In [1]:
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import seaborn as sns
%matplotlib inline
In [9]:
# %load snippets/simple_setup.py
"""
Simple notebook set up
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
%matplotlib inline
# some basic plotting directives
plt.rcParams["figure.figsize"] = (16, 12)
# we check this in a second
# %config InlineBackend.figure_format = "retina"
In [10]:
from sklearn.datasets import make_classification
In [15]:
X, y = make_classification(200, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, random_state=42)
X_0 = X[y == 0]
X_1 = X[y == 1]
plt.scatter(X[:, 0], X[:, 1], c=y)
Out[15]:
In [18]:
import seaborn as sns
sns.set_style("whitegrid")
plt.scatter(X[:, 0], X[:, 1], c=y)
Out[18]:
In [19]:
current_palette = sns.color_palette()
sns.palplot(current_palette)