In [1]:
## Setup the path for our codebase
import sys
sys.path.append( '../code/' )
In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
In [3]:
import neural_network.simple as simple
In [4]:
data = simple.generate_hill_data(100)
In [5]:
xs = map(lambda z: z[0], data)
ys = map(lambda z: z[1], data)
plt.plot( xs, ys )
Out[5]:
In [6]:
nn = simple.SimpleScalarF_1Layer(hidden_layer_size=3)
simple.plot_fits( nn, data, train_epochs=200 )
Let's visualize the inputs to the final layer
In [7]:
nn.visualize_inputs_to_final_layer(data)
In [8]:
nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10)
simple.plot_fits( nn, data, train_epochs=200 )
In [9]:
nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10,learning_rate=0.001)
simple.plot_fits( nn, data, train_epochs=20 )
In [10]:
nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10,learning_rate=0.001)
simple.plot_fits( nn, data, train_epochs=20 )
In [11]:
nn = simple.SimpleScalarF_1Layer(hidden_layer_size=10,learning_rate=0.001)
simple.plot_fits( nn, data, train_epochs=2000 )
In [12]:
nn.visualize_inputs_to_final_layer(data)