continue from 140926-GBC
In [1]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os
import re
import math
import sys
import random
In [2]:
y = y_est = None
In [18]:
for target in ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2']:
with open('/tmp/%s_predict.spkl'%target,'rb') as fp:
y_target, y_est_target = pickle.load(fp)
if y is None:
y = y_target
y_est = y_est_target
else:
y = np.hstack((y, y_target))
y_est = np.hstack((y_est, y_est_target))
In [19]:
from sklearn.metrics import roc_auc_score
roc_auc_score(y, y_est)
Out[19]:
In [20]:
fpout = open('../submissions/140926-predict.8.csv','w')
print >>fpout,'clip,preictal'
In [21]:
for target in ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2']:
with open('/tmp/%s_test.spkl'%target,'rb') as fp:
y_proba = pickle.load(fp)
# write results
for i,p in enumerate(y_proba):
print >>fpout,'%s_test_segment_%04d.mat,%.15f' % (target, i+1, p)
In [22]:
fpout.close()
In [22]: