In [1]:
import numpy
from matplotlib import pyplot
size = 7
%matplotlib inline
The Pohlhausen profile is used to generalize the flat plate profile to the case of curved boundaries or flows with external pressure graidients. The profile is defined as
$$ \frac u U = F(\eta)+\lambda G(\eta) , \quad \eta=\frac y\delta$$where
$$ F = 2\eta-2\eta^3+\eta^4 $$$$ G = \frac\eta 6 (1-\eta)^3 $$$$ \lambda = \frac {\delta^2}\nu \frac{dU}{dx} $$This can be easly defined using a set of python functions
In [2]:
def pohlF(eta):
return 2*eta-2*eta**3+eta**4
def pohlG(eta):
return eta/6*(1-eta)**3
def pohl(eta,lam):
return pohlF(eta)+lam*pohlG(eta)
Let's take a look at how this changes with $\lambda$.
In [6]:
def pohlPlot(lam):
pyplot.figure(figsize=(size,size))
pyplot.xlabel('u/U', fontsize=16)
pyplot.axis([-0.1,1.1,0,1])
pyplot.ylabel('y/del', fontsize=16)
eta = numpy.linspace(0.0,1.0,100)
pyplot.plot(pohlF(eta),eta, lw=1, color='black')
pyplot.plot(pohl(eta,lam),eta, lw=2, color='green')
Change lam
below to see how the profile changes compared to the flat plate value.
In [9]:
pohlPlot(lam=7)
We see $\lambda=-12$ is a special point at which the profile has zero derivative at the wall, ie $\tau_w=0$.
We can easily define the characteristics of the Pohlhausen profile analytically. The displacement thickness is:
$$\delta_1 = \int_0^\delta \left(1-\frac uU\right)dy = \delta \left(1-\int_0^1 F(\eta) d\eta-\lambda \int_0^1G(\eta) d\eta \right) $$$$\frac{\delta_1}\delta = 1-[1-1/2+1/5]+\lambda/6[1/2-1+3/4-1/5] = \frac 3{10}-\frac\lambda{120}$$The momentum thickness is:
$$\delta_2 = \int_0^\delta \frac uU\left(1-\frac uU\right)dy = \delta \left(\int_0^1 F-F^2+\lambda(G-FG)-(\lambda G)^2 d\eta\right) $$$$\frac{\delta_2}\delta = \frac{37}{315}-\frac\lambda{945}-\frac{\lambda^2}{9072}$$And the friction coefficient is:
$$\frac 12 c_f = \frac\nu{U^2}\frac{\partial u}{\partial y} = \frac\nu{U\delta}\frac{\partial}{\partial\eta}( F+\lambda G)$$$$\frac 12 c_f = \frac\nu{U\delta}\left(2+\frac\lambda 6\right)$$To determine $\lambda$, and find if/when $\lambda=-12$, we use the momentum integral equation
$$ \frac 12 c_f = \frac {\delta_1 + 2\delta_2}U\frac{dU}{dx}+\frac{d\delta_2}{dx}$$where we substitute the values for $\delta_1,\delta_2$ and $\frac 12 c_f$ from above using $\lambda=\delta^2 U'/\nu$ to remove $\delta$. The result is an equation of the form:
$$ \frac{d\lambda}{dx} = \frac{U'}Ug(\lambda)+\frac{U''}{U'} f(\lambda)$$which we can integrate (numerically) from the leading stagnation point, given an initial condition.
In [ ]: