
&
\Sh((\textit{Spaces}/Y)_\etale
)
}
$
$
and
$
$
\xymatrix
{
\Sh((\textit{Spaces}/X)_{fppf
}
)
\ar[rr]_{f_{big
,
fppf
}
}
\ar[d]_{a_X
}
&
&
\Sh((\textit{Spaces}/Y)_{fppf
}
)
\ar[d]^{a_Y
}
\\
\Sh(X_\etale
)
\ar[rr]^{f_{small
}
}
&
&
\Sh(Y_\etale
)
}
$
$
with
$
a_X
=
\pi_X
\circ
\epsilon_X$
and
$
a_Y
=
\pi_X
\circ
\epsilon_X$.
\end{lemma
}
\begin{proof
}
This
follows
immediately
from
working
out
the
definitions
of
the
morphisms
involved
,
see
Topologies
on
Spaces
,
Section
\ref{spaces
-
topologies
-
section
-
fppf
}
and
Section
\ref{section
-
compare}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
proper
-
push
-
pull
-
fppf
-
etale
}
In
Lemma
\ref{lemma
-
push
-
pull
-
fppf
-
etale
}
if
$
f$
is
proper
,
then
we
have
\begin{enumerate
}
\item
$
a_Y^{-1
}
\circ
f_{small
,
*
}
=
f_{big
,
fppf
,
*
}
\circ
a_X^{-1}$
,
and
\item
$
a_Y^{-1}(Rf_{small
,
*
}
K
)
=
Rf_{big
,
fppf
,
*
}
(
a_X^{-1}K)$
for
$
K$
in
$
D^+(X_\etale)$
with
torsion
cohomology
sheaves
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Proof
of
(
1
)
.
You
can
prove
this
by
repeating
the
proof
of
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
-
proper
}
part
(
1
)
;
we
will
instead
deduce
the
result
from
this
.
As
$
\epsilon_{Y
,
*
}
$
is
the
identity
functor
on
underlying
presheaves
,
it
reflects
isomorphisms
.
Lemma
\ref{lemma
-
comparison
-
fppf
-
etale
}
shows
that
$
\epsilon_{Y
,
*
}
\circ
a_Y^{-1
}
=
\pi_Y^{-1}$
and
similarly
for
$
X$.
To
show
that
the
canonical
map
$
a_Y^{-1}f_{small
,
*
}
\mathcal{F
}
\to
f_{big
,
fppf
,
*
}
a_X^{-1}\mathcal{F}$
is
an
isomorphism
,
it
suffices
to
show
that
\begin{align
*
}
\pi_Y^{-1}f_{small
,
*
}
\mathcal{F
}
&
=
\epsilon_{Y
,
*
}
a_Y^{-1}f_{small
,
*
}
\mathcal{F
}
\\
&
\to
\epsilon_{Y
,
*
}
f_{big
,
fppf
,
*
}
a_X^{-1}\mathcal{F
}
\\
&
=
f_{big
,
\etale
,
*
}
\epsilon_{X
,
*
}
a_X^{-1}\mathcal{F
}
\\
&
=
f_{big
,
\etale
,
*
}
\pi_X^{-1}\mathcal{F
}
\end{align
*
}
is
an
isomorphism
.
This
is
part
(
1
)
of
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
-
proper}.
\medskip\noindent
To
see
(
2
)
we
use
that
\begin{align
*
}
R\epsilon_{Y
,
*
}
Rf_{big
,
fppf
,
*
}
a_X^{-1}K
&
=
Rf_{big
,
\etale
,
*
}
R\epsilon_{X
,
*
}
a_X^{-1}K
\\
&
=
Rf_{big
,
\etale
,
*
}
\pi_X^{-1}K
\\
&
=
\pi_Y^{-1}Rf_{small
,
*
}
K
\\
&
=
R\epsilon_{Y
,
*
}
a_Y^{-1}Rf_{small
,
*
}
K
\end{align
*
}
The
first
equality
by
the
commutative
diagram
in
Lemma
\ref{lemma
-
push
-
pull
-
fppf
-
etale
}
and
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
derived
-
pushforward
-
composition}.
Then
second
equality
is
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
-
fppf}.
The
third
is
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
-
proper
}
part
(
2
)
.
The
fourth
is
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
-
fppf
}
again
.
Thus
the
base
change
map
$
a_Y^{-1}(Rf_{small
,
*
}
K
)
\to
Rf_{big
,
fppf
,
*
}
(
a_X^{-1}K)$
induces
an
isomorphism
$
$
R\epsilon_{Y
,
*
}
a_Y^{-1}Rf_{small
,
*
}
K
\to
R\epsilon_{Y
,
*
}
Rf_{big
,
fppf
,
*
}
a_X^{-1}K
$
$
The
proof
is
finished
by
the
following
remark
:
a
map
$
\alpha
:
a_Y^{-1}L
\to
M$
with
$
L$
in
$
D^+(Y_\etale)$
and
$
M$
in
$
D^+((\textit{Spaces}/Y)_{fppf})$
such
that
$
R\epsilon_{Y
,
*
}
\alpha$
is
an
isomorphism
,
is
an
isomorphism
.
Namely
,
we
show
by
induction
on
$
i$
that
$
H^i(\alpha)$
is
an
isomorphism
.
This
is
true
for
all
sufficiently
small
$
i$.
If
it
holds
for
$
i
\leq
i_0
$
,
then
we
see
that
$
R^j\epsilon_{Y
,
*
}
H^i(M
)
=
0
$
for
$
j
>
0
$
and
$
i
\leq
i_0
$
by
Lemma
\ref{lemma
-
comparison
-
fppf
-
etale
}
because
$
H^i(M
)
=
a_Y^{-1}H^i(L)$
in
this
range
.
Hence
$
\epsilon_{Y
,
*
}
H^{i_0
+
1}(M
)
=
H^{i_0
+
1}(R\epsilon_{Y
,
*
}
M)$
by
a
spectral
sequence
argument
.
Thus
$
\epsilon_{Y
,
*
}
H^{i_0
+
1}(M
)
=
\pi_Y^{-1}H^{i_0
+
1}(L
)
=
\epsilon_{Y
,
*
}
a_Y^{-1}H^{i_0
+
1}(L)$.
This
implies
$
H^{i_0
+
1}(\alpha)$
is
an
isomorphism
(
because
$
\epsilon_{Y
,
*
}
$
reflects
isomorphisms
as
it
is
the
identity
on
underlying
presheaves
)
as
desired
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
finite
-
push
-
pull
-
fppf
-
etale
}
In
Lemma
\ref{lemma
-
push
-
pull
-
fppf
-
etale
}
if
$
f$
is
finite
,
then
$
a_Y^{-1}(Rf_{small
,
*
}
K
)
=
Rf_{big
,
fppf
,
*
}
(
a_X^{-1}K)$
for
$
K$
in
$
D^+(X_\etale)$.
\end{lemma
}
\begin{proof
}
Let
$
V
\to
Y$
be
a
surjective TYPE
\'etale
morphism
where
$
V$
is
a
scheme
.
It
suffices
to
prove
the
base
change
map
is
an
isomorphism
after
restricting
to
$
V$.
Hence
we
may
assume
that
$
Y$
is
a
scheme
.
As
the
morphism
is
finite
,
hence
representable
,
we
conclude
that
we
may
assume
both
$
X$
and
$
Y$
are
schemes
.
In
this
case
the
result
follows
from
the
case
of
schemes
(
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
V
-
C
-
all
-
n
-
etale
-
fppf
}
part
(
2
)
)
using
the
comparison
of
topoi
discussed
in
Section
\ref{section
-
api
}
and
in
particular
given
in
Lemma
\ref{lemma
-
compare
-
cohomology
-
other
-
topologies}.
Some
details
omitted
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
descent
-
sheaf
-
fppf
-
etale
}
In
Lemma
\ref{lemma
-
push
-
pull
-
fppf
-
etale
}
assume
$
f$
is
flat
,
locally
of
finite
presentation
,
and
surjective
.
Then
the
functor
$
$
\Sh(Y_\etale
)
\longrightarrow
\left\
{
(
\mathcal{G
}
,
\mathcal{H
}
,
\alpha
)
\middle|
\begin{matrix
}
\mathcal{G
}
\in
\Sh(X_\etale),\
\mathcal{H
}
\in
\Sh((\Sch
/
Y)_{fppf
}
)
,
\\
\alpha
:
a_X^{-1}\mathcal{G
}
\to
f_{big
,
fppf}^{-1}\mathcal{H
}
\text
{
an
isomorphism
}
\end{matrix
}
\right\
}
$
$
sending
$
\mathcal{F}$
to
$
(
f_{small}^{-1}\mathcal{F
}
,
a_Y^{-1}\mathcal{F
}
,
can)$
is
an
equivalence
.
\end{lemma
}
\begin{proof
}
The
functor
$
a_X^{-1}$
is
fully
faithful
(
as
$
a_{X
,
*
}
a_X^{-1
}
=
\text{id}$
by
Lemma
\ref{lemma
-
comparison
-
fppf
-
etale
}
)
.
Hence
the
forgetful
functor
$
(
\mathcal{G
}
,
\mathcal{H
}
,
\alpha
)
\mapsto
\mathcal{H}$
identifies
the
category
of
triples
with
a
full
subcategory
of
$
\Sh((\Sch
/
Y)_{fppf})$.
Moreover
,
the
functor
$
a_Y^{-1}$
is
fully
faithful
,
hence
the
functor
in
the
lemma
is
fully
faithful
as
well
.
\medskip\noindent
Suppose
that
we
have
an
\'etale
covering
$
\{Y_i
\to
Y\}$.
Let
$
f_i
:
X_i
\to
Y_i$
be
the
base
change
of
$
f$.
Denote
$
f_{ij
}
=
f_i
\times
f_j
:
X_i
\times_X
X_j
\to
Y_i
\times_Y
Y_j$.
Claim
:
if
the
lemma
is
true
for
$
f_i$
and
$
f_{ij}$
for
all
$
i
,
j$
,
then
the
lemma
is
true
for
$
f$.
To
see
this
,
note
that
the
given
\'etale
covering
determines
an
\'etale
covering
of
the
final
object
in
each
of
the
four
sites
$
Y_\etale
,
X_\etale
,
(
\Sch
/
Y)_{fppf
}
,
(
\Sch
/
X)_{fppf}$.
Thus
the
category
of
sheaves
is
equivalent
to
the
category
of
glueing
data
for
this
covering
(
Sites
,
Lemma
\ref{sites
-
lemma
-
mapping
-
property
-
glue
}
)
in
each
of
the
four
cases
.
A
huge
commutative
diagram
of
categories
then
finishes
the
proof
of
the
claim
.
We
omit
the
details
.
The
claim
shows
that
we
may
work
\'etale
locally
on
$
Y$.
In
particular
,
we
may
assume
$
Y$
is
a
scheme
.
\medskip\noindent
Assume
$
Y$
is
a
scheme
.
Choose
a
scheme
$
X'$
and
a
surjective
\'etale
morphism
$
s
:
X
'
\to
X$.
Set
$
f
'
=
f
\circ
s
:
X
'
\to
Y$
and
observe
that
$
f'$
is
surjective
,
locally
of
finite
presentation
,
and
flat
.
Claim
:
if
the
lemma
is
true
for
$
f'$
,
then
it
is
true
for
$
f$.
Namely
,
given
a
triple
$
(
\mathcal{G
}
,
\mathcal{H
}
,
\alpha)$
for
$
f$
,
we
can
pullback
by
$
s$
to
get
a
triple
$
(
s_{small}^{-1}\mathcal{G
}
,
\mathcal{H
}
,
s_{big
,
fppf}^{-1}\alpha)$
for
$
f'$.
A
solution
for
this
triple
gives
a
sheaf
$
\mathcal{F}$
on
$
Y_\etale$
with
$
a_Y^{-1}\mathcal{F
}
=
\mathcal{H}$.
By
the
first
paragraph
of
the
proof
this
means
the
triple
is
in
the
essential
image
.
This
reduces
us
to
the
case
where
both
$
X$
and
$
Y$
are
schemes
.
This
case
follows
from
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
descent
-
sheaf
-
fppf
-
etale
}
via
the
discussion
in
Section
\ref{section
-
api
}
and
in
particular
Lemma
\ref{lemma
-
compare
-
cohomology
-
other
-
topologies}.
\end{proof
}
\section{Comparing
fppf
and
\'etale
topologies
:
modules
}
\label{section
-
fppf
-
etale
-
modules
}
\noindent
We
continue
the
discussion
in
Section
\ref{section
-
fppf
-
etale
}
but
in
this
section
we
briefly
discuss
what
happens
for
sheaves
of
modules
.
\medskip\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
The
morphisms
of
sites
$
\epsilon_X$
,
$
\pi_X$
,
and
their
composition
$
a_X$
introduced
in
Section
\ref{section
-
fppf
-
etale
}
have
natural
enhancements
to
morphisms
of
ringed
sites
.
The
first
is
written
as
$
$
\epsilon_X
:
(
(
\textit{Spaces}/X)_{fppf
}
,
\mathcal{O
}
)
\longrightarrow
(
(
\textit{Spaces}/X)_\etale
,
\mathcal{O
}
)
$
$
Note
that
we
can
use
the
same
symbol
for
the
structure
sheaf
as
indeed
the
sheaves
have
the
same
underlying
presheaf
.
The
second
is
$
$
\pi_X
:
(
(
\textit{Spaces}/X)_\etale
,
\mathcal{O
}
)
\longrightarrow
(
X_\etale
,
\mathcal{O}_X
)
$
$
The
third
is
the
morphism
$
$
a_X
:
(
(
\textit{Spaces}/X)_{fppf
}
,
\mathcal{O
}
)
\longrightarrow
(
X_\etale
,
\mathcal{O}_X
)
$
$
Let
us
review
what
we
already
know
about
quasi
-
coherent
modules
on
these
sites
.
\begin{lemma
}
\label{lemma
-
review
-
quasi
-
coherent
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
\mathcal{F}$
be
a
quasi TYPE
- TYPE
coherent TYPE
$
\mathcal{O}_X$-module
.
\begin{enumerate
}
\item
The
rule
$
$
\mathcal{F}^a
:
(
\textit{Spaces}/X)_\etale
\longrightarrow
\textit{Ab},\quad
(
f
:
Y
\to
X
)
\longmapsto
\Gamma(Y
,
f^*\mathcal{F
}
)
$
$
satisfies
the
sheaf
condition
for
fpqc
and
a
fortiori
fppf
and
\'etale
coverings
,
\item
$
\mathcal{F}^a
=
\pi_X^*\mathcal{F}$
on
$
(
\textit{Spaces}/X)_\etale$
,
\item
$
\mathcal{F}^a
=
a_X^*\mathcal{F}$
on
$
(
\textit{Spaces}/X)_{fppf}$
,
\item
the
rule
$
\mathcal{F
}
\mapsto
\mathcal{F}^a$
defines
an
equivalence
between
quasi
-
coherent
$
\mathcal{O}_X$-modules
and
quasi
-
coherent
modules
on
$
(
(
\textit{Spaces}/X)_\etale
,
\mathcal{O})$
,
\item
the
rule
$
\mathcal{F
}
\mapsto
\mathcal{F}^a$
defines
an
equivalence
between
quasi
-
coherent
$
\mathcal{O}_X$-modules
and
quasi
-
coherent
modules
on
$
(
(
\textit{Spaces}/X)_{fppf
}
,
\mathcal{O})$
,
\item
we
have
$
\epsilon_{X
,
*
}
a_X^*\mathcal{F
}
=
\pi_X^*\mathcal{F}$
and
$
a_{X
,
*
}
a_X^*\mathcal{F
}
=
\mathcal{F}$
,
\item
we
have
$
R^i\epsilon_{X
,
*
}
(
a_X^*\mathcal{F
}
)
=
0
$
and
$
R^ia_{X
,
*
}
(
a_X^*\mathcal{F
}
)
=
0
$
for
$
i
>
0$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Part
(
1
)
is
a
consequence
of
fppf
descent
of
quasi
-
coherent
modules
.
Namely
,
suppose
that
$
\{f_i
:
U_i
\to
U\}$
is
an
fpqc
covering
in
$
(
\textit{Spaces}/X)_\etale$.
Denote
$
g
:
U
\to
X$
the
structure
morphism
.
Suppose
that
we
have
a
family
of
sections
$
s_i
\in
\Gamma(U_i
,
f_i^*g^*\mathcal{F})$
such
that
$
s_i|_{U_i
\times_U
U_j
}
=
s_j|_{U_i
\times_U
U_j}$.
We
have
to
find
the
correspond
section
$
s
\in
\Gamma(U
,
g^*\mathcal{F})$.
We
can
reinterpret
the
$
s_i$
as
a
family
of
maps
$
\varphi_i
:
f_i^*\mathcal{O}_U
=
\mathcal{O}_{U_i
}
\to
f_i^*g^*\mathcal{F}$
compatible
with
the
canonical
descent
data
associated
to
the
quasi
-
coherent
sheaves
$
\mathcal{O}_U$
and
$
g^*\mathcal{F}$
on
$
U$.
Hence
by
Descent
on
Spaces
,
Proposition
\ref{spaces
-
descent
-
proposition
-
fpqc
-
descent
-
quasi
-
coherent
}
we
see
that
we
may
(
uniquely
)
descend
these
to
a
map
$
\mathcal{O}_U
\to
g^*\mathcal{F}$
which
gives
us
our
section
$
s$.
\medskip\noindent
We
will
deduce
(
2
)
--
(
7
)
from
the
corresponding
statement
for
schemes
.
Choose
an
\'etale
covering
$
\{X_i
\to
X\}_{i
\in
I}$
where
each
$
X_i$
is
a
scheme
.
Observe
that
$
X_i
\times_X
X_j$
is
a
scheme
too
.
This
covering
induces
a
covering
of
the
final
object
in
each
of
the
three
sites
$
(
\textit{Spaces}/X)_{fppf}$
,
$
(
\textit{Spaces}/X)_\etale$
,
and
$
X_\etale$.
Hence
we
see
that
the
category
of
sheaves
on
these
sites
are
equivalent
to
descent
data
for
these
coverings
,
see
Sites
,
Lemma
\ref{sites
-
lemma
-
mapping
-
property
-
glue}.
Parts
(
2
)
,
(
3
)
are
local
(
because
we
have
the
glueing
statement
)
.
Being
quasi
-
coherent
is
a
local
property
,
hence
parts
(
4
)
,
(
5
)
are
local
.
Clearly
(
6
)
and
(
7
)
are
local
.
It
follows
that
it
suffices
to
prove
parts
(
2
)
--
(
7
)
of
the
lemma
when
$
X$
is
a
scheme
.
\medskip\noindent
Assume
$
X$
is
a
scheme
.
The
embeddings
$
(
\Sch
/
X)_\etale
\subset
(
\textit{Spaces}/X)_\etale$
and
$
(
\Sch
/
X)_{fppf
}
\subset
(
\textit{Spaces}/X)_{fppf}$
determine
equivalences
of
ringed
topoi
by
Lemma
\ref{lemma
-
compare
-
cohomology
-
other
-
topologies}.
We
conclude
that
(
2
)
--
(
7
)
follows
from
the
case
of
schemes
.
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
review
-
quasi
-
coherent}.
To
transport
the
property
of
being
quasi
-
coherent
via
this
equivalence
use
that
being
quasi
-
coherent
is
an
intrinsic
property
of
modules
as
explained
in
Modules
on
Sites
,
Section
\ref{sites
-
modules
-
section
-
local}.
Some
minor
details
omitted
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
etale
-
fppf
-
modules
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
For
$
\mathcal{F}$
a
quasi
-
coherent
$
\mathcal{O}_X$-module
the
maps
$
$
\pi_X^*\mathcal{F
}
\longrightarrow
R\epsilon_{X
,
*
}
(
a_X^*\mathcal{F
}
)
\quad\text{and}\quad
\mathcal{F
}
\longrightarrow
Ra_{X
,
*
}
(
a_X^*\mathcal{F
}
)
$
$
are
isomorphisms
.
\end{lemma
}
\begin{proof
}
This
is
an
immediate
consequence
of
parts
(
6
)
and
(
7
)
of
Lemma
\ref{lemma
-
review
-
quasi
-
coherent}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
vanishing
-
adequate
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
Let
$
\mathcal{F}_1
\to
\mathcal{F}_2
\to
\mathcal{F}_3
$
be
a
complex TYPE
of
quasi
-
coherent
$
\mathcal{O}_X$-modules
.
Set
$
$
\mathcal{H}_\etale
=
\Ker(\pi_X^*\mathcal{F}_2
\to
\pi_X^*\mathcal{F}_3)/
\Im(\pi_X^*\mathcal{F}_1
\to
\pi_X^*\mathcal{F}_2
)
$
$
on
$
(
\textit{Spaces}/X)_\etale$
and
set
$
$
\mathcal{H}_{fppf
}
=
\Ker(a_X^*\mathcal{F}_2
\to
a_X^*\mathcal{F}_3)/
\Im(a_X^*\mathcal{F}_1
\to
a_X^*\mathcal{F}_2
)
$
$
on
$
(
\textit{Spaces}/X)_{fppf}$.
Then
$
\mathcal{H}_\etale
=
\epsilon_{X
,
*
}
\mathcal{H}_{fppf}$
and
$
$
H^p_\etale(U
,
\mathcal{H}_\etale
)
=
H^p_{fppf}(U
,
\mathcal{H}_{fppf
}
)
=
0
$
$
for
$
p
>
0
$
and
any
affine
object
$
U$
of
$
(
\textit{Spaces}/X)_\etale$.
\end{lemma
}
\noindent
More
is
true
,
namely
the
collection
of
modules
on
$
(
\textit{Spaces}/X)_{fppf}$
which
fppf
locally
look
like
those
in
the
lemma
are
called
adquate
modules
.
They
form
a
weak
Serre
subcategory
of
the
category
of
all
$
\mathcal{O}$-modules
and
their
cohomology
is
studied
in
Adequate
Modules
,
Section
\ref{adequate
-
section
-
adequate}.
\begin{proof
}
For
any
object
$
f
:
U
\to
X$
of
$
(
\textit{Spaces}/X)_\etale$
consider
the
restriction
$
\mathcal{H}_\etale|_{U_\etale}$
of
$
\mathcal{H}_\etale$
to
$
U_\etale$
via
the
functor
$
i_f^
*
=
i_f^{-1}$
discussed
in
Section
\ref{section
-
compare}.
The
sheaf
$
\mathcal{H}_\etale|_{U_\etale}$
is
equal
to
the
homology
of
complex
$
f^*\mathcal{F}_\bullet$
in
degree
$
1$.
This
is
true
because
$
i_f
\circ
\pi_X
=
f$
as
morphisms
of
ringed
sites
$
U_\etale
\to
X_\etale$.
In
particular
we
see
that
$
\mathcal{H}_\etale|_{U_\etale}$
is
a
quasi
-
coherent
$
\mathcal{O}_U$-module
.
Next
,
let
$
g
:
V
\to
U$
be
a
flat TYPE
morphism
in
$
(
\textit{Spaces}/X)_\etale$.
Since
$
$
i_{f
\circ
g}^
*
\circ
\pi_X^
*
=
(
f
\circ
g)^
*
=
g^
*
\circ
f^
*
$
$
as
morphisms
of
sites
$
V_\etale
\to
X_\etale$
and
since
$
g$
is
flat
hence
$
g^*$
is
exact
,
we
obtain
$
$
\mathcal{H}_\etale|_{V_\etale
}
=
g^*\left(\mathcal{H}_\etale|_{U_\etale}\right
)
$
$
With
these
preparations
we
are
ready
to
prove
the
lemma
.
\medskip\noindent
Let
$
\mathcal{U
}
=
\{g_i
:
U_i
\to
U\}_{i
\in
I}$
be
an
fppf
covering
with
$
f
:
U
\to
X$
as
above
.
The
sheaf
propery
holds
for
$
\mathcal{H}_\etale$
and
the
covering
$
\mathcal{U}$
by
(
1
)
of
Lemma
\ref{lemma
-
review
-
quasi
-
coherent
}
applied
to
$
\mathcal{H}_\etale|_{U_\etale}$
and
the
above
.
Therefore
we
see
that
$
\mathcal{H}_\etale$
is
already
an
fppf
sheaf
and
this
means
that
$
\mathcal{H}_{fppf}$
is
equal
to
$
\mathcal{H}_\etale$
as
a
presheaf
.
In
particular
$
\mathcal{H}_\etale
=
\epsilon_{X
,
*
}
\mathcal{H}_{fppf}$.
\medskip\noindent
Finally
,
to
prove
the
vanishing
,
we
use
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cech
-
vanish
-
collection}.
We
let
$
\mathcal{B}$
be
the
affine
objects
of
$
(
\textit{Spaces}/X)_{fppf}$
and
we
let
$
\text{Cov}$
be
the
set
of
finite
fppf
coverings
$
\mathcal{U
}
=
\{U_i
\to
U\}_{i
=
1
,
\ldots
,
n}$
with
$
U$
,
$
U_i$
affine
.
We
have
$
$
{
\check
H}^p(\mathcal{U
}
,
\mathcal{H}_\etale
)
=
{
\check
H}^p(\mathcal{U
}
,
\left(\mathcal{H}_\etale|_{U_\etale}\right)^a
)
$
$
because
the
values
of
$
\mathcal{H}_\etale$
on
the
affine
schemes
$
U_{i_0
}
\times_U
\ldots
\times_U
U_{i_p}$
flat
over
$
U$
agree
with
the
values
of
the
pullback
of
the
quasi
-
coherent
module
$
\mathcal{H}_\etale|_{U_\etale}$
by
the
first
paragraph
.
Hence
we
obtain
vanishing
by
Descent
,
Lemma
\ref{descent
-
lemma
-
standard
-
covering
-
Cech
-
quasi
-
coherent}.
This
finishes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
etale
-
fppf
-
modules
-
unbounded
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
For
$
K
\in
D_\QCoh(\mathcal{O}_X)$
the
maps
$
$
L\pi_X^*K
\longrightarrow
R\epsilon_{X
,
*
}
(
La_X^*\mathcal{F
}
)
\quad\text{and}\quad
K
\longrightarrow
Ra_{X
,
*
}
(
La_X^*K
)
$
$
are
isomorphisms
.
Here
$
a_X
:
\Sh((\textit{Spaces}/X)_{fppf
}
)
\to
\Sh(X_\etale)$
is
as
above
.
\end{lemma
}
\begin{proof
}
The
question
is
\'etale
local
on
$
X$
hence
we
may
assume
$
X$
is
affine
.
Say
$
X
=
\Spec(A)$.
Then
we
have
$
D_\QCoh(\mathcal{O}_X
)
=
D(A)$
by
Derived
Categories
of
Spaces
,
Lemma
\ref{spaces
-
perfect
-
lemma
-
derived
-
quasi
-
coherent
-
small
-
etale
-
site
}
and
Derived
Categories
of
Schemes
,
Lemma
\ref{perfect
-
lemma
-
affine
-
compare
-
bounded}.
Hence
we
can
choose
an
K
-
flat
complex
of
$
A$
-modules
$
K^\bullet$
whose
corresponding
complex
$
\mathcal{K}^\bullet$
of
quasi
-
coherent
$
\mathcal{O}_X$-modules
represents
$
K$.
We
claim
that
$
\mathcal{K}^\bullet$
is
a
K
-
flat
complex
of
$
\mathcal{O}_X$-modules
.
\medskip\noindent
Proof
of
the
claim
.
By
Derived
Categories
of
Schemes
,
Lemma
\ref{perfect
-
lemma
-
affine
-
K
-
flat
}
we
see
that
$
\widetilde{K}^\bullet$
is
K
-
flat
on
the
scheme
$
(
\Spec(A
)
,
\mathcal{O}_{\Spec(A)})$.
Next
,
note
that
$
\mathcal{K}^\bullet
=
\epsilon^*\widetilde{K}^\bullet$
where
$
\epsilon$
is
as
in
Derived
Categories
of
Spaces
,
Lemma
\ref{spaces
-
perfect
-
lemma
-
derived
-
quasi
-
coherent
-
small
-
etale
-
site
}
whence
$
\mathcal{K}^\bullet$
is
K
-
flat
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
pullback
-
K
-
flat
-
points
}
and
the
fact
that
the
\'etale
site
of
a
scheme
has
enough
points
(
\'Etale
Cohomology
,
Remarks
\ref{etale
-
cohomology
-
remarks
-
enough
-
points
}
)
.
\medskip\noindent
By
the
claim
we
see
that
$
La_X^*K
=
a_X^*\mathcal{K}^\bullet$
and
$
L\pi_X^*K
=
\pi_X^*\mathcal{K}^\bullet$.
Since
the
first
part
of
the
proof
shows
that
the
pullback
$
a_X^*\mathcal{K}^n$
of
the
quasi
-
coherent
module
is
acyclic
for
$
\epsilon_{X
,
*
}
$
,
resp.\
$
a_{X
,
*
}
$
,
surely
the
proof
is
done
by
Leray
's
acyclicity
lemma
?
Actually
...
,
no
because
Leray
's
acyclicity
lemma
only
applies
to
bounded
below
complexes
.
However
,
in
the
next
paragraph
we
will
show
the
result
does
follow
from
the
bounded
below
case
because
our
complex
is
the
derived
limit
of
bounded
below
complexes
of
quasi
-
coherent
modules
.
\medskip\noindent
The
cohomology
sheaves
of
$
\pi_X^*\mathcal{K}^\bullet$
and
$
a_X^*\mathcal{K}^\bullet$
have
vanishing
higher
cohomology
groups
over
affine
objects
of
$
(
\textit{Spaces}/X)_\etale$
by
Lemma
\ref{lemma
-
vanishing
-
adequate}.
Therefore
we
have
$
$
L\pi_X^*K
=
R\lim
\tau_{\geq
-n}(L\pi_X^*K
)
\quad\text{and}\quad
La_X^*K
=
R\lim
\tau_{\geq
-n}(La_X^*K
)
$
$
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
is
-
limit
-
dimension}.
\medskip\noindent
Proof
of
$
L\pi_X^*K
=
R\epsilon_{X
,
*
}
(
La_X^*\mathcal{F})$.
By
the
above
we
have
$
$
R\epsilon_{X
,
*
}
La_X^*K
=
R\lim
R\epsilon_{X
,
*
}
(
\tau_{\geq
-n}(La_X^*K
)
)
$
$
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
Rf
-
commutes
-
with
-
Rlim}.
Note
that
$
\tau_{\geq
-n}(La_X^*K)$
is
represented
by
$
\tau_{\geq
-n}(a_X^*\mathcal{K}^\bullet)$
which
may
not
be
the
same
as
$
a_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet)$.
But
clearly
the
systems
$
$
\{\tau_{\geq
-n}(a_X^*\mathcal{K}^\bullet)\}_{n
\geq
1
}
\quad\text{and}\quad
\{a_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet)\}_{n
\geq
1
}
$
$
are
isomorphic
as
pro
-
systems
.
By
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
and
the
first
part
of
the
lemma
we
see
that
$
$
R\epsilon_{X
,
*
}
(
a_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet
)
)
=
\pi_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet
)
$
$
Then
we
can
use
that
the
systems
$
$
\{\tau_{\geq
-n}(\pi_X^*\mathcal{K}^\bullet)\}_{n
\geq
1
}
\quad\text{and}\quad
\{\pi_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet)\}_{n
\geq
1
}
$
$
are
isomorphic
as
pro
-
systems
.
Finally
,
we
put
everything
together
as
follows
\begin{align
*
}
R\epsilon_{X
,
*
}
La_X^*K
&
=
R\epsilon_{X
,
*
}
(
R\lim
\tau_{\geq
-n}(La_X^*K
)
)
\\
&
=
R\lim
R\epsilon_{X
,
*
}
(
\tau_{\geq
-n}(La_X^*K
)
)
\\
&
=
R\lim
R\epsilon_{X
,
*
}
(
\tau_{\geq
-n}(a_X^*\mathcal{K}^\bullet
)
)
\\
&
=
R\lim
R\epsilon_{X
,
*
}
(
a_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet
)
)
\\
&
=
R\lim
\pi_X^*(\tau_{\geq
-n}\mathcal{K}^\bullet
)
\\
&
=
R\lim
\tau_{\geq
-n}(\pi_X^*\mathcal{K}^\bullet
)
\\
&
=
R\lim
\tau_{\geq
-n}(L\pi_X^*K
)
\\
&
=
L\pi_X^*K
\end{align
*
}
Here
in
equalities
four
and
six
we
have
used
that
isomorphic
pro
-
systems
have
the
same
$
R\lim$
(
small
detail
omitted
)
.
You
can
avoid
this
step
by
using
more
about
cohomology
of
the
terms
of
the
complex
$
\tau_{\geq
-n}a_X^*\mathcal{K}^\bullet$
proved
in
Lemma
\ref{lemma
-
vanishing
-
adequate
}
as
this
will
prove
directly
that
$
R\epsilon_{X
,
*
}
(
\tau_{\geq
-n}(a_X^*\mathcal{K}^\bullet
)
)
=
\tau_{\geq
-n}(\pi_X^*\mathcal{K}^\bullet)$.
\medskip\noindent
The
equality
$
K
=
Ra_{X
,
*
}
(
La_X^*\mathcal{F})$
is
proved
in
exactly
the
same
way
using
in
the
final
step
that
$
K
=
R\lim
\tau_{\geq
-n}K$
by
Derived
Categories
of
Spaces
,
Lemma
\ref{spaces
-
perfect
-
lemma
-
nice
-
K
-
injective}.
\end{proof
}
\section{Comparing
ph
and
\'etale
topologies
}
\label{section
-
ph
-
etale
}
\noindent
This
section
is
the
analogue
of
\'Etale
Cohomology
,
Section
\ref{etale
-
cohomology
-
section
-
ph
-
etale}.
\medskip\noindent
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
On
the
category
$
\textit{Spaces}/X$
we
consider
the
ph
and
\'etale
topologies
.
The
identity
functor
$
(
\textit{Spaces}/X)_\etale
\to
(
\textit{Spaces}/X)_{ph}$
is
continuous
as
every
\'etale
covering
is
a
ph
covering
by
Topologies
on
Spaces
,
Lemma
\ref{spaces
-
topologies
-
lemma
-
zariski
-
etale
-
smooth
-
syntomic
-
fppf
-
ph}.
Hence
it
defines
a
morphism
of
sites
$
$
\epsilon_X
:
(
\textit{Spaces}/X)_{ph
}
\longrightarrow
(
\textit{Spaces}/X)_\etale
$
$
by
an
application
of
Sites
,
Proposition
\ref{sites
-
proposition
-
get
-
morphism}.
Please
note
that
$
\epsilon_{X
,
*
}
$
is
the
identity
functor
on
underlying
presheaves
and
that
$
\epsilon_X^{-1}$
associates
to
an
\'etale
sheaf
the
ph
sheafification
.
Consider
the
morphism
of
sites
$
$
\pi_X
:
(
\textit{Spaces}/X)_\etale
\longrightarrow
X_{spaces
,
\etale
}
$
$
comparing
big
and
small
\'etale
sites
,
see
Section
\ref{section
-
compare}.
The
composition
determines
a
morphism
of
sites
$
$
a_X
=
\pi_X
\circ
\epsilon_X
:
(
\textit{Spaces}/X)_{ph
}
\longrightarrow
X_{spaces
,
\etale
}
$
$
If
$
\mathcal{H}$
is
an
abelian
sheaf
on
$
(
\textit{Spaces}/X)_{ph}$
,
then
we
will
write
$
H^n_{ph}(U
,
\mathcal{H})$
for
the
cohomology
of
$
\mathcal{H}$
over
an
object
$
U$
of
$
(
\textit{Spaces}/X)_{ph}$.
\begin{lemma
}
\label{lemma
-
comparison
-
ph
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
\begin{enumerate
}
\item
For
$
\mathcal{F
}
\in
\Sh(X_\etale)$
we
have
$
\epsilon_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\pi_X^{-1}\mathcal{F}$
and
$
a_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\mathcal{F}$.
\item
For
$
\mathcal{F
}
\in
\textit{Ab}(X_\etale)$
torsion
we
have
$
R^i\epsilon_{X
,
*
}
(
a_X^{-1}\mathcal{F
}
)
=
0
$
for
$
i
>
0$.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
We
have
$
a_X^{-1}\mathcal{F
}
=
\epsilon_X^{-1
}
\pi_X^{-1}\mathcal{F}$.
By
Lemma
\ref{lemma
-
describe
-
pullback
}
the
\'etale
sheaf
$
\pi_X^{-1}\mathcal{F}$
is
a
sheaf
for
the
ph
topology
and
therefore
is
equal
to
$
a_X^{-1}\mathcal{F}$
(
as
pulling
back
by
$
\epsilon_X$
is
given
by
ph
sheafification
)
.
Recall
moreover
that
$
\epsilon_{X
,
*
}
$
is
the
identity
on
underlying
presheaves
.
Now
part
(
1
)
is
immediate
from
the
explicit
description
of
$
\pi_X^{-1}$
in
Lemma
\ref{lemma
-
describe
-
pullback}.
\medskip\noindent
We
will
prove
part
(
2
)
by
reducing
it
to
the
case
of
schemes
--
see
part
(
1
)
of
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
V
-
C
-
all
-
n
-
etale
-
ph}.
This
will
``
clearly
work
''
as
every
algebraic
space
is
\'etale
locally
a
scheme
.
The
details
are
given
below
but
we
urge
the
reader
to
skip
the
proof
.
\medskip\noindent
For
an
abelian
sheaf
$
\mathcal{H}$
on
$
(
\textit{Spaces}/X)_{ph}$
the
higher
direct
image
$
R^p\epsilon_{X
,
*
}
\mathcal{H}$
is
the
sheaf
associated
to
the
presheaf
$
U
\mapsto
H^p_{ph}(U
,
\mathcal{H})$
on
$
(
\textit{Spaces}/X)_\etale$.
See
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
higher
-
direct
-
images}.
Since
every
object
of
$
(
\textit{Spaces}/X)_\etale$
has
a
covering
by
schemes
,
it
suffices
to
prove
that
given
$
U
/
X$
a
scheme
and
$
\xi
\in
H^p_{ph}(U
,
a_X^{-1}\mathcal{F})$
we
can
find
an
\'etale
covering
$
\{U_i
\to
U\}$
such
that
$
\xi$
restricts
to
zero
on
$
U_i$.
We
have
\begin{align
*
}
H^p_{ph}(U
,
a_X^{-1}\mathcal{F
}
)
&
=
H^p((\textit{Spaces}/U)_{ph
}
,
(
a_X^{-1}\mathcal{F})|_{\textit{Spaces}/U
}
)
\\
&
=
H^p((\Sch
/
U)_{ph
}
,
(
a_X^{-1}\mathcal{F})|_{\Sch
/
U
}
)
\end{align
*
}
where
the
second
identification
is
Lemma
\ref{lemma
-
compare
-
cohomology
-
other
-
topologies
}
and
the
first
is
a
general
fact
about
restriction
(
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
cohomology
-
of
-
open
}
)
.
Looking
at
the
first
paragraph
and
the
corresponding
result
in
the
case
of
schemes
(
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
describe
-
pullback
-
pi
-
ph
}
)
we
conclude
that
the
sheaf
$
(
a_X^{-1}\mathcal{F})|_{\Sch
/
U}$
matches
the
pullback
by
the
``
schemes
version
of
$
a_U$
''
.
Therefore
we
can
find
an
\'etale
covering
$
\{U_i
\to
U\}$
such
that
our
class
dies
in
$
H^p((\Sch
/
U_i)_{ph
}
,
(
a_X^{-1}\mathcal{F})|_{\Sch
/
U_i})$
for
each
$
i$
,
see
\'Etale
Cohomology
,
Lemma
\ref{etale
-
cohomology
-
lemma
-
V
-
C
-
all
-
n
-
etale
-
ph
}
(
the
precise
statement
one
should
use
here
is
that
$
V_n$
holds
for
all
$
n$
which
is
the
statement
of
part
(
2
)
for
the
case
of
schemes
)
.
Transporting
back
(
using
the
same
formulas
as
above
but
now
for
$
U_i$
)
we
conclude
$
\xi$
restricts
to
zero
over
$
U_i$
as
desired
.
\end{proof
}
\noindent
The
hard
work
done
in
the
case
of
schemes
now
tells
us
that
\'etale
and
ph
cohomology
agree
for
torsion
abelian
sheaves
coming
from
the
small
\'etale
site
.
\begin{lemma
}
\label{lemma
-
cohomological
-
descent
-
etale
-
ph
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
For
$
K
\in
D^+(X_\etale)$
with
torsion
cohomology
sheaves
the
maps
$
$
\pi_X^{-1}K
\longrightarrow
R\epsilon_{X
,
*
}
a_X^{-1}K
\quad\text{and}\quad
K
\longrightarrow
Ra_{X
,
*
}
a_X^{-1}K
$
$
are
isomorphisms
with
$
a_X
:
\Sh((\textit{Spaces}/X)_{ph
}
)
\to
\Sh(X_\etale)$
as
above
.
\end{lemma
}
\begin{proof
}
We
only
prove
the
second
statement
;
the
first
is
easier
and
proved
in
exactly
the
same
manner
.
There
is
a
reduction
to
the
case
where
$
K$
is
given
by
a
single
torsion
abelian
sheaf
.
Namely
,
represent
$
K$
by
a
bounded
below
complex
$
\mathcal{F}^\bullet$
of
torsion
abelian
sheaves
.
This
is
possible
by
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
torsion}.
By
the
case
of
a
sheaf
we
see
that
$
\mathcal{F}^n
=
a_{X
,
*
}
a_X^{-1
}
\mathcal{F}^n$
and
that
the
sheaves
$
R^qa_{X
,
*
}
a_X^{-1}\mathcal{F}^n$
are
zero
for
$
q
>
0$.
By
Leray
's
acyclicity
lemma
(
Derived
Categories
,
Lemma
\ref{derived
-
lemma
-
leray
-
acyclicity
}
)
applied
to
$
a_X^{-1}\mathcal{F}^\bullet$
and
the
functor
$
a_{X
,
*
}
$
we
conclude
.
From
now
on
assume
$
K
=
\mathcal{F}$
where
$
\mathcal{F}$
is
a
torsion
abelian
sheaf
.
\medskip\noindent
By
Lemma
\ref{lemma
-
comparison
-
ph
-
etale
}
we
have
$
a_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\mathcal{F}$.
Thus
it
suffices
to
show
that
$
R^qa_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
0
$
for
$
q
>
0$.
For
this
we
can
use
$
a_X
=
\epsilon_X
\circ
\pi_X$
and
the
Leray
spectral
sequence
(
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
relative
-
Leray
}
)
.
By
Lemma
\ref{lemma
-
comparison
-
ph
-
etale
}
we
have
$
R^i\epsilon_{X
,
*
}
(
a_X^{-1}\mathcal{F
}
)
=
0
$
for
$
i
>
0$.
We
have
$
\epsilon_{X
,
*
}
a_X^{-1}\mathcal{F
}
=
\pi_X^{-1}\mathcal{F}$
and
by
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
}
we
have
$
R^j\pi_{X
,
*
}
(
\pi_X^{-1}\mathcal{F
}
)
=
0
$
for
$
j
>
0$.
This
concludes
the
proof
.
\end{proof
}
\begin{lemma
}
\label{lemma
-
compare
-
cohomology
-
etale
-
ph
}
Let
$
S$
be
a
scheme TYPE
and
let
$
X$
be
an
algebraic TYPE
space
over
$
S$.
With
$
a_X
:
\Sh((\textit{Spaces}/X)_{ph
}
)
\to
\Sh(X_\etale)$
as
above
:
\begin{enumerate
}
\item
$
H^q(X_\etale
,
\mathcal{F
}
)
=
H^q_{ph}(X
,
a_X^{-1}\mathcal{F})$
for
a
torsion
abelian
sheaf
$
\mathcal{F}$
on
$
X_\etale$
,
\item
$
H^q(X_\etale
,
K
)
=
H^q_{ph}(X
,
a_X^{-1}K)$
for
$
K
\in
D^+(X_\etale)$
with
torsion
cohomology
sheaves
\end{enumerate
}
Example
:
if
$
A$
is
a
torsion
abelian
group
,
then
$
H^q_\etale(X
,
\underline{A
}
)
=
H^q_{ph}(X
,
\underline{A})$.
\end{lemma
}
\begin{proof
}
This
follows
from
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
-
ph
}
by
Cohomology
on
Sites
,
Remark
\ref{sites
-
cohomology
-
remark
-
before
-
Leray}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
push
-
pull
-
ph
-
etale
}
Let
$
S$
be
a
scheme TYPE
. TYPE
Let
$
f
:
X
\to
Y$
be
a
morphism
of
algebraic
spaces
over
$
S$.
Then
there
are
commutative
diagrams
of
topoi
$
$
\xymatrix
{
\Sh((\textit{Spaces}/X)_{ph
}
)
\ar[rr]_{f_{big
,
ph
}
}
\ar[d]_{\epsilon_X
}
&
&
\Sh((\textit{Spaces}/Y)_{ph
}
)
\ar[d]^{\epsilon_Y
}
\\
\Sh((\textit{Spaces}/X)_\etale
)
\ar[rr]^{f_{big
,
\etale
}
}
&
&
\Sh((\textit{Spaces}/Y)_\etale
)
}
$
$
and
$
$
\xymatrix
{
\Sh((\textit{Spaces}/X)_{ph
}
)
\ar[rr]_{f_{big
,
ph
}
}
\ar[d]_{a_X
}
&
&
\Sh((\textit{Spaces}/Y)_{ph
}
)
\ar[d]^{a_Y
}
\\
\Sh(X_\etale
)
\ar[rr]^{f_{small
}
}
&
&
\Sh(Y_\etale
)
}
$
$
with
$
a_X
=
\pi_X
\circ
\epsilon_X$
and
$
a_Y
=
\pi_X
\circ
\epsilon_X$.
\end{lemma
}
\begin{proof
}
This
follows
immediately
from
working
out
the
definitions
of
the
morphisms
involved
,
see
Topologies
on
Spaces
,
Section
\ref{spaces
-
topologies
-
section
-
ph
}
and
Section
\ref{section
-
compare}.
\end{proof
}
\begin{lemma
}
\label{lemma
-
proper
-
push
-
pull
-
ph
-
etale
}
In
Lemma
\ref{lemma
-
push
-
pull
-
ph
-
etale
}
if
$
f$
is
proper
,
then
we
have
\begin{enumerate
}
\item
$
a_Y^{-1
}
\circ
f_{small
,
*
}
=
f_{big
,
ph
,
*
}
\circ
a_X^{-1}$
,
and
\item
$
a_Y^{-1}(Rf_{small
,
*
}
K
)
=
Rf_{big
,
ph
,
*
}
(
a_X^{-1}K)$
for
$
K$
in
$
D^+(X_\etale)$
with
torsion
cohomology
sheaves
.
\end{enumerate
}
\end{lemma
}
\begin{proof
}
Proof
of
(
1
)
.
You
can
prove
this
by
repeating
the
proof
of
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
-
proper
}
part
(
1
)
;
we
will
instead
deduce
the
result
from
this
.
As
$
\epsilon_{Y
,
*
}
$
is
the
identity
functor
on
underlying
presheaves
,
it
reflects
isomorphisms
.
Lemma
\ref{lemma
-
comparison
-
ph
-
etale
}
shows
that
$
\epsilon_{Y
,
*
}
\circ
a_Y^{-1
}
=
\pi_Y^{-1}$
and
similarly
for
$
X$.
To
show
that
the
canonical
map
$
a_Y^{-1}f_{small
,
*
}
\mathcal{F
}
\to
f_{big
,
ph
,
*
}
a_X^{-1}\mathcal{F}$
is
an
isomorphism
,
it
suffices
to
show
that
\begin{align
*
}
\pi_Y^{-1}f_{small
,
*
}
\mathcal{F
}
&
=
\epsilon_{Y
,
*
}
a_Y^{-1}f_{small
,
*
}
\mathcal{F
}
\\
&
\to
\epsilon_{Y
,
*
}
f_{big
,
ph
,
*
}
a_X^{-1}\mathcal{F
}
\\
&
=
f_{big
,
\etale
,
*
}
\epsilon_{X
,
*
}
a_X^{-1}\mathcal{F
}
\\
&
=
f_{big
,
\etale
,
*
}
\pi_X^{-1}\mathcal{F
}
\end{align
*
}
is
an
isomorphism
.
This
is
part
(
1
)
of
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
-
proper}.
\medskip\noindent
To
see
(
2
)
we
use
that
\begin{align
*
}
R\epsilon_{Y
,
*
}
Rf_{big
,
ph
,
*
}
a_X^{-1}K
&
=
Rf_{big
,
\etale
,
*
}
R\epsilon_{X
,
*
}
a_X^{-1}K
\\
&
=
Rf_{big
,
\etale
,
*
}
\pi_X^{-1}K
\\
&
=
\pi_Y^{-1}Rf_{small
,
*
}
K
\\
&
=
R\epsilon_{Y
,
*
}
a_Y^{-1}Rf_{small
,
*
}
K
\end{align
*
}
The
first
equality
by
the
commutative
diagram
in
Lemma
\ref{lemma
-
push
-
pull
-
ph
-
etale
}
and
Cohomology
on
Sites
,
Lemma
\ref{sites
-
cohomology
-
lemma
-
derived
-
pushforward
-
composition}.
Then
second
equality
is
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
-
ph}.
The
third
is
Lemma
\ref{lemma
-
compare
-
higher
-
direct
-
image
-
proper
}
part
(
2
)
.
The
fourth
is
Lemma
\ref{lemma
-
cohomological
-
descent
-
etale
-
ph
}
again
.
Thus
the
base
change
map
$
a_Y^{-1}(Rf_{small
,
*
}
K
)
\to
Rf_{big
,
ph
,
*
}
(
a_X^{-1}K)$
induces
an
isomorphism
$
$
R\epsilon_{Y
,
*
}
a_Y^{-1}Rf_{small
,
*
}
K
\to
R\epsilon_{Y
,
*
}
Rf_{big
,
ph
,
*
}
a_X^{-1}K
$
$
The
proof
is
finished
by
the
following
remark
:
consider
a
map
$
\alpha
:
a_Y^{-1}L
\to
M$
with
$
L$
in
$
D^+(Y_\etale)$
having
torsion
cohomology
sheaves
and
$
M$
in
$
D^+((\textit{Spaces}/Y)_{ph})$.
If
$
R\epsilon_{Y
,
*
}
\alpha$
is
an
isomorphism
,
then
$
\alpha$
is
an
isomorphism
.
Namely
,
we
show
by
induction
on
$
i$
that
$
H^i(\alpha)$
is
an
isomorphism
.
This
is
true
for
all
sufficiently
small
$
i$.
If
it
holds
for
$
i
\leq
i_0
$
,
then
we
see
that
$
R^j\epsilon_{Y
,
*
}
H^i(M
)
=
0
$
for
$
j
>
0
$
and
$
i
\leq
i_0
$
by
Lemma
\ref{lemma
-
comparison
-
ph
-
etale
}
because
$
H^i(M
)
=
a_Y^{-1}H^i(L)$
in
this
range
.
Hence
$
\epsilon_{Y
,
*
}
H^{i_0
+
1}(M
)
=
H^{i_0
+
1}(R\epsilon_{Y
,
*
}
M)$
by
a
spectral
sequence
argument
.
Thus
$
\epsilon_{Y
,
*
}
H^{i_0
+
1}(M
)
=
\pi_Y^{-1}H^{i_0
+
1}(L
)
=
\epsilon_{Y
,
*
}
a_Y^{-1}H^{i_0
+
1}(L)$.
This
implies
$
H^{i_0
+
1}(\alpha)$
is
an
isomorphism
(
because
$
\epsilon_{Y
,
*
}
$
reflects
isomorphisms
as
it
is
the
identity
on
underlying
presheaves
)
as
desired
.
\end{proof
}
\input{chapters
}
\bibliography{my
}
\bibliographystyle{amsalpha
}
\end{document
}
Content source: przchojecki/deepalgebra
Similar notebooks: