In [ ]:
__copyright__ = "Reiner Lemoine Institut, Zentrum für nachhaltige Energiesysteme Flensburg"
__license__ = "GNU Affero General Public License Version 3 (AGPL-3.0)"
__url__ = "https://github.com/openego/data_processing/blob/master/LICENSE"
__author__ = "wolfbunke, Ludee"
This tutorial gives you an overview of the OpenEnergy Platform and how you can work with the REST-full-HTTP API in Python.
The full API documentaion can be found on ReadtheDocs.io.
0 Setup token
1 Select data
2 Make a pandas dataframe
3 Plot a dataframe (geo plot)
In [ ]:
import requests
import pandas as pd
from IPython.core.display import HTML
# oedb
oep_url= 'http://oep.iks.cs.ovgu.de/'
# token
your_token = ''
In [ ]:
import geopandas as gpd
from shapely.geometry import Point
import shapely.wkt
from shapely import wkb
from geoalchemy2.shape import to_shape
In [ ]:
# select powerplant data
schema = 'supply'
table = 'ego_dp_conv_powerplant'
where = 'version=v0.2.10'
conv_powerplants = requests.get(oep_url+'/api/v0/schema/'+schema+'/tables/'+table+'/rows/?where='+where, )
conv_powerplants.status_code
In [ ]:
# select borders
schema = 'boundaries'
table = 'bkg_vg250_2_lan_mview'
vg = requests.get(oep_url+'/api/v0/schema/'+schema+'/tables/'+table+'/rows/')
vg.status_code
In [ ]:
df_pp = pd.DataFrame(conv_powerplants.json())
df_vg = pd.DataFrame(vg.json())
Let's take a look into our data
In [ ]:
df_pp.info()
In [ ]:
df_pp.columns
In [ ]:
#df_pp
df_vg
In [ ]:
import geopandas as gpd
import shapely
import matplotlib.pyplot as plt
%matplotlib inline
In [ ]:
# transform WKB to WKT / Geometry
df_pp['geom'] = df_pp['geom'].apply(lambda x:shapely.wkb.loads(x, hex=True))
df_vg['geom'] = df_vg['geom'].apply(lambda x:shapely.wkb.loads(x, hex=True))
In [ ]:
# plot powerplants
crs = {'init' :'epsg:4326'}
gdf_pp = gpd.GeoDataFrame(df_pp, crs=crs, geometry=df_pp.geom)
base = gdf_pp.plot(color='white', edgecolor='black',figsize=(8, 8))
gdf_pp.plot(ax=base)
plt.show()
In [ ]:
# plot borders
crs = {'init' :'epsg:3035'}
gdf_vg = gpd.GeoDataFrame(df_pp, crs=crs, geometry=df_vg.geom)
base = gdf_vg.plot(color='white', edgecolor='black',figsize=(8, 8))
gdf_vg.plot(ax=base)
plt.show()
In [ ]:
# transform WKB to WKT / Geometry
crs1 = {'init' :'epsg:4326'}
crs2 = {'init' :'epsg:3035'}
gdf_pp = gpd.GeoDataFrame(df_pp, crs=crs1, geometry=df_pp.geom)
gdf_vg = gpd.GeoDataFrame(df_vg, crs=crs2, geometry=df_vg.geom)
base = gdf_vg.plot(color='white', edgecolor='black',figsize=(10, 10))
gdf_pp.plot(ax=base)
#gdf_vg.plot(ax=base)
plt.show()
In [ ]:
from shapely import geos
from geoalchemy2.shape import to_shape
from shapely.geometry import Point
from ipywidgets import widgets
from IPython.display import display
from IPython.core.display import HTML
from geoalchemy2 import Geometry, WKTElement
import requests
import pandas as pd
import mplleaflet
In [ ]:
plants_data = requests.get(oep_url+'/api/v0/schema/model_draft/tables/ego_dp_supply_conv_powerplant/rows/?where=scenario=Status+Quo&limit=910',)
regions = requests.get(oep_url+'/api/v0/schema/model_draft/tables/renpass_gis_parameter_region/rows/?where=stat_level=999',)
regions.status_code
plants_data.status_code
In [ ]:
sq_plants = pd.DataFrame(plants_data.json())
renpass_region_df = pd.DataFrame(regions.json())
# transform WKB to WKT / Geometry
crs = {'init' :'epsg:4326'}
sq_plants['geom'] =sq_plants['geom'].apply(lambda x:shapely.wkb.loads(x, hex=True))
renpass_region_df['geom'] =renpass_region_df['geom'].apply(lambda x:shapely.wkb.loads(x, hex=True))
gdf_plants = gpd.GeoDataFrame(sq_plants, crs=crs, geometry=sq_plants.geom)
gdf_regions = gpd.GeoDataFrame(renpass_region_df, crs=crs, geometry=renpass_region_df.geom)
base = gdf_regions.plot(color='white', edgecolor='black',figsize=(10, 10))
gdf_plants.plot(ax=base)
plt.show()
In [ ]:
import folium
from folium import plugins
import matplotlib.pyplot as plt
%matplotlib inline
In [ ]:
# define map region
map = folium.Map(location=[51, 9], zoom_start=6)
In [ ]:
# Use column lon / lat in order to plot map
for name, row in df_pp.iloc[:1000].iterrows():
folium.Marker([row["lat"], row["lon"]], popup=row["type"] ).add_to(map)
#map.create_map('plants.html')
map
In [ ]:
stops_heatmap = folium.Map(location=[51, 9], zoom_start=6)
stops_heatmap.add_child(plugins.HeatMap([[row["lat"], row["lon"]] for capacity, row in df_pp.iloc[:1000].iterrows()]))
stops_heatmap.save("heatmap.html")
stops_heatmap
In [ ]: