Non-Rigid Registration: Demons

This notebook illustrates the use of the Demons based non-rigid registration set of algorithms in SimpleITK. These include both the DemonsMetric which is part of the registration framework and Demons registration filters which are not.

The data we work with is a 4D (3D+time) thoracic-abdominal CT, the Point-validated Pixel-based Breathing Thorax Model (POPI) model. This data consists of a set of temporal CT volumes, a set of masks segmenting each of the CTs to air/body/lung, and a set of corresponding points across the CT volumes.

The POPI model is provided by the Léon Bérard Cancer Center & CREATIS Laboratory, Lyon, France. The relevant publication is:

J. Vandemeulebroucke, D. Sarrut, P. Clarysse, "The POPI-model, a point-validated pixel-based breathing thorax model", Proc. XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), Toronto, Canada, 2007.

The POPI data, and additional 4D CT data sets with reference points are available from the CREATIS Laboratory here.


In [ ]:
import SimpleITK as sitk
import registration_utilities as ru
import registration_callbacks as rc

from __future__ import print_function

import matplotlib.pyplot as plt
%matplotlib inline

from ipywidgets import interact, fixed

#utility method that either downloads data from the MIDAS repository or
#if already downloaded returns the file name for reading from disk (cached data)
from downloaddata import fetch_data as fdata

Utilities

Load utilities that are specific to the POPI data, functions for loading ground truth data, display and the labels for masks.


In [ ]:
%run popi_utilities_setup.py

Loading Data

Load all of the images, masks and point data into corresponding lists. If the data is not available locally it will be downloaded from the original remote repository.

Take a look at the images. According to the documentation on the POPI site, volume number one corresponds to end inspiration (maximal air volume).


In [ ]:
images = []
masks = []
points = []
for i in range(0,10):
    image_file_name = 'POPI/meta/{0}0-P.mhd'.format(i)
    mask_file_name = 'POPI/masks/{0}0-air-body-lungs.mhd'.format(i)
    points_file_name = 'POPI/landmarks/{0}0-Landmarks.pts'.format(i)
    images.append(sitk.ReadImage(fdata(image_file_name), sitk.sitkFloat32)) #read and cast to format required for registration
    masks.append(sitk.ReadImage(fdata(mask_file_name)))
    points.append(read_POPI_points(fdata(points_file_name)))
        
interact(display_coronal_with_overlay, temporal_slice=(0,len(images)-1), 
         coronal_slice = (0, images[0].GetSize()[1]-1), 
         images = fixed(images), masks = fixed(masks), 
         label=fixed(lung_label), window_min = fixed(-1024), window_max=fixed(976));

Demons Registration

This function will align the fixed and moving images using the Demons registration method. If given a mask, the similarity metric will be evaluated using points sampled inside the mask. If given fixed and moving points the similarity metric value and the target registration errors will be displayed during registration.

As this notebook performs intra-modal registration, we can readily use the Demons family of algorithms.

We start by using the registration framework with SetMetricAsDemons. We use a multiscale approach which is readily available in the framework. We then illustrate how to use the Demons registration filters that are not part of the registration framework.


In [ ]:
def demons_registration(fixed_image, moving_image, fixed_points = None, moving_points = None):
    
    registration_method = sitk.ImageRegistrationMethod()

    # Create initial identity transformation.
    transform_to_displacment_field_filter = sitk.TransformToDisplacementFieldFilter()
    transform_to_displacment_field_filter.SetReferenceImage(fixed_image)
    # The image returned from the initial_transform_filter is transferred to the transform and cleared out.
    initial_transform = sitk.DisplacementFieldTransform(transform_to_displacment_field_filter.Execute(sitk.Transform()))
    
    # Regularization (update field - viscous, total field - elastic).
    initial_transform.SetSmoothingGaussianOnUpdate(varianceForUpdateField=0.0, varianceForTotalField=2.0) 
    
    registration_method.SetInitialTransform(initial_transform)

    registration_method.SetMetricAsDemons(10) #intensities are equal if the difference is less than 10HU
        
    # Multi-resolution framework.            
    registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1])
    registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[8,4,0])    

    registration_method.SetInterpolator(sitk.sitkLinear)
    # If you have time, run this code as is, otherwise switch to the gradient descent optimizer    
    registration_method.SetOptimizerAsConjugateGradientLineSearch(learningRate=1.0, numberOfIterations=20, convergenceMinimumValue=1e-6, convergenceWindowSize=10)
    #registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, numberOfIterations=20, convergenceMinimumValue=1e-6, convergenceWindowSize=10)
    registration_method.SetOptimizerScalesFromPhysicalShift()

    # If corresponding points in the fixed and moving image are given then we display the similarity metric
    # and the TRE during the registration.
    if fixed_points and moving_points:
        registration_method.AddCommand(sitk.sitkStartEvent, rc.metric_and_reference_start_plot)
        registration_method.AddCommand(sitk.sitkEndEvent, rc.metric_and_reference_end_plot)        
        registration_method.AddCommand(sitk.sitkIterationEvent, lambda: rc.metric_and_reference_plot_values(registration_method, fixed_points, moving_points))
        
    return registration_method.Execute(fixed_image, moving_image)

Running the Demons registration on this data will take a long time (run it before going home). If you are less interested in accuracy you can switch the optimizer from conjugate gradient to gradient, will run much faster but the results are worse.


In [ ]:
#%%timeit -r1 -n1
# Uncomment the line above if you want to time the running of this cell.

# Select the fixed and moving images, valid entries are in [0,9]
fixed_image_index = 0
moving_image_index = 7


tx = demons_registration(fixed_image = images[fixed_image_index], 
                         moving_image = images[moving_image_index],
                         fixed_points = points[fixed_image_index], 
                         moving_points = points[moving_image_index]
                         )
initial_errors_mean, initial_errors_std, _, initial_errors_max, initial_errors = ru.registration_errors(sitk.Euler3DTransform(), points[fixed_image_index], points[moving_image_index])
final_errors_mean, final_errors_std, _, final_errors_max, final_errors = ru.registration_errors(tx, points[fixed_image_index], points[moving_image_index])

plt.hist(initial_errors, bins=20, alpha=0.5, label='before registration', color='blue')
plt.hist(final_errors, bins=20, alpha=0.5, label='after registration', color='green')
plt.legend()
plt.title('TRE histogram');
print('Initial alignment errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(initial_errors_mean, initial_errors_std, initial_errors_max))
print('Final alignment errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(final_errors_mean, final_errors_std, final_errors_max))

SimpleITK also includes a set of Demons filters which are independent of the ImageRegistrationMethod. These include:

  1. DemonsRegistrationFilter
  2. DiffeomorphicDemonsRegistrationFilter
  3. FastSymmetricForcesDemonsRegistrationFilter
  4. SymmetricForcesDemonsRegistrationFilter

As these filters are independent of the ImageRegistrationMethod we do not have access to the multiscale framework. Luckily it is easy to implement our own multiscale framework in SimpleITK, which is what we do in the next cell.


In [ ]:
def smooth_and_resample(image, shrink_factor, smoothing_sigma):
    """
    Args:
        image: The image we want to resample.
        shrink_factor: A number greater than one, such that the new image's size is original_size/shrink_factor.
        smoothing_sigma: Sigma for Gaussian smoothing, this is in physical (image spacing) units, not pixels.
    Return:
        Image which is a result of smoothing the input and then resampling it using the given sigma and shrink factor.
    """
    smoothed_image = sitk.SmoothingRecursiveGaussian(image, smoothing_sigma)
    
    original_spacing = image.GetSpacing()
    original_size = image.GetSize()
    new_size = [int(sz/float(shrink_factor) + 0.5) for sz in original_size]
    new_spacing = [((original_sz-1)*original_spc)/(new_sz-1) 
                   for original_sz, original_spc, new_sz in zip(original_size, original_spacing, new_size)]
    return sitk.Resample(smoothed_image, new_size, sitk.Transform(), 
                         sitk.sitkLinear, image.GetOrigin(),
                         new_spacing, image.GetDirection(), 0.0, 
                         image.GetPixelIDValue())


    
def multiscale_demons(registration_algorithm,
                      fixed_image, moving_image, initial_transform = None, 
                      shrink_factors=None, smoothing_sigmas=None):
    """
    Run the given registration algorithm in a multiscale fashion. The original scale should not be given as input as the
    original images are implicitly incorporated as the base of the pyramid.
    Args:
        registration_algorithm: Any registration algorithm that has an Execute(fixed_image, moving_image, displacement_field_image)
                                method.
        fixed_image: Resulting transformation maps points from this image's spatial domain to the moving image spatial domain.
        moving_image: Resulting transformation maps points from the fixed_image's spatial domain to this image's spatial domain.
        initial_transform: Any SimpleITK transform, used to initialize the displacement field.
        shrink_factors: Shrink factors relative to the original image's size.
        smoothing_sigmas: Amount of smoothing which is done prior to resmapling the image using the given shrink factor. These
                          are in physical (image spacing) units.
    Returns: 
        SimpleITK.DisplacementFieldTransform
    """
    # Create image pyramid.
    fixed_images = [fixed_image]
    moving_images = [moving_image]
    if shrink_factors:
        for shrink_factor, smoothing_sigma in reversed(list(zip(shrink_factors, smoothing_sigmas))):
            fixed_images.append(smooth_and_resample(fixed_images[0], shrink_factor, smoothing_sigma))
            moving_images.append(smooth_and_resample(moving_images[0], shrink_factor, smoothing_sigma))
    
    # Create initial displacement field at lowest resolution. 
    # Currently, the pixel type is required to be sitkVectorFloat64 because of a constraint imposed by the Demons filters.
    if initial_transform:
        initial_displacement_field = sitk.TransformToDisplacementField(initial_transform, 
                                                                       sitk.sitkVectorFloat64,
                                                                       fixed_images[-1].GetSize(),
                                                                       fixed_images[-1].GetOrigin(),
                                                                       fixed_images[-1].GetSpacing(),
                                                                       fixed_images[-1].GetDirection())
    else:
        initial_displacement_field = sitk.Image(fixed_images[-1].GetWidth(), 
                                                fixed_images[-1].GetHeight(),
                                                fixed_images[-1].GetDepth(),
                                                sitk.sitkVectorFloat64)
        initial_displacement_field.CopyInformation(fixed_images[-1])
 
    # Run the registration.            
    initial_displacement_field = registration_algorithm.Execute(fixed_images[-1], 
                                                                moving_images[-1], 
                                                                initial_displacement_field)
    # Start at the top of the pyramid and work our way down.    
    for f_image, m_image in reversed(list(zip(fixed_images[0:-1], moving_images[0:-1]))):
            initial_displacement_field = sitk.Resample (initial_displacement_field, f_image)
            initial_displacement_field = registration_algorithm.Execute(f_image, m_image, initial_displacement_field)
    return sitk.DisplacementFieldTransform(initial_displacement_field)

Now we will use our newly minted multiscale framework to perform registration with the Demons filters. Some things you can easily try out by editing the code below:

  1. Is there really a need for multiscale - just call the multiscale_demons method without the shrink_factors and smoothing_sigmas parameters.
  2. Which Demons filter should you use - configure the other filters and see if our selection is the best choice (accuracy/time).

In [ ]:
# Define a simple callback which allows us to monitor the Demons filter's progress.
def iteration_callback(filter):
    print('\r{0}: {1:.2f}'.format(filter.GetElapsedIterations(), filter.GetMetric()), end='')

fixed_image_index = 0
moving_image_index = 7

# Select a Demons filter and configure it.
demons_filter =  sitk.FastSymmetricForcesDemonsRegistrationFilter()
demons_filter.SetNumberOfIterations(20)
# Regularization (update field - viscous, total field - elastic).
demons_filter.SetSmoothDisplacementField(True)
demons_filter.SetStandardDeviations(2.0)

# Add our simple callback to the registration filter.
demons_filter.AddCommand(sitk.sitkIterationEvent, lambda: iteration_callback(demons_filter))

# Run the registration.
tx = multiscale_demons(registration_algorithm=demons_filter, 
                       fixed_image = images[fixed_image_index], 
                       moving_image = images[moving_image_index],
                       shrink_factors = [4,2],
                       smoothing_sigmas = [8,4])

# Compare the initial and final TREs.
initial_errors_mean, initial_errors_std, _, initial_errors_max, initial_errors = ru.registration_errors(sitk.Euler3DTransform(), points[fixed_image_index], points[moving_image_index])
final_errors_mean, final_errors_std, _, final_errors_max, final_errors = ru.registration_errors(tx, points[fixed_image_index], points[moving_image_index])

plt.hist(initial_errors, bins=20, alpha=0.5, label='before registration', color='blue')
plt.hist(final_errors, bins=20, alpha=0.5, label='after registration', color='green')
plt.legend()
plt.title('TRE histogram');
print('\nInitial alignment errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(initial_errors_mean, initial_errors_std, initial_errors_max))
print('Final alignment errors in millimeters, mean(std): {:.2f}({:.2f}), max: {:.2f}'.format(final_errors_mean, final_errors_std, final_errors_max))

In [ ]: