In [9]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os

In [10]:
df = pd.DataFrame()
df['gb'] = pd.read_csv('../submissions/140928-predict.1.csv', index_col='clip', squeeze=True) #64
df['rf'] = pd.read_csv('../submissions/141104-predict.8.csv', index_col='clip', squeeze=True)
df['rfpca'] = pd.read_csv('../submissions/141001-predict.1.csv', index_col='clip', squeeze=True)
df['dbn'] = pd.read_csv('../submissions/140930-predict.5.csv', index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141103-predict.16.csv', index_col='clip', squeeze=True)

In [11]:
pd.scatter_matrix(df[['gb','rf','rfpca','dbn','best']],figsize=(6, 6), diagonal='kde');


constant from 140929-test-validate


In [12]:
w_gb  = 0.4
w_rf = 0.8
w_rfpca = 0.4
w_dbn = 0.6

s = w_gb + w_rf + w_rfpca + w_dbn

w_gb /= s
w_rf /= s
w_rfpca /= s
w_dbn /= s

In [13]:
w_gb, w_rf, w_rfpca, w_dbn


Out[13]:
(0.18181818181818182,
 0.36363636363636365,
 0.18181818181818182,
 0.2727272727272727)

In [14]:
df['preictal'] = w_gb * df['gb'] + w_rf * df['rf'] + w_rfpca * df['rfpca'] + w_dbn * df['dbn']

In [15]:
df['preictal'].to_csv('../submissions/141104-predict.10.csv', header=True)

In [16]:
pd.scatter_matrix(df[['best','preictal']])


Out[16]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x114022250>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x113f94850>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x11339aad0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1133fead0>]], dtype=object)

In [16]: