In [1]:
IPythonDisplay.display == display
Out[1]:
In [2]:
IPythonDisplay.display(IJulia.text_markdown, """
* a
* b
https://ipython.org/ipython-doc/dev/api/generated/IPython.display.html
""")
In [3]:
IPythonDisplay.display(IJulia.image_svg, """
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="210px" height="142px" viewBox="0 0 310 216" enable-background="new 0 0 310 216" xml:space="preserve">
<!-- blue dot -->
<circle fill="#6b85dd" stroke="#4266d5" stroke-width="3" cx="50.5" cy="60" r="16.5"></circle>
<!-- red dot -->
<circle fill="#d66661" stroke="#c93d39" stroke-width="3" cx="212.459" cy="60" r="16.5"></circle>
<!-- green dot -->
<circle fill="#6bab5b" stroke="#3b972e" stroke-width="3" cx="233.834" cy="23.874" r="16.5"></circle>
<!-- purple dot -->
<circle fill="#aa7dc0" stroke="#945bb0" stroke-width="3" cx="255.209" cy="60" r="16.5"></circle>
<!-- "j" -->
<path fill="#252525" d="M37.216,138.427c0-15.839,0.006-31.679-0.018-47.517c-0.001-0.827,0.169-1.234,1.043-1.47
c7.876-2.127,15.739-4.308,23.606-6.47c1.33-0.366,1.333-0.36,1.333,1.019c0,25.758,0.015,51.517-0.012,77.274
c-0.006,5.514,0.245,11.032-0.272,16.543c-0.628,6.69-2.15,13.092-6.438,18.506c-3.781,4.771-8.898,7.25-14.767,8.338
c-6.599,1.222-13.251,1.552-19.934,0.938c-4.616-0.423-9.045-1.486-12.844-4.363c-2.863-2.168-4.454-4.935-3.745-8.603
c0.736-3.806,3.348-5.978,6.861-7.127c2.262-0.74,4.628-0.872,6.994-0.53c1.823,0.264,3.42,1.023,4.779,2.288
c1.38,1.284,2.641,2.674,3.778,4.177c0.872,1.15,1.793,2.256,2.991,3.086c2.055,1.426,4,0.965,5.213-1.216
c0.819-1.473,0.997-3.106,1.173-4.731c0.255-2.348,0.255-4.707,0.256-7.062C37.218,167.145,37.216,152.786,37.216,138.427z"></path>
<!-- "u" -->
<path fill="#252525" d="M125.536,162.479c-2.908,2.385-5.783,4.312-8.88,5.904c-10.348,5.323-20.514,4.521-30.324-1.253
c-6.71-3.95-11.012-9.849-12.52-17.606c-0.236-1.213-0.363-2.438-0.363-3.688c0.01-19.797,0.017-39.593-0.02-59.39
c-0.002-1.102,0.285-1.357,1.363-1.351c7.798,0.049,15.597,0.044,23.396,0.003c0.95-0.005,1.177,0.25,1.175,1.183
c-0.027,19.356-0.025,38.713-0.018,58.07c0.002,6.34,3.599,10.934,9.672,12.42c2.13,0.521,4.19,0.396,6.173-0.6
c4.26-2.139,7.457-5.427,10.116-9.307c0.333-0.487,0.224-1,0.224-1.51c0.007-19.635,0.016-39.271-0.02-58.904
c-0.002-1.083,0.255-1.369,1.353-1.361c7.838,0.052,15.677,0.045,23.515,0.004c0.916-0.005,1.103,0.244,1.102,1.124
c-0.025,27.677-0.026,55.353,0.002,83.024c0.001,0.938-0.278,1.099-1.139,1.095c-7.918-0.028-15.837-0.028-23.756-0.001
c-0.815,0.003-1.1-0.166-1.073-1.037C125.581,167.117,125.536,164.928,125.536,162.479z"></path>
<!-- "l" -->
<path fill="#252525" d="M187.423,107.08c0,20.637-0.011,41.273,0.026,61.91c0.003,1.119-0.309,1.361-1.381,1.355
c-7.799-0.052-15.598-0.047-23.396-0.008c-0.898,0.008-1.117-0.222-1.115-1.115c0.021-39.074,0.021-78.147,0-117.226
c0-0.811,0.189-1.169,1.006-1.392c7.871-2.149,15.73-4.327,23.584-6.545c1.045-0.295,1.308-0.17,1.306,0.985
C187.412,65.727,187.423,86.403,187.423,107.08z"></path>
<!-- "i" -->
<path fill="#252525" d="M223.46,126.477c0,14.155-0.011,28.312,0.021,42.467c0.002,1.027-0.164,1.418-1.332,1.408
c-7.838-0.061-15.676-0.047-23.516-0.01c-0.881,0.004-1.121-0.189-1.119-1.104c0.026-26.153,0.025-52.307,0-78.458
c0-0.776,0.203-1.101,0.941-1.302c7.984-2.172,15.972-4.35,23.938-6.596c1.049-0.296,1.08,0.031,1.078,0.886
C223.454,98.004,223.46,112.239,223.46,126.477z"></path>
<!-- "a" -->
<path fill="#252525" d="M277.695,163.6c-0.786,0.646-1.404,1.125-2,1.635c-4.375,3.746-9.42,5.898-15.16,6.42
c-5.792,0.527-11.479,0.244-16.934-2.047c-12.08-5.071-15.554-17.188-11.938-27.448c1.799-5.111,5.472-8.868,9.831-11.94
c5.681-4.003,12.009-6.732,18.504-9.074c5.576-2.014,11.186-3.939,16.955-5.347c0.445-0.104,0.773-0.243,0.757-0.854
c-0.136-4.389,0.261-8.79-0.479-13.165c-1.225-7.209-6.617-10.013-12.895-9.348c-0.516,0.055-1.029,0.129-1.536,0.241
c-4.877,1.081-7.312,4.413-7.374,10.127c-0.02,1.729-0.229,3.418-0.693,5.084c-0.906,3.229-2.969,5.354-6.168,6.266
c-3.422,0.979-6.893,0.998-10.23-0.305c-6.529-2.543-8.877-10.164-5.12-16.512c2.249-3.799,5.606-6.4,9.461-8.405
c6.238-3.246,12.914-4.974,19.896-5.537c7.565-0.61,15.096-0.366,22.49,1.507c4.285,1.085,8.312,2.776,11.744,5.657
c4.473,3.749,6.776,8.647,6.812,14.374c0.139,21.477,0.096,42.951,0.143,64.428c0.002,0.799-0.248,0.983-1.021,0.98
c-8.035-0.025-16.074-0.023-24.113-0.001c-0.716,0.002-0.973-0.146-0.941-0.915C277.736,167.562,277.695,165.698,277.695,163.6z
M277.695,126.393c-4.793,2.104-9.25,4.373-13.287,7.408c-2.151,1.618-4.033,3.483-5.732,5.581
c-4.229,5.226-1.988,13.343,1.693,16.599c1.592,1.406,3.359,1.906,5.419,1.521c1.621-0.307,3.149-0.857,4.549-1.734
c1.521-0.951,2.949-2.072,4.539-2.887c2.31-1.18,2.97-2.861,2.894-5.445C277.561,140.484,277.695,133.527,277.695,126.393z"></path>
</svg>
""")
In [4]:
IJulia.image_png
Out[4]:
This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a Markdown-formatted sentence.
https://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Typesetting%20Equations.html
\begin{equation*} \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \end{equation*}
In [5]:
(src, loc) = functionloc(display, ())
Out[5]:
In [6]:
less(display, ())
In [10]:
IPythonDisplay.display(IJulia.text_markdown, """
This expression \$\\sqrt{3x-1}+(1+x)^2\$ is an example of a TeX inline equation in a [Markdown-formatted](http://daringfireball.net/projects/markdown/) sentence.
""")
In [11]:
macro R_str(s)
s
end
In [13]:
lx = R"""
This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](http://daringfireball.net/projects/markdown/) sentence.
"""
Out[13]:
In [14]:
IPythonDisplay.display(IJulia.text_markdown, lx)
In [15]:
lx = R"""
https://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Typesetting%20Equations.html
\begin{equation*}
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}
\end{equation*}
"""
IPythonDisplay.display(IJulia.text_markdown, lx)
In [16]:
lx = R"""
\begin{equation*}
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}
\end{equation*}
"""
IPythonDisplay.display(IJulia.text_latex, lx)
In [17]:
IJulia.text_latex
Out[17]:
In [19]:
typeof(IJulia.text_latex)
Out[19]:
In [20]:
MIME{symbol("text/latex")}
Out[20]:
In [22]:
IPythonDisplay.display(MIME(symbol("text/latex")), lx)
In [24]:
isinteractive()
Out[24]:
In [ ]: