Training data is generated from CoolProp.
In [1]:
import numpy as np
from sklearn import preprocessing
import CoolProp.CoolProp as CP
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Dense, Activation, Input, BatchNormalization, Dropout
from keras import layers
from keras.callbacks import ModelCheckpoint
def rho_TP_gen(x, fluid):
rho = CP.PropsSI('D', 'T', x[0], 'P', x[1], fluid)
return rho
In [ ]:
def res_block(input_tensor, n_neuron, stage, block, bn=False):
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Dense(n_neuron, name=conv_name_base + '2a')(input_tensor)
if bn:
x = BatchNormalization(axis=-1, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Dense(n_neuron, name=conv_name_base + '2b')(x)
if bn:
x = BatchNormalization(axis=-1, name=bn_name_base + '2b')(x)
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x