Multigraph Network Styling for visJS2jupyter


Authors: Brin Rosenthal (sbrosenthal@ucsd.edu), Mikayla Webster (m1webste@ucsd.edu), Julia Len (jlen@ucsd.edu)


Import packages


In [1]:
import matplotlib as mpl
import networkx as nx
import pandas as pd
import random

import visJS2jupyter.visJS_module

We start by creating a randomized, single-edged graph, and convert that to a multigraph


In [2]:
G = nx.connected_watts_strogatz_graph(30,5,.2)
G = nx.MultiGraph(G)
edges = G.edges(keys = True) # for multigraphs every edge has to be represented by a three-tuple (source, target, key)

We duplicate every edge in the graph to make it a true multigraph.

Note: NetworkX does not support duplicate edges with opposite directions. NetworkX will flip any backwards edges you try to add to your graph. For example, if your graph currently contains the edges [(0,1), (1,2)] and you add the edge (1,0) to your graph, your graph will now contain edges [(0,1), (0,1), (1,2)]


In [3]:
sources = list(zip(*edges)[0])
targets = list(zip(*edges)[1])
backward_edges = list(zip(targets, sources)) # demonstarting adding backwards edges

In [4]:
G.add_edges_from(backward_edges)
edges = list(G.edges(data = True))

In [5]:
nodes = list(G.nodes()) # type cast to list in order to make compatible with networkx 1.11 and 2.0
edges = list(G.edges(keys = True)) # for nx 2.0, returns an "EdgeView" object rather than an iterable

Multigraph Node and Edge Styling

There is no difference between multigraph and single-edged-graph styling. Just map the node and edge attributes to some visual properties, and style the nodes and edges according to these properties (like usual!)


In [6]:
# add some node attributes to color-code by
degree = dict(G.degree()) # nx 2.0 returns a "DegreeView" object. Cast to dict to maintain compatibility with nx 1.11
bc = nx.betweenness_centrality(G)
nx.set_node_attributes(G, name = 'degree', values = degree)             # between networkx 1.11 and 2.0, therefore we must
nx.set_node_attributes(G, name = 'betweenness_centrality', values = bc) # explicitly pass our arguments 
                                                                        # (not implicitly through position)

# add the edge attribute 'weight' to color-code by
weights = []
for i in range(len(edges)):
    weights.append(float(random.randint(1,5))) 
    
w_dict = dict(zip(edges, weights))
nx.set_edge_attributes(G, name = 'weight', values = w_dict)

In [7]:
# map the betweenness centrality to the node color, using matplotlib spring_r colormap
node_to_color = visJS_module.return_node_to_color(G,field_to_map='betweenness_centrality',cmap=mpl.cm.spring_r,alpha = 1,
                                                 color_max_frac = .9,color_min_frac = .1)

# map weight to edge color, using default settings
edge_to_color = visJS_module.return_edge_to_color(G,field_to_map='weight')

Interactive network

Note that this example is simply the multigraph version of our "Complex Parameters" notebook.


In [8]:
# set node initial positions using networkx's spring_layout function
pos = nx.spring_layout(G)

nodes_dict = [{"id":n,"color":node_to_color[n],
               "degree":nx.degree(G,n),
              "x":pos[n][0]*1000,
              "y":pos[n][1]*1000} for n in nodes
              ]
node_map = dict(zip(nodes,range(len(nodes))))  # map to indices for source/target in edges
edges_dict = [{"source":node_map[edges[i][0]], "target":node_map[edges[i][1]], 
              "color":edge_to_color[(edges[i][0],edges[i][1],edges[i][2])],"title":'test'} # remeber (source, target, key)
              for i in range(len(edges))]

# set some network-wide styles
visJS_module.visjs_network(nodes_dict,edges_dict,
                          node_size_multiplier=3,
                          node_size_transform = '',
                          node_color_highlight_border='red',
                          node_color_highlight_background='#D3918B',
                          node_color_hover_border='blue',
                          node_color_hover_background='#8BADD3',
                          node_font_size=25,
                          edge_arrow_to=True,
                          physics_enabled=True,
                          edge_color_highlight='#8A324E',
                          edge_color_hover='#8BADD3',
                          edge_width=3,
                          max_velocity=15,
                          min_velocity=1,
                          edge_smooth_enabled = True)


Out[8]:
Network | Basic usage

In [ ]: