In this notebook, we execute elementary TensorFlow computational graphs.
In [1]:
    
import numpy as np
import tensorflow as tf
    
In [2]:
    
x1 = tf.placeholder(tf.float32)
x2 = tf.placeholder(tf.float32)
    
In [3]:
    
sum_op = tf.add(x1, x2)
product_op = tf.multiply(x1, x2)
    
In [4]:
    
with tf.Session() as session:
    sum_result = session.run(sum_op, feed_dict={x1: 2.0, x2: 0.5}) # run again with {x1: [2.0, 2.0, 2.0], x2: [0.5, 1.0, 2.0]}
    product_result = session.run(product_op, feed_dict={x1: 2.0, x2: 0.5}) # ...and with {x1: [2.0, 4.0], x2: 0.5}
    
In [5]:
    
sum_result
    
    Out[5]:
In [6]:
    
product_result
    
    Out[6]:
In [7]:
    
with tf.Session() as session:
    sum_result = session.run(sum_op, feed_dict={x1: [2.0, 2.0, 2.0], x2: [0.5, 1.0, 2.0]})
    product_result = session.run(product_op, feed_dict={x1: [2.0, 4.0], x2: 0.5})
    
In [8]:
    
sum_result
    
    Out[8]:
In [9]:
    
product_result
    
    Out[9]:
In [ ]: