In [2]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os
In [3]:
df = pd.DataFrame()
df['gb'] = pd.read_csv('../submissions/140928-predict.1.csv', index_col='clip', squeeze=True) #64
df['rf'] = pd.read_csv('../submissions/140926-predict.2.csv', index_col='clip', squeeze=True)
In [4]:
pd.scatter_matrix(df[['gb','rf']],figsize=(6, 6), diagonal='kde');
constant from 140929-test-validate
In [5]:
w_gb = 0.89
w_rf = 1
s = w_gb + w_rf
w_gb /= s
w_rf /= s
In [6]:
w_gb, w_rf
Out[6]:
In [7]:
df['preictal'] = w_gb * df['gb'] + w_rf * df['rf']
In [8]:
df['preictal'].to_csv('../submissions/140929-predict.3.csv', header=True)
In [9]:
!head ../submissions/140929-predict.3.csv
In [10]:
df['best'] = pd.read_csv('../submissions/140928-predict.2.csv', index_col='clip', squeeze=True)
In [11]:
pd.scatter_matrix(df[['best','preictal']])
Out[11]:
In [ ]: