Deep Q-Learning Network with Keras and OpenAI Gym, based on Keon Kim's code.
In [ ]:
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
import os
In [ ]:
env = # FILL IN
In [ ]:
state_size = env.observation_space.shape[0]
state_size
In [ ]:
action_size = env.action_space.n
action_size
In [ ]:
batch_size = # FILL IN
In [ ]:
n_episodes = # FILL IN
In [ ]:
output_dir = 'model_output/cartpole/'
In [ ]:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
In [ ]:
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = # FILL IN
self.epsilon = # FILL IN
self.epsilon_decay = # FILL IN
self.epsilon_min = # FILL IN
self.learning_rate = # FILL IN
self.model = self._build_model()
def _build_model(self):
model = Sequential()
# FILL IN NEURAL NETWORK ARCHITECTURE
# COMPILE MODEL
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward # N.B.: if done
if not done:
target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])) # (maximum target Q based on future action a')
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
In [ ]:
agent = DQNAgent(state_size, action_size)
In [ ]:
done = False
for e in range(n_episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(5000):
# env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}".format(e, n_episodes, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
if e % 50 == 0:
agent.save(output_dir + "weights_" + '{:04d}'.format(e) + ".hdf5")
In [ ]:
# saved agents can be loaded with agent.load("./path/filename.hdf5")