In [2]:
%matplotlib inline
import matplotlib.pyplot as plt

In [3]:
from vespa.stars import MultipleStarPopulation

In [4]:
from scipy.stats import powerlaw
mmin=0.2; mmax=0.5
ms = powerlaw(3).rvs(int(1e5)) * (mmax-mmin) + mmin #rough approximation to the mass distribution of Kepler M's
plt.hist(ms);



In [27]:
pop = MultipleStarPopulation(mA=ms, qmin=0.2, max_distance=500, minmass=0.15)

In [28]:
query = 'r_mag < 17'
frac = pop.binary_fraction(query) + pop.triple_fraction(query)

In [29]:
frac/.52


Out[29]:
1.2463947259991759

In [31]:
plt.hist(pop.stars['distance'], histtype='step', lw=3)
plt.hist(pop.stars.query(query)['distance'].values, histtype='step', lw=3);



In [35]:
sub = pop.stars.query(query)
(sub['radius_A'] + sub['radius_B']).mean() / (pop.stars['radius_A'] + pop.stars['radius_B']).mean()


Out[35]:
1.079022257298867

OK, so for multiple systems, average eclipse probability is about 8% higher than for volume-limited sample. And binary fraction is about 20-25% higher. What does this mean for an appropriate correction factor? Haven't thought this through carefully yet.


In [ ]: