In [1]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os
In [5]:
def prb2logit(x):
return np.log(x/(1.-x))
def logit2prb(x):
return 1./(1+np.exp(-x))
In [28]:
df = pd.DataFrame()
df['gb'] = pd.read_csv('../submissions/141107-predict.4.csv', index_col='clip', squeeze=True)
df['rf'] = pd.read_csv('../submissions/141107-predict.2.csv', index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141106-predict.3.csv', index_col='clip', squeeze=True)
In [46]:
df['gbl'] = prb2logit(df['gb'])
df['gbl'] = logit2prb(0.1*df['gbl'])
In [47]:
pd.scatter_matrix(df,figsize=(6, 6), diagonal='kde');
constant from 140929-test-validate
In [48]:
w_gb = 0.5
w_rf = 0.5
s = w_gb + w_rf
w_gb /= s
w_rf /= s
In [49]:
w_gb, w_rf
Out[49]:
In [50]:
df['preictal'] = w_gb * df['gbl'] + w_rf * df['rf']
In [51]:
df['preictal'].to_csv('../submissions/141107-predict.6.csv', header=True)
In [52]:
pd.scatter_matrix(df[['best','preictal']])
Out[52]:
In [16]: