In [1]:
import sys
sys.path.append('../src')
from popgen import *
%matplotlib inline

One dimension


In [2]:
m = SteppingStone(gens=100)
m.mig = [0, 0.01, 0.05]
m.pop_size = 200
m.num_pops_x = 5
m.num_msats = 50
BasicView(m, [fst(), ExpHe()], ['mean'], with_model=True)
m.run()


peripheral populations


In [3]:
m = SteppingStone(gens=200)
m.mig = 0.02
m.pop_size = 300
m.num_pops_x = 10
m.num_msats = 5
MetaVsDemeView(m, ExpHe(), ExpHe(do_structured=True))
MetaVsDemeView(m, NumAlleles(), NumAlleles(do_structured=True))
m.run()


Two dimensions


In [4]:
m = SteppingStone(gens=100, two_d=True)
m.mig = [0, 0.01, 0.05]
m.pop_size = 200
m.num_pops_y = 2
m.num_pops_x = 5
m.num_msats = 50
BasicView(m, [fst(), ExpHe()], ['mean'], with_model=True)
m.run()


Princinpal Components Analysis over time!


In [5]:
m = SteppingStone(gens=60)
m.mig = [0.00, 0.01, 0.1]
m.pop_size = 100
m.num_pops_x = 10
m.num_msats = 50
IndividualView(m, PCA(), step=20)
m.run()



In [6]:
m = SteppingStone(gens=600)
m.mig = [0.0, 0.01, 0.1]
m.pop_size = 100
m.num_pops_x = 10
m.num_msats = 50
IndividualView(m, PCA(), step=150)
m.run()


PCA over time, 2D


In [7]:
m = SteppingStone(gens=1200, two_d=True)
m.mig = [0.001, 0.01]
m.pop_size = 100
m.num_pops_x = 4
m.num_pops_y = 4
m.num_msats = 50
IndividualView(m, PCA(), step=300)
m.run()



In [ ]: