Relative Period Deformations

Initial version by Pat Hooper whooper@ccny.cuny.edu, Dec. 16, 2017.


In [1]:
from flatsurf import *

The Arnoux-Yoccoz surface


In [2]:
s = translation_surfaces.arnoux_yoccoz(3).canonicalize()

In [3]:
s.plot()


Out[3]:

In [4]:
field=s.base_ring()
field


Out[4]:
Number Field in alpha with defining polynomial x^3 + x^2 + x - 1

In [5]:
alpha = field.gen()
AA(alpha)


Out[5]:
0.5436890126920763?

In [6]:
m=matrix(field,[[alpha,0],[0,1/alpha]])
show(m)


Check that $m$ is the derivative of a pseudo-Anosov of $s$.


In [7]:
(m*s).canonicalize()==s


Out[7]:
True

Rel deformation

A singularity of the surface is an equivalence class of vertices of the polygons making up the surface.


In [8]:
s.singularity(0,0)


Out[8]:
singularity with vertex equivalence class frozenset([(0, 0), (9, 1), (3, 0), (11, 2), (8, 0), (6, 0), (2, 1), (7, 2), (1, 2), (7, 0), (5, 2), (6, 1), (3, 1), (2, 2), (10, 0), (4, 1), (0, 2), (10, 2)])

We'll move this singularity to the right by two different amounts:


In [9]:
s1=s.rel_deformation({s.singularity(0,0):vector(field,(alpha/(1-alpha),0))}).canonicalize()

In [10]:
s2=s.rel_deformation({s.singularity(0,0):vector(field,(1/(1-alpha),0))}).canonicalize()

In [11]:
# Note that by the action of the derivative of the pseudo-Anosov we have:

In [12]:
s1==m*s2


Out[12]:
True

By a Theorem of Barak Weiss and the author of this notebook, these surfaces are all periodic in the vertical direction. You can see the vertical cylinders:


In [13]:
s1.plot()


Out[13]: