In [3]:
# Enabling the `widget` backend.
# This requires jupyter-matplotlib a.k.a. ipympl.
# ipympl can be install via pip or conda.
%matplotlib widget
In [4]:
# Testing matplotlib interactions with a simple plot
import matplotlib.pyplot as plt
import numpy as np
plt.figure(1)
plt.plot(np.sin(np.linspace(0, 20, 100)))
plt.show()
In [12]:
# A more complex example from the matplotlib gallery
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
n_bins = 10
x = np.random.randn(1000, 3)
fig, axes = plt.subplots(nrows=2, ncols=2)
ax0, ax1, ax2, ax3 = axes.flatten()
colors = ['red', 'tan', 'lime']
ax0.hist(x, n_bins, density=1, histtype='bar', color=colors, label=colors)
ax0.legend(prop={'size': 10})
ax0.set_title('bars with legend')
ax1.hist(x, n_bins, density=1, histtype='bar', stacked=True)
ax1.set_title('stacked bar')
ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)
ax2.set_title('stack step (unfilled)')
# Make a multiple-histogram of data-sets with different length.
x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]
ax3.hist(x_multi, n_bins, histtype='bar')
ax3.set_title('different sample sizes')
fig.tight_layout()
plt.show()
In [13]:
# When using the `widget` backend from ipympl,
# fig.canvas is a proper Jupyter interactive widget, which can be embedded in
# Layout classes like HBox and Vbox.
# One can bound figure attributes to other widget values.
from ipywidgets import HBox, FloatSlider
plt.ioff()
plt.clf()
slider = FloatSlider(
orientation='vertical',
value=1.0,
min=0.02,
max=2.0
)
fig = plt.figure(3)
x = np.linspace(0, 20, 500)
lines = plt.plot(x, np.sin(slider.value * x))
def update_lines(change):
lines[0].set_data(x, np.sin(change.new * x))
fig.canvas.draw()
fig.canvas.flush_events()
slider.observe(update_lines, names='value')
HBox([slider, fig.canvas])
In [ ]: