In [1]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os

In [10]:
df = pd.DataFrame()
df['svm'] = pd.read_csv('../submissions/141116-predict.6.csv', index_col='clip', squeeze=True) #64
df['gb'] = pd.read_csv('../submissions/141107-predict.4.csv', index_col='clip', squeeze=True) #64
df['rf'] = pd.read_csv('../submissions/141106-predict.1.csv', index_col='clip', squeeze=True)
df['rf1'] = pd.read_csv('../submissions/140926-predict.2.csv', index_col='clip', squeeze=True)
df['dbn'] = pd.read_csv('../submissions/140930-predict.5.csv', index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141112-predict.1.csv', index_col='clip', squeeze=True)

In [4]:
pd.scatter_matrix(df[['svm','gb','rf','rf1','dbn','best']],figsize=(6, 6), diagonal='kde');


constant from 140929-test-validate


In [18]:
w_svm = 1.5
w_gb  = 0.4
w_rf = 0.9
w_rf1 = 0.8
w_dbn = 0.6

s = w_svm + w_gb + w_rf + w_rf1 + w_dbn

w_svm /= s
w_gb /= s
w_rf /= s
w_rf1 /= s
w_dbn /= s

In [19]:
w_svm, w_gb, w_rf, w_rf1, w_dbn


Out[19]:
(0.3571428571428572,
 0.09523809523809526,
 0.21428571428571433,
 0.19047619047619052,
 0.14285714285714288)

In [20]:
df['preictal'] = w_svm * df['svm'] + w_gb * df['gb'] + w_rf * df['rf'] + w_rf1 * df['rf1'] + w_dbn * df['dbn']

In [21]:
df['preictal'].to_csv('../submissions/141116-predict.9.csv', header=True)

In [22]:
pd.scatter_matrix(df[['best','preictal']])


Out[22]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x115788b10>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x11340a310>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x119298910>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1132fdf50>]], dtype=object)

In [16]: