In [1]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os
In [2]:
df = pd.DataFrame()
df['svm'] = pd.read_csv('../submissions/141116-predict.6.csv', index_col='clip', squeeze=True) #64
df['svm1'] = pd.read_csv('../submissions/141117-predict.1.csv', index_col='clip', squeeze=True) #64
df['gb'] = pd.read_csv('../submissions/141107-predict.4.csv', index_col='clip', squeeze=True) #64
df['rf'] = pd.read_csv('../submissions/141106-predict.1.csv', index_col='clip', squeeze=True)
df['rf1'] = pd.read_csv('../submissions/140926-predict.2.csv', index_col='clip', squeeze=True)
df['dbn'] = pd.read_csv('../submissions/140930-predict.5.csv', index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141116-predict.8.csv', index_col='clip', squeeze=True)
In [3]:
pd.scatter_matrix(df[['svm','svm1','gb','rf','rf1','dbn','best']],figsize=(6, 6), diagonal='kde');
constant from 140929-test-validate
In [4]:
w_svm = 0.8
w_svm1 = 0.4
w_gb = 0.4
w_rf = 0.9
w_rf1 = 0.8
w_dbn = 0.6
s = w_svm + w_svm1 + w_gb + w_rf + w_rf1 + w_dbn
w_svm /= s
w_svm1 /= s
w_gb /= s
w_rf /= s
w_rf1 /= s
w_dbn /= s
In [5]:
w_svm, w_svm1, w_gb, w_rf, w_rf1, w_dbn
Out[5]:
In [6]:
df['preictal'] = w_svm * df['svm'] + w_svm1 * df['svm1'] + w_gb * df['gb'] + w_rf * df['rf'] + w_rf1 * df['rf1'] + w_dbn * df['dbn']
In [7]:
df['preictal'].to_csv('../submissions/141117-predict.4.csv', header=True)
In [8]:
pd.scatter_matrix(df[['best','preictal']])
Out[8]:
In [16]: