In [1]:
import numpy
In [2]:
#assuming the data file is in the data/ folder
numpy.loadtxt(fname='data/inflammation-01.csv', delimiter=',')
Out[2]:
numpy
thing.component
=
In [3]:
weight_kg = 55 #assigns value 55 to weight_kg
In [4]:
print(weight_kg) #we can print to the screen
In [5]:
print('weight in pounds:', 2.2 * weight_kg) # do arithmetic with it
In [6]:
print?
In [7]:
weight_kg = 57.5 #change variable's value by assign new value
print('weight in kilograms is now :', weight_kg)
In [7]:
weight_lb = 2.2 * weight_kg #example let's store patients weight in pounds
print('weight in kilograms: ', weight_kg, 'and in pounds', weight_lb)
In [8]:
weight_kg = 100.0 #now change weight_kg
print('weight in kilograms is now:', weight_kg, 'and weight in pounds is still:', weight_lb)
weight_lb
dosn't remember where its value came fromweight_kg
changes - not like spreadsheetswhos #ipython command to see what variables & mods you have
In [9]:
whos
numpy.loadtxt
and save its result
In [6]:
data = numpy.loadtxt(fname='data/inflammation-01.csv', delimiter=',')
In [4]:
print(data) #statement above doesn't produce output, let's pring
In [12]:
print(type(data)) #we can get type of object
In [13]:
print(data.shape)
data
has 60 rows and 40 columns
In [14]:
print('first value in data', data[0,0]) #use index in square brackets
In [15]:
data[30,20] # get the middle value - notice here i didn't use print
Out[15]:
In [16]:
data[0:4, 0:10] #select whole sections of matrix, 1st 10 days & 4 patients
Out[16]:
In [17]:
data[5:10,0:10]
Out[17]:
:
will include everything
In [18]:
data[:3, 36:]
Out[18]:
element = 'oxygen'
print('first three characters:', element[0:3])
print('last three characters:', element[3:6])
first three characters: oxy
last three characters: gen
What is the value of element[:4]? What about element[4:]? Or element[:]?
What is element[-1]? What is element[-2]? Given those answers, explain what element[1:-1] does.
In [1]:
element = 'oxygen'
print('first three characters:', element[0:3])
print('last three characters:', element[3:6])
In [6]:
print(element[:4])
print(element[4:])
In [7]:
print(:)
In [14]:
#oxygen
print(element[-1])
print(element[-2])
print(element[2:-1])
In [13]:
doubledata = data * 2.0 #we can perform math on array
In [20]:
doubledata
Out[20]:
In [21]:
data[:3, 36:]
Out[21]:
In [22]:
doubledata[:3, 36:]
Out[22]:
In [23]:
tripledata = doubledata + data
In [24]:
print('tripledata:')
print(tripledata[:3, 36:])
In [25]:
print(data.mean())
mean
we need empty ()
parense even if we aren't passing in parameters to tell python to go do somethingdata.shape
doesn't need ()
because it's just a description
In [26]:
print('maximum inflammation: ', data.max())
print('minimum inflammation: ', data.min())
print('standard deviation:', data.std())
In [8]:
patient_0 = data[0, :] #0 on first axis, everythign on second
print('maximum inflammation for patient 0: ', patient_0.max())
In [15]:
data[2, :].max() #max inflammation of patient 2
Out[15]:
In [9]:
print(data.mean(axis=0))
In [30]:
print(data.mean(axis=0).shape) #Nx1 vector of averages
In [31]:
print(data.mean(axis=1)) #avg inflam per patient across all days
In [32]:
print(data.mean(axis=1).shape)
matplotlib
library
In [3]:
import matplotlib.pyplot
In [7]:
image = matplotlib.pyplot.imshow(data)
In [10]:
matplotlib.pyplot.imshow?
%
indicates an ipython magic function
In [4]:
%matplotlib inline
In [12]:
numpy.mean?
now let's look at avg inflammation over days (columns)
In [14]:
ave_inflammation = data.mean(axis = 0)
ave_plot = matplotlib.pyplot.plot(ave_inflammation)
matplotlib.pyplot.show(ave_plot)
In [36]:
max_plot = matplotlib.pyplot.plot(data.max(axis=0))
matplotlib.pyplot.show(max_plot)
In [37]:
min_plot = matplotlib.pyplot.plot(data.min(axis=0))
matplotlib.pyplot.show(min_plot)
matplotlib.pyplot.figure()
create the plotting spacefigsize
tells python how bigadd_subplot
set_xlabel()
& set_ylabel
set the titles fo the axes
In [ ]:
import numpy
import matplotlib.pyplot
data = numpy.loadtxt(fname='data/inflammation-01.csv', delimiter=',')
fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0))
axes1 = fig.add_subplot(1, 3, 1)
axes2 = fig.add_subplot(1, 3, 2)
axes3 = fig.add_subplot(1, 3, 3)
axes1.set_ylabel('average')
axes1.plot(data.mean(axis=0))
axes2.set_ylabel('max')
axes2.plot(data.max(axis=0))
axes3.set_ylabel('min')
axes3.plot(data.min(axis=0))
fig.tight_layout()
matplotlib.pyplot.show()
In [ ]: