In [ ]:
    
print 'Hello World'
    
In [ ]:
    
print ('Hello World')
    
In [ ]:
    
print("Hello World")
    
In [ ]:
    
import keyword
    
In [ ]:
    
print (keyword.kwlist)
    
In [ ]:
    
len(keyword.kwlist)
    
In [ ]:
    
a, b, _, _ = 1, 'potter', 23, 43
    
In [ ]:
    
a, b
    
In [ ]:
    
x, _, y, _ = 1, 2, 3, 4
    
In [ ]:
    
x, y
    
In [ ]:
    
a = b = c =2.17
    
In [ ]:
    
a,b,c
    
In [ ]:
    
# to get input from the user
user_input = raw_input("Give me some input!: ")
    
In [ ]:
    
    
A numpy array is a grid of values, all of the same type and is is indexed by a tuple of non-negative integers.
The number of dimensions is the RANK of the array.
The SHAPE of the array is a tuple of integers giving the size of the array along each dimension.
In [3]:
    
import numpy as np
    
In [21]:
    
a = np.array([1,2,3])  # creates RANK 1 array
    
In [22]:
    
a
    
    Out[22]:
In [23]:
    
print(type(a))
    
    
In [24]:
    
print(a.shape)
    
    
In [25]:
    
print(a)
    
    
In [26]:
    
print(a[0], a[1], a[2])
    
    
In [27]:
    
a[0]
    
    Out[27]:
In [28]:
    
a[1] = 123445
    
In [29]:
    
a
    
    Out[29]:
In [15]:
    
print(a)
    
    
In [30]:
    
a[1] = 15
    
In [31]:
    
print(a)
    
    
In [32]:
    
b = np.array([[1, 2, 3], [4, 5, 6]])
    
In [33]:
    
print(b.shape)
    
    
In [34]:
    
print(b[0, 0])
    
    
In [36]:
    
print(b[1,2])
    
    
In [39]:
    
m_npZEROS = np.zeros((2,2))
    
In [42]:
    
m_npZEROS
    
    Out[42]:
In [40]:
    
m_npONES = np.ones((3,3))
    
In [41]:
    
m_npONES
    
    Out[41]:
In [54]:
    
m_npFULL = np.full((4,5), 17, dtype='int64')
    
In [55]:
    
m_npFULL
    
    Out[55]:
In [60]:
    
m_npEYE = np.eye(3, 4)
    
In [61]:
    
m_npEYE
    
    Out[61]:
In [62]:
    
m_npEYE = np.eye(3, 4, 1)
    
In [63]:
    
m_npEYE
    
    Out[63]:
In [64]:
    
m_npEYE = np.eye(3, 4, -1)
    
In [65]:
    
m_npEYE
    
    Out[65]:
In [74]:
    
m_npRANDOM = np.random.random((2,2))
m_npRANDOM
    
    Out[74]:
In [ ]:
    
    
In [75]:
    
m_npRANDOM = np.random.random((2,2))
m_npRANDOM
    
    Out[75]:
In [76]:
    
a = np.array([[1,2,3], [4,5,6], [7,8,9]])
    
In [78]:
    
b = a[:2, 1:3]
print(b)
    
    
A slice of the array is a view into the same data, so modifying the slice will also modify the original array
In [79]:
    
print(a[1,1])
    
    
In [81]:
    
print(b[1, 0])
b[1,0] = 100
print(b[1,0])
print(a[1,1])
    
    
In [82]:
    
a
    
    Out[82]:
In [83]:
    
row_r1 = a[1, :]
row_r2 = a[1:2, :]
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
    
    
In [87]:
    
(np.eye(4)).shape
    
    Out[87]:
In [88]:
    
a = [[1,2,3], [4,5,6]]
    
In [89]:
    
print(a)
    
    
In [96]:
    
b = a[1]
    
In [97]:
    
b
    
    Out[97]:
In [98]:
    
b = a[:]
    
In [99]:
    
b
    
    Out[99]:
In [100]:
    
b = [[10,20,30], [40,50,60]]
    
In [101]:
    
a
    
    Out[101]:
In [102]:
    
b
    
    Out[102]:
In [104]:
    
a = np.array([[1,2],[3,4],[5,6]])
print(a)
    
    
In [109]:
    
# integer array indexing
x = a[[0,1,2], [0,1,0]]
print(x)
print(x.shape)
    
    
In [112]:
    
# slicing
y = np.array([a[0,0], a[1,1], a[2,0]])
print(y)
print(y.shape)
    
    
In [113]:
    
# selcting/mutating one element from each row of a matrix
    
In [114]:
    
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12]])
    
In [117]:
    
print(a)
print(a.shape)
    
    
In [118]:
    
b = np.array([1,2,0,1])
    
In [119]:
    
b
    
    Out[119]:
In [120]:
    
print(a[np.arange(0,4), b])
    
    
In [121]:
    
print(a[np.arange(0,4), b])
    
    
In [125]:
    
a[np.arange(0,4),b] +=100
    
In [126]:
    
a
    
    Out[126]:
Boolean array indexing lets us pick out arbitrary elements of an array.
This type of indexing is used to slect the elements of an array that satisfy some condition.
In [127]:
    
a = np.array([[1,2],[3,4],[5,6]])
    
In [128]:
    
bool_idx = (a>2)
    
In [129]:
    
bool_idx
    
    Out[129]:
In [132]:
    
#boolean indexing: It produces a Rank 1 array
print(a[bool_idx])
    
    
In [133]:
    
print(a[a>3])
    
    
In [162]:
    
m_list = [1,2,3]
m_npARRAY = np.array([1,2,3])
    
In [163]:
    
for e in m_list:
    print e
    
    
In [164]:
    
for e in m_npARRAY:
    print e
    
    
In [165]:
    
m_list.append(4)
    
In [166]:
    
m_list
    
    Out[166]:
In [167]:
    
m_npARRAY.append(4)
    
    
In [168]:
    
m_list += [5]
m_list
    
    Out[168]:
In [169]:
    
m_npARRAY += [5]
m_npARRAY
    
    Out[169]:
In [170]:
    
m_list += [6,7]
m_list
    
    Out[170]:
In [171]:
    
m_npARRAY += [6,7]
    
    
In [172]:
    
m_npARRAY + m_npARRAY
    
    Out[172]:
In [175]:
    
print m_npARRAY
print m_npARRAY * 2
    
    
In [176]:
    
print(m_list)
print(m_list * 2)
    
    
In [179]:
    
print(m_npARRAY)
print(m_npARRAY ** 2)
    
    
In [180]:
    
print(m_npARRAY)
print(np.sqrt(m_npARRAY))
    
    
In [181]:
    
print(m_list)
print(np.sqrt(m_list))
    
    
In [183]:
    
print(m_npARRAY)
print(np.log(m_npARRAY))
    
    
In [184]:
    
print(m_npARRAY)
print(np.exp(m_npARRAY))
    
    
In [185]:
    
a = np.array([1,21,32])
b = np.array([1,32,12])
    
In [192]:
    
dot = 0
    
In [193]:
    
for i,j in zip(a,b):
    dot += i*j
    
In [194]:
    
print(dot)
    
    
In [195]:
    
a*b
    
    Out[195]:
In [196]:
    
print(np.sum(a*b))
    
    
In [198]:
    
print((a*b).sum())
    
    
In [199]:
    
print(np.dot(a,b))
    
    
In [200]:
    
a.dot(b)
    
    Out[200]:
In [201]:
    
b.dot(a)
    
    Out[201]:
In [202]:
    
amag = np.sqrt((a*a).sum())
    
In [203]:
    
amag
    
    Out[203]:
In [204]:
    
amag = np.linalg.norm(a)
    
In [205]:
    
amag
    
    Out[205]:
In [208]:
    
cosAngle = a.dot(b)/(np.linalg.norm(a) * np.linalg.norm(b))
    
In [209]:
    
cosAngle
    
    Out[209]:
In [210]:
    
angle = np.arccos(cosAngle)      #in radians
    
In [211]:
    
angle
    
    Out[211]:
In [217]:
    
# comparing numpy with default python functions
import numpy as np
from datetime import datetime
a = np.random.randn(100)
b = np.random.randn(100)
T = 100000
def slow_dot_product(a,b):
    result = 0
    for e,f in zip(a,b):
        result += e*f
    return result
t0 = datetime.now()
for t in xrange(T):
    slow_dot_product(a,b)
dt1 = datetime.now() - t0
t0 = datetime.now()
for t in xrange(T):
    a.dot(b)
dt2 = datetime.now() - t0
print("dt1/dt2 = ", dt1.total_seconds()/dt2.total_seconds())
    
    
In [218]:
    
z = np.zeros(10)
    
In [219]:
    
z
    
    Out[219]:
In [222]:
    
z = np.zeros((10,10))
z
    
    Out[222]:
In [223]:
    
o = np.ones(10)
o
    
    Out[223]:
In [224]:
    
o = np.ones((10,10))
o
    
    Out[224]:
In [228]:
    
g = np.random.randn(10,10)
g
    
    Out[228]:
In [229]:
    
r = np.random.random((10,10))
r
    
    Out[229]:
In [231]:
    
print(g.mean())
print(g.var())
    
    
In [232]:
    
print(r.mean())
print(r.var())
    
    
In [233]:
    
A = np.array([[1,2],[3,4]])
print(A)
    
    
In [234]:
    
Ainv = np.linalg.inv(A)
print(Ainv)
    
    
In [236]:
    
A.dot(Ainv)
    
    Out[236]:
In [237]:
    
A*Ainv
    
    Out[237]:
In [238]:
    
A.dot(A)
    
    Out[238]:
In [239]:
    
np.linalg.det(A)
    
    Out[239]:
In [240]:
    
np.linalg.det(Ainv)
    
    Out[240]:
In [241]:
    
np.linalg.det(A.dot(Ainv))
    
    Out[241]:
In [243]:
    
print(A)
np.diag(A)
    
    
    Out[243]:
In [244]:
    
np.diag([1,2])
    
    Out[244]:
In [245]:
    
np.diag([1,2,3])
    
    Out[245]:
In [246]:
    
a = np.array([1,2])
b = np.array([3,4])
    
In [247]:
    
print(np.outer(a,b))
print(np.inner(a,b))
print(a.dot(b))
    
    
In [248]:
    
np.diag(A).sum()
    
    Out[248]:
In [249]:
    
np.trace(A)
    
    Out[249]:
In [250]:
    
x = np.random.randn(100,3)
    
In [251]:
    
x
    
    Out[251]:
In [252]:
    
cov = np.cov(x)
cov
    
    Out[252]:
In [253]:
    
cov.shape
    
    Out[253]:
In [254]:
    
cov = np.cov(x.T)
    
In [255]:
    
cov
    
    Out[255]:
In [256]:
    
cov.shape
    
    Out[256]:
In [257]:
    
np.linalg.eigh(cov)
    
    Out[257]:
In [258]:
    
np.linalg.eig(cov)
    
    Out[258]:
In [260]:
    
#linear system
# Ax = b
#=> A-1.A.x = 0 
#=> x = A-1.b
    
In [261]:
    
A
    
    Out[261]:
In [262]:
    
b
    
    Out[262]:
In [263]:
    
b = np.array([1,2])
    
In [264]:
    
b
    
    Out[264]:
In [265]:
    
x = np.linalg.inv(A).dot(b)
print(x)
    
    
In [267]:
    
x = np.linalg.solve(A,b)
print(x)
    
    
In [268]:
    
A = np.array([[1,1],[1.5,4]])
b = np.array([2200,5050])
x = np.linalg.solve(A,b)
print(x)
    
    
In [271]:
    
Y = []
Y
    
    Out[271]:
In [278]:
    
Y = []
for line in open("data_2d.csv"):
    row = line.split(',')
    sample = map(float, row)
    Y.append(sample)
Y = np.array(Y)
print(Y)
    
    
In [279]:
    
Y.shape
    
    Out[279]:
In [281]:
    
import matplotlib.pyplot as plt
    
In [284]:
    
import pandas as pd
    
    
In [1]:
    
import pandas as pd
    
In [2]:
    
pd.show_versions()
    
    
In [1]:
    
import pandas as pd
    
In [2]:
    
Y = pd.read_csv("data_2d.csv", header=None)
    
In [3]:
    
Y
    
    Out[3]:
In [4]:
    
type(Y)
    
    Out[4]:
In [5]:
    
Y.info()
    
    
In [6]:
    
Y.head()
    
    Out[6]:
In [7]:
    
Y.head(9)
    
    Out[7]:
In [8]:
    
Y[0]
    
    Out[8]:
In [9]:
    
type(Y[0])
    
    Out[9]:
In [10]:
    
Y.iloc[0]
    
    Out[10]:
In [12]:
    
Y.ix[0]
    
    Out[12]:
In [13]:
    
Y[[0,2]]
    
    Out[13]:
In [14]:
    
Y[ Y[0] < 5 ]
    
    Out[14]:
In [15]:
    
Y[0] < 5
    
    Out[15]:
In [16]:
    
type(Y[0] < 5)
    
    Out[16]:
In [17]:
    
df = pd.read_csv("international-airline-passengers.csv", engine="python", skipfooter=3)
    
In [18]:
    
df
    
    Out[18]:
In [20]:
    
df.columns
    
    Out[20]:
In [21]:
    
df.columns = ['month', 'passangers']
    
In [22]:
    
df.columns
    
    Out[22]:
In [23]:
    
df
    
    Out[23]:
In [25]:
    
df['passangers']
    
    Out[25]:
In [27]:
    
df.passangers
    
    Out[27]:
In [28]:
    
df['ones'] = 1
    
In [29]:
    
df.head()
    
    Out[29]:
In [34]:
    
from datetime import datetime
datetime.strptime("2018-05", "%Y-%m")
df['x1x2'] = df.apply(lambda row: datetime.strptime(row["month"], "%Y-%m"), axis=1)
    
In [35]:
    
df.head()
    
    Out[35]:
In [36]:
    
df.info()
    
    
In [38]:
    
t1 = pd.read_csv("table1.csv")
t2 = pd.read_csv("table2.csv")
    
In [39]:
    
t1
    
    Out[39]:
In [40]:
    
t2
    
    Out[40]:
In [41]:
    
type(t1)
    
    Out[41]:
In [44]:
    
m = pd.merge(t1,t2,on='user_id')
    
In [45]:
    
m
    
    Out[45]:
In [46]:
    
t1.merge(t2, on="user_id")
    
    Out[46]:
In [50]:
    
import numpy as np
import matplotlib.pyplot as plt
    
In [82]:
    
x = np.linspace(0,10,100)
y = np.sin(x)
plt.plot(x,y)
plt.xlabel('time')
plt.ylabel('sine')
plt.title('Cool function')
plt.show()
    
    
In [83]:
    
import pandas as pd
d1 = pd.read_csv("data_1d.csv").as_matrix()
    
In [84]:
    
x1 = d1[:,0]
y1 = d1[:,1]
    
In [85]:
    
plt.scatter(x1,y1)
plt.show()
    
    
In [86]:
    
x_line = np.linspace(0,100,100)
y_line = 2*x_line + 1
plt.scatter(x1, y1)
plt.plot(x_line, y_line)
plt.show()
    
    
In [90]:
    
plt.hist(x1)
plt.show()
    
    
In [92]:
    
plt.hist(y1)
plt.show()
    
    
In [94]:
    
plt.hist2d(x1,y1)
plt.show()
    
    
In [96]:
    
R = np.random.random(10000)
plt.hist(R)
plt.show()
    
    
In [97]:
    
plt.hist(R, bins=20)
plt.show()
    
    
In [98]:
    
y_actual = 2*x1 + 1
res = y1 - y_actual
plt.hist(res)
plt.show()
    
    
In [1]:
    
import numpy as np
    
In [2]:
    
r = np.random.randn(10000, 2)
    
In [3]:
    
import matplotlib.pyplot as plt
    
In [4]:
    
plt.scatter(r[:,0], r[:,1])
plt.show()
    
    
In [5]:
    
r[:,1] = 5*r[:,1] + 2
    
In [7]:
    
plt.scatter(r[:,0], r[:,1])
plt.axis('equal')
plt.show()
    
    
In [8]:
    
cov = np.array([[1, 0.8], [0.8, 3]])
    
In [9]:
    
from scipy.stats import multivariate_normal as mvn
    
In [10]:
    
mu = np.array([0,2])
mu
    
    Out[10]:
In [11]:
    
r = mvn.rvs(mean = mu, cov=cov, size=1000)
    
In [25]:
    
plt.scatter(r[:,0], r[:,1])
plt.axis('equal')
plt.show()
    
    
In [26]:
    
r = np.random.multivariate_normal(mean = mu, cov=cov, size=1000)
plt.scatter(r[:,0], r[:,1])
plt.axis('equal')
plt.show()
    
    
In [28]:
    
x = np.linspace(0, 100, 10000)
y = np.sin(x) + np.sin(3*x) + np.sin(5*x)
plt.plot(y)
plt.show()
    
    
In [30]:
    
Y = np.fft.fft(y)
plt.plot(np.abs(Y))
plt.show()
    
    
In [1]:
    
s = """w'o"w"""
    
In [2]:
    
repr(s)
    
    Out[2]:
In [3]:
    
str(s)
    
    Out[3]:
In [5]:
    
eval(str(s)) == s
    
    
In [6]:
    
eval(repr(s)) == s
    
    Out[6]:
In [7]:
    
eval(repr(s))
    
    Out[7]:
In [8]:
    
s
    
    Out[8]:
In [9]:
    
str(s)
    
    Out[9]:
In [10]:
    
eval(str(s))
    
    
In [12]:
    
type(str(s))
    
    Out[12]:
In [13]:
    
type(repr(s))
    
    Out[13]:
In [14]:
    
type(s)
    
    Out[14]:
In [15]:
    
import datetime
    
In [16]:
    
today = datetime.datetime.now()
    
In [17]:
    
str(today)
    
    Out[17]:
In [18]:
    
repr(today)
    
    Out[18]:
In [19]:
    
eval(str(today)) == eval(repr(today))
    
    
In [20]:
    
# when writing a class we can override these methods
# to do whatever we want:
    
In [40]:
    
class Represent(object):
    
    def __init__(self,x,y):
        self.x, self.y = x,y
    
    def __repr__(self):
        return "Represent(x={}, y=\"{}\")".format(self.x, self.y)
    
    def __str__(self):
        return "Representing x as {} and y as {}".format(self.x, self.y)
    
In [41]:
    
r = Represent(1, "Rustom")
    
In [42]:
    
print(r)
    
    
In [43]:
    
print(r.__repr__)
    
    
In [44]:
    
rep = r.__repr__()
    
In [45]:
    
print(rep)
    
    
In [46]:
    
r2 = eval(rep)
    
In [47]:
    
print(r2)
    
    
In [49]:
    
type(r)
    
    Out[49]:
In [50]:
    
type(r2)
    
    Out[50]:
In [51]:
    
print(r2 == r)
    
    
In [53]:
    
rep
    
    Out[53]:
In [8]:
    
# sets: mutable unordered collection of unique objects
    
In [9]:
    
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
    
In [10]:
    
print(basket)
    
    
In [11]:
    
a = set('abrakadabra')
    
In [12]:
    
a
    
    Out[12]:
In [13]:
    
a.add('z')
    
In [14]:
    
a
    
    Out[14]:
In [15]:
    
# frozen sets: non-mutable sets
    
In [16]:
    
b = frozenset('dbdfhbsdjfjsbd')
    
In [17]:
    
print(b)
    
    
In [18]:
    
b
    
    Out[18]:
In [35]:
    
cities = frozenset({"calcutta", 'delhi', 'bangalore', 'delhi'})
    
In [36]:
    
cities
    
    Out[36]:
In [21]:
    
# number data types:
    
In [31]:
    
int_num = 10
print(int_num, type(int_num))
    
    
In [32]:
    
float_num = 10.2
print(float_num, type(float_num))
    
    
In [33]:
    
complex_num = 2+3.14j
print(complex_num, type(complex_num))
    
    
In [34]:
    
long_num = 123456L
print(long_num, type(long_num))
    
    
In [37]:
    
# operations on sets
    
In [39]:
    
a = {1,2,3,4,5}
b = {3,4,5,6}
# intersection
print(a.intersection(b))
print(a & b)
#union
print(a.union(b))
print(a | b)
# difference
print(a.difference(b))
print(a - b)
# symmetric difference
print(a.symmetric_difference(b))
print(a ^ b)
# superset check
print(a.issuperset(b))
print(a >= b)
# subset check
print(a.issubset(b))
print(a <= b)
# disjoint  check
print(a.isdisjoint(b))
    
    
In [40]:
    
2 in {1,2,3,4}
    
    Out[40]:
In [41]:
    
4 not in {1,2,34,5}
    
    Out[41]:
In [42]:
    
a.add(12545)
    
In [43]:
    
a
    
    Out[43]:
In [44]:
    
a.remove(1)
    
In [45]:
    
a
    
    Out[45]:
In [46]:
    
a.discard(1)
    
In [47]:
    
a
    
    Out[47]:
In [48]:
    
b
    
    Out[48]:
In [49]:
    
a.difference(b)
    
    Out[49]:
In [50]:
    
a.symmetric_difference(b)
    
    Out[50]:
In [53]:
    
restaurants = ['Swiggy', 'Aaha Andhra', 'Sri Sagar', 'Swiggy', 'Swiggy', 'Sri Sagar']
print(restaurants)
print('Unique restaurants as set(): ', set(restaurants))
print('Unique restaurants as list()', list(set(restaurants)))
    
    
In [54]:
    
set(restaurants)
    
    Out[54]:
In [56]:
    
list(set(restaurants))
    
    Out[56]:
In [57]:
    
unique_restro = set(restaurants)
    
In [58]:
    
unique_restro
    
    Out[58]:
In [59]:
    
list(unique_restro)
    
    Out[59]:
In [60]:
    
{{1,2}, {3,4}}
    
    
In [62]:
    
x=1
y=2
    
In [63]:
    
{x,y}
    
    Out[63]:
In [64]:
    
x=5
    
In [65]:
    
{x,y}
    
    Out[65]:
In [66]:
    
{x,y}
    
    Out[66]:
In [67]:
    
x
y
    
    Out[67]:
In [68]:
    
x
    
    Out[68]:
In [69]:
    
y
    
    Out[69]:
In [70]:
    
a
    
    Out[70]:
In [71]:
    
b
    
    Out[71]:
In [72]:
    
a - b
    
    Out[72]:
In [73]:
    
b - a
    
    Out[73]:
In [74]:
    
a.symmetric_difference(b)
    
    Out[74]:
In [75]:
    
b.symmetric_difference(a)
    
    Out[75]:
In [76]:
    
from collections import Counter
    
In [77]:
    
counterA = Counter(['a','b','a','b','c'])
    
In [78]:
    
counterA
    
    Out[78]:
In [1]:
    
squares = [x*x for x in (1,2,3,4,5,6)]
print(squares)
    
    
In [2]:
    
[s.upper() for s in "Rustom Potter"]
    
    Out[2]:
In [9]:
    
[w.strip(',') for w in ['nsd,,,',',,,fjg','nsdj,fb,jb,df',',,bjdfb,,,hbsd','ndj,,,fbsj,,,']]
    
    Out[9]:
In [13]:
    
sentence = "Beautiful is better than ugly"
["".join(sorted(word, key = lambda x: x.lower())) for word in sentence.split()]
    
    
In [14]:
    
[x for x in 'apple' if x in 'aeiou']
    
    Out[14]:
In [15]:
    
[x for x in 'apple' if x in 'aeiou' else '*']
    
    
In [16]:
    
[x if x in 'aeiou' else '*' for x in 'apple']
    
    Out[16]:
In [1]:
    
'spam'
    
    Out[1]:
In [2]:
    
2**100
    
    Out[2]:
In [3]:
    
len(str(2**100000))
    
    Out[3]:
In [4]:
    
3.1415**2
    
    Out[4]:
In [5]:
    
3.1415*2
    
    Out[5]:
In [6]:
    
print(3.1415*2)
    
    
In [7]:
    
import math
print(math.pi)
print(math.sqrt(89))
    
    
In [9]:
    
import random
print(random.random())
print(random.choice([1,2,3,4,43]))
    
    
In [13]:
    
S = 'rustomPotter'
    
In [14]:
    
L = list(S)
    
In [15]:
    
L
    
    Out[15]:
In [16]:
    
L[1] = '217'
    
In [17]:
    
L
    
    Out[17]:
In [18]:
    
''.join(L)
    
    Out[18]:
In [19]:
    
B = bytearray('rustomPotter')
    
In [20]:
    
B
    
    Out[20]:
In [21]:
    
B.extend('217')
    
In [22]:
    
B
    
    Out[22]:
In [23]:
    
B.capitalize()
    
    Out[23]:
In [24]:
    
B.decode()
    
    Out[24]:
In [34]:
    
B2 = bytearray('roadster')
B2
    
    Out[34]:
In [35]:
    
B2.append('T')
    
In [36]:
    
B2
    
    Out[36]:
In [37]:
    
B2.extend('esla')
    
In [38]:
    
B2
    
    Out[38]:
In [39]:
    
B2.decode()
    
    Out[39]:
In [1]:
    
'%s, spam and %s' % ('spam', 'SPAM!')
    
    Out[1]:
In [4]:
    
'{0}, eggs and {1}'.format('spam', 'SPAM!')
    
    Out[4]:
In [5]:
    
'{1}, eggs and {0}'.format('spam', 'SPAM!')
    
    Out[5]:
In [6]:
    
'{}, eggs and {}'.format('spam', 'SPAM!!!!')
    
    Out[6]:
In [7]:
    
'{:,.2f}'.format(125646546.4154541)
    
    Out[7]:
In [12]:
    
'%.2f and %+05d' % (4561.1545, -54)
    
    Out[12]:
In [ ]:
    
dir()
    
In [9]:
    
while True:
        reply = input("Enter:")
        if reply == "stop": break
        print(int(reply)**2)
    
    
In [10]:
    
range(3)
    
    Out[10]:
In [11]:
    
list(range(3))
    
    Out[11]:
In [12]:
    
a, *b = range(100)
    
    
In [13]:
    
type(2>3)
    
    Out[13]:
In [14]:
    
True
    
    Out[14]:
In [4]:
    
a=0
b=10
while a<b:
    print(a)
    a += 1
    
    
In [5]:
    
x = ...
    
    
In [11]:
    
list(range(-5, -15, -1))
    
    Out[11]:
In [12]:
    
s = "abcdefghijklmnopqrstuvwxyz"
    
In [16]:
    
for i in xrange(0, len(s), 2): 
    print s[i]
    
    
In [15]:
    
for i in s[::2]:
    print i
    
    
In [17]:
    
L1 = [1,2,3,4,5,6]
L2 = [7,8,9,10,11,12]
for (x,y) in zip(L1, L2):
    print x,y,'--', x+y
    
    
In [18]:
    
map(ord, 'spam')
    
    Out[18]:
In [19]:
    
ord
    
    Out[19]:
In [1]:
    
f = open('pythonNotes.py')
f.next()
    
    Out[1]:
In [2]:
    
f.next()
    
    Out[2]:
In [5]:
    
next(f)
    
    Out[5]:
In [11]:
    
for line in open('tensorflow1.py'):
    print line,
    
    
In [12]:
    
import sys
print sys.path
    
    
In [13]:
    
L = [1,2,3,4,5]
    
In [15]:
    
I = iter(L)
    
In [16]:
    
I
    
    Out[16]:
In [17]:
    
I.next()
    
    Out[17]:
In [1]:
    
M = map(lambda x:x**2, range(7))
print M
    
    
In [2]:
    
print M
    
    
In [4]:
    
for i in M:
    print i
for i in M:
    print i
    
    
In [5]:
    
for i in M:
    print i
    
    
In [6]:
    
xrange(5)
    
    Out[6]:
In [7]:
    
range(5)
    
    Out[7]:
In [9]:
    
m_iterXrange = iter(xrange(5))
    
In [10]:
    
next(m_iterXrange)
    
    Out[10]:
In [11]:
    
next(m_iterXrange)
    
    Out[11]:
In [12]:
    
m_iterXrange.next()
    
    Out[12]:
In [15]:
    
help(int)
    
    
In [16]:
    
help("")
    
    
In [17]:
    
help()
    
    
In [19]:
    
D={1:11, 2:22, 3:33, 4:44, 5:55}
    
In [20]:
    
print D
    
    
In [22]:
    
for k in D.keys().sort():
    print k
    
    
In [ ]: