Memoryview Benchmarks: Round 2


In [1]:
%load_ext cythonmagic

Inlined Memoryview


In [2]:
%%cython

import numpy as np
cimport numpy as np
cimport cython

@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline double inner_func(double[:, ::1] X):
    return X[0, 0]

def loop_1(int N, switch=True):
    cdef double[:, ::1] X = np.zeros((100, 100))
    cdef int i
    for i in range(N):
        # this should be inlined by the compiler
        inner_func(X)


missing cimport: /home/vanderplas/.config/ipython/cython/_cython_magic_aad7a6b46ed24a8baf2373c6b8784ac3.pyx
cython

In [3]:
timeit loop_1(1E6)


100000 loops, best of 3: 10.1 us per loop

Inlined ndarray

Now we'll repeat, but make a dummy function such that we can guarantee that inner_func will not be inlined


In [4]:
%%cython

import numpy as np
cimport numpy as np
cimport cython

ctypedef double (*inner_func_ptr)(double[:, ::1])

@cython.boundscheck(False)
@cython.wraparound(False)
cdef double inner_func_1(double[:, ::1] X):
    return X[0, 0]

@cython.boundscheck(False)
@cython.wraparound(False)
cdef double inner_func_2(double[:, ::1] X):
    return X[0, 0]

def loop_2(int N, switch=True):
    # use a switch to ensure that inlining can't happen: compilers
    # are usually smart enough to figure it out otherwise.
    cdef inner_func_ptr func
    if switch:
        func = inner_func_1
    else:
        func = inner_func_2
        
    cdef double[:, ::1] X = np.zeros((100, 100))
    cdef int i
    for i in range(N):
        func(X)


missing cimport: /home/vanderplas/.config/ipython/cython/_cython_magic_ac4b8923a5786ceee8b7f92131a08998.pyx
cython

In [5]:
%timeit loop_2(1E6)


10 loops, best of 3: 22.9 ms per loop

In this case, inlining improves the computation speed by a factor of 2000!

Attempting to inline ndarrays

Here we'll replicate the fast method above, but with a typed numpy array rather than a typed memoryview:


In [6]:
%%cython

import numpy as np
cimport numpy as np
cimport cython

@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline double inner_func(np.ndarray[double, ndim=2, mode='c'] X):
    return X[0, 0]

def loop_3(int N, switch=True):
    cdef np.ndarray[double, ndim=2, mode='c'] X = np.zeros((100, 100))
    cdef int i
    for i in range(N):
        inner_func(X)


missing cimport: /home/vanderplas/.config/ipython/cython/_cython_magic_0523a248c0a6af0427879e879eda0095.pyx
cython
warning: /home/vanderplas/.config/ipython/cython/_cython_magic_0523a248c0a6af0427879e879eda0095.pyx:8:30: Buffer unpacking not optimized away.
warning: /home/vanderplas/.config/ipython/cython/_cython_magic_0523a248c0a6af0427879e879eda0095.pyx:8:30: Buffer unpacking not optimized away.

These warnings indicate a problem: buffer unpacking cannot be optimized for the numpy array dtype. Let's see how this compares to the other implementations:


In [7]:
print "inlined memview:"
%timeit loop_1(1E6)
print "non-inlined memview:"
%timeit loop_2(1E6)
print "inlined ndarray:"
%timeit loop_3(1E6)


inlined memview:
100000 loops, best of 3: 10.1 us per loop
non-inlined memview:
10 loops, best of 3: 22.9 ms per loop
inlined ndarray:
1 loops, best of 3: 617 ms per loop

The result for the ndarray is many times slower than either the inlined or the non-inlined example above!