Creating Word Vectors with word2vec

In this notebook, we create word vectors from a corpus of public-domain books, a selection from Project Gutenberg.

Load dependencies


In [1]:
import nltk
from nltk import word_tokenize, sent_tokenize
import gensim
from gensim.models.word2vec import Word2Vec
from sklearn.manifold import TSNE
import pandas as pd
from bokeh.io import output_notebook
from bokeh.plotting import show, figure
%matplotlib inline


Using TensorFlow backend.

In [2]:
nltk.download('punkt') # English-language sentence tokenizer (not all periods end sentences; not all sentences start with a capital letter)


[nltk_data] Downloading package punkt to /home/jovyan/nltk_data...
[nltk_data]   Package punkt is already up-to-date!
Out[2]:
True

Load data


In [3]:
nltk.download('gutenberg')


[nltk_data] Downloading package gutenberg to /home/jovyan/nltk_data...
[nltk_data]   Package gutenberg is already up-to-date!
Out[3]:
True

In [4]:
from nltk.corpus import gutenberg

In [6]:
len(gutenberg.fileids())


Out[6]:
18

In [5]:
gutenberg.fileids()


Out[5]:
['austen-emma.txt',
 'austen-persuasion.txt',
 'austen-sense.txt',
 'bible-kjv.txt',
 'blake-poems.txt',
 'bryant-stories.txt',
 'burgess-busterbrown.txt',
 'carroll-alice.txt',
 'chesterton-ball.txt',
 'chesterton-brown.txt',
 'chesterton-thursday.txt',
 'edgeworth-parents.txt',
 'melville-moby_dick.txt',
 'milton-paradise.txt',
 'shakespeare-caesar.txt',
 'shakespeare-hamlet.txt',
 'shakespeare-macbeth.txt',
 'whitman-leaves.txt']

Tokenize text


In [7]:
gberg_sent_tokens = sent_tokenize(gutenberg.raw())

In [8]:
gberg_sent_tokens[0:5]


Out[8]:
['[Emma by Jane Austen 1816]\n\nVOLUME I\n\nCHAPTER I\n\n\nEmma Woodhouse, handsome, clever, and rich, with a comfortable home\nand happy disposition, seemed to unite some of the best blessings\nof existence; and had lived nearly twenty-one years in the world\nwith very little to distress or vex her.',
 "She was the youngest of the two daughters of a most affectionate,\nindulgent father; and had, in consequence of her sister's marriage,\nbeen mistress of his house from a very early period.",
 'Her mother\nhad died too long ago for her to have more than an indistinct\nremembrance of her caresses; and her place had been supplied\nby an excellent woman as governess, who had fallen little short\nof a mother in affection.',
 "Sixteen years had Miss Taylor been in Mr. Woodhouse's family,\nless as a governess than a friend, very fond of both daughters,\nbut particularly of Emma.",
 'Between _them_ it was more the intimacy\nof sisters.']

In [9]:
gberg_sent_tokens[1]


Out[9]:
"She was the youngest of the two daughters of a most affectionate,\nindulgent father; and had, in consequence of her sister's marriage,\nbeen mistress of his house from a very early period."

In [10]:
word_tokenize(gberg_sent_tokens[1])


Out[10]:
['She',
 'was',
 'the',
 'youngest',
 'of',
 'the',
 'two',
 'daughters',
 'of',
 'a',
 'most',
 'affectionate',
 ',',
 'indulgent',
 'father',
 ';',
 'and',
 'had',
 ',',
 'in',
 'consequence',
 'of',
 'her',
 'sister',
 "'s",
 'marriage',
 ',',
 'been',
 'mistress',
 'of',
 'his',
 'house',
 'from',
 'a',
 'very',
 'early',
 'period',
 '.']

In [11]:
word_tokenize(gberg_sent_tokens[1])[14]


Out[11]:
'father'

In [12]:
# a convenient method that handles newlines, as well as tokenizing sentences and words in one shot
gberg_sents = gutenberg.sents()

In [13]:
gberg_sents[0:5]


Out[13]:
[['[', 'Emma', 'by', 'Jane', 'Austen', '1816', ']'],
 ['VOLUME', 'I'],
 ['CHAPTER', 'I'],
 ['Emma',
  'Woodhouse',
  ',',
  'handsome',
  ',',
  'clever',
  ',',
  'and',
  'rich',
  ',',
  'with',
  'a',
  'comfortable',
  'home',
  'and',
  'happy',
  'disposition',
  ',',
  'seemed',
  'to',
  'unite',
  'some',
  'of',
  'the',
  'best',
  'blessings',
  'of',
  'existence',
  ';',
  'and',
  'had',
  'lived',
  'nearly',
  'twenty',
  '-',
  'one',
  'years',
  'in',
  'the',
  'world',
  'with',
  'very',
  'little',
  'to',
  'distress',
  'or',
  'vex',
  'her',
  '.'],
 ['She',
  'was',
  'the',
  'youngest',
  'of',
  'the',
  'two',
  'daughters',
  'of',
  'a',
  'most',
  'affectionate',
  ',',
  'indulgent',
  'father',
  ';',
  'and',
  'had',
  ',',
  'in',
  'consequence',
  'of',
  'her',
  'sister',
  "'",
  's',
  'marriage',
  ',',
  'been',
  'mistress',
  'of',
  'his',
  'house',
  'from',
  'a',
  'very',
  'early',
  'period',
  '.']]

In [14]:
gberg_sents[4]


Out[14]:
['She',
 'was',
 'the',
 'youngest',
 'of',
 'the',
 'two',
 'daughters',
 'of',
 'a',
 'most',
 'affectionate',
 ',',
 'indulgent',
 'father',
 ';',
 'and',
 'had',
 ',',
 'in',
 'consequence',
 'of',
 'her',
 'sister',
 "'",
 's',
 'marriage',
 ',',
 'been',
 'mistress',
 'of',
 'his',
 'house',
 'from',
 'a',
 'very',
 'early',
 'period',
 '.']

In [15]:
gberg_sents[4][14]


Out[15]:
'father'

In [16]:
# another convenient method that we don't immediately need: 
gutenberg.words()


Out[16]:
['[', 'Emma', 'by', 'Jane', 'Austen', '1816', ']', ...]

In [17]:
# gutenberg.words() is analogous to the following line, which need not be run: 
# word_tokenize(gutenberg.raw())

In [18]:
# our Gutenberg corpus is 2.6m words in length: 
len(gutenberg.words())


Out[18]:
2621613

Run word2vec


In [19]:
# model = Word2Vec(sentences=gberg_sents, size=64, sg=1, window=10, min_count=5, seed=42, workers=8)

In [20]:
# model.save('raw_gutenberg_model.w2v')

Explore model


In [21]:
# skip re-training the model with the next line:  
model = gensim.models.Word2Vec.load('raw_gutenberg_model.w2v')

In [22]:
model['dog']


Out[22]:
array([ -5.60053289e-01,  -1.57095745e-01,  -1.35954544e-01,
         2.11573735e-01,  -1.07136287e-01,   8.77310261e-02,
         4.14559871e-01,   2.26700798e-01,   2.97906458e-01,
         5.01078293e-02,   1.78846210e-01,   1.08067788e-01,
        -4.35526311e-01,  -4.25833821e-01,  -2.53711820e-01,
         7.52079263e-02,  -5.83147258e-02,   3.74293029e-01,
        -6.66874468e-01,   2.33097542e-02,   1.35770917e-01,
         1.64983049e-01,  -1.20256573e-01,   4.77150202e-01,
         1.22489601e-01,   3.75590801e-01,   1.48467004e-01,
         2.42270246e-01,   3.16664786e-03,  -7.44531572e-01,
        -6.36309106e-03,   4.52868968e-01,   2.24508166e-01,
         2.70326473e-02,   1.53943673e-01,   2.01649368e-01,
        -1.73006937e-01,  -6.66332617e-02,   1.03040524e-01,
        -1.66178823e-01,   2.01654643e-01,   2.97852069e-01,
        -8.91307294e-02,  -3.24958622e-01,   8.13202839e-03,
         1.84750110e-02,  -1.02419108e-01,   1.29145041e-01,
         1.63626075e-01,  -2.15422258e-01,  -2.92296857e-01,
        -5.65005839e-01,  -1.61351681e-01,  -2.04182118e-02,
        -2.52595842e-01,   4.30920184e-01,  -1.48654059e-01,
         4.11218196e-01,   6.62949324e-01,  -5.52654732e-04,
        -2.41263226e-01,  -7.45767877e-02,  -4.33727890e-01,
         6.22240841e-01], dtype=float32)

In [23]:
len(model['dog'])


Out[23]:
64

In [24]:
model.most_similar('dog') # distance


Out[24]:
[('puppy', 0.8146849870681763),
 ('sweeper', 0.7880833148956299),
 ('broth', 0.7820672988891602),
 ('cage', 0.7675053477287292),
 ('pig', 0.7646769285202026),
 ('pet', 0.7610172033309937),
 ('fox', 0.7553994059562683),
 ('Truck', 0.7543582320213318),
 ('Lightfoot', 0.742825984954834),
 ('cow', 0.7392480373382568)]

In [25]:
model.most_similar('think')


Out[25]:
[('suppose', 0.8497018814086914),
 ('manage', 0.8408315181732178),
 ('know', 0.8337839841842651),
 ('contradict', 0.8264023661613464),
 ('interfere', 0.8262845277786255),
 ('NOW', 0.8262041211128235),
 ('Mamma', 0.8196532726287842),
 ('believe', 0.8150398135185242),
 ('shouldn', 0.8124459981918335),
 ('Williams', 0.8068450689315796)]

In [26]:
model.most_similar('day')


Out[26]:
[('morning', 0.8098249435424805),
 ('night', 0.7679969072341919),
 ('month', 0.7410775423049927),
 ('evening', 0.7385483384132385),
 ('time', 0.7339625358581543),
 ('week', 0.7182490825653076),
 ('feasting', 0.7168370485305786),
 ('Saturday', 0.7018452286720276),
 ('Adar', 0.6979250311851501),
 ('morrow', 0.6971378922462463)]

In [27]:
model.most_similar('father')


Out[27]:
[('mother', 0.8728880882263184),
 ('brother', 0.8333652019500732),
 ('sister', 0.7919358015060425),
 ('wife', 0.7858221530914307),
 ('daughter', 0.7800713181495667),
 ('Amnon', 0.7543610334396362),
 ('Tamar', 0.7502950429916382),
 ('servant', 0.7387294769287109),
 ('uncle', 0.7327381372451782),
 ('curseth', 0.7289719581604004)]

In [28]:
model.doesnt_match("mother father daughter dog".split())


Out[28]:
'dog'

In [29]:
model.similarity('father', 'dog')


Out[29]:
0.49294278479463099

In [30]:
# close, but not quite; distinctly in female direction: 
model.most_similar(positive=['father', 'woman'], negative=['man'])


Out[30]:
[('daughter', 0.7782288193702698),
 ('sister', 0.777533769607544),
 ('mother', 0.7643921971321106),
 ('wife', 0.7588695287704468),
 ('husband', 0.7556524276733398),
 ('Tamar', 0.7055943012237549),
 ('Rachel', 0.7008661031723022),
 ('conceived', 0.6945146322250366),
 ('Sarah', 0.6943398714065552),
 ('brother', 0.6798239946365356)]

In [31]:
# more confident about this one: 
model.most_similar(positive=['son', 'woman'], negative=['man'])


Out[31]:
[('daughter', 0.7534747123718262),
 ('Leah', 0.724845290184021),
 ('Hagar', 0.724432110786438),
 ('Rachel', 0.7239198684692383),
 ('conceived', 0.7235168218612671),
 ('Sarah', 0.7165275812149048),
 ('wife', 0.713229775428772),
 ('Rebekah', 0.6989840269088745),
 ('Caleb', 0.6943678259849548),
 ('Sarai', 0.6914916038513184)]

In [32]:
model.most_similar(positive=['husband', 'woman'], negative=['man'])


Out[32]:
[('wife', 0.708131730556488),
 ('sister', 0.6937975287437439),
 ('daughter', 0.68210768699646),
 ('child', 0.66499924659729),
 ('maid', 0.663989782333374),
 ('conceived', 0.6550735235214233),
 ('mother', 0.6408793926239014),
 ('nurse', 0.6267993450164795),
 ('elder', 0.6201719045639038),
 ('widow', 0.6188254952430725)]

In [33]:
model.most_similar(positive=['king', 'woman'], negative=['man'], topn=30)


Out[33]:
[('Rachel', 0.7381176352500916),
 ('Sarah', 0.7235167026519775),
 ('Laban', 0.7040327191352844),
 ('Leah', 0.703708291053772),
 ('Padanaram', 0.7029510736465454),
 ('Hagar', 0.6949448585510254),
 ('Rebekah', 0.6927774548530579),
 ('Pharaoh', 0.6861628293991089),
 ('Abram', 0.6841262578964233),
 ('Hamor', 0.6762512922286987),
 ('Shechem', 0.6723358631134033),
 ('daughter', 0.6721547842025757),
 ('damsel', 0.6675446033477783),
 ('Abimelech', 0.6638238430023193),
 ('Ephron', 0.6627167463302612),
 ('Bethuel', 0.6601616144180298),
 ('Esau', 0.6585861444473267),
 ('Solomon', 0.6583372354507446),
 ('Bilhah', 0.6578104496002197),
 ('household', 0.6573641300201416),
 ('Jerubbaal', 0.655084490776062),
 ('conceived', 0.6541304588317871),
 ('Judah', 0.652094304561615),
 ('Sarai', 0.649071991443634),
 ('Lot', 0.6466783881187439),
 ('Zilpah', 0.6465750932693481),
 ('birthright', 0.6449142694473267),
 ('queen', 0.644464910030365),
 ('David', 0.6373385190963745),
 ('Rahab', 0.6370617151260376)]

In [34]:
# impressive for such a small data set, without any cleaning, e.g., to lower case (covered next)

Reduce word vector dimensionality with t-SNE


In [35]:
model.wv.vocab


Out[35]:
{'[': <gensim.models.keyedvectors.Vocab at 0x7fbfce6410f0>,
 'Emma': <gensim.models.keyedvectors.Vocab at 0x7fbfce655da0>,
 'by': <gensim.models.keyedvectors.Vocab at 0x7fbfce655b70>,
 'Jane': <gensim.models.keyedvectors.Vocab at 0x7fbfce655a20>,
 ']': <gensim.models.keyedvectors.Vocab at 0x7fbfce655518>,
 'I': <gensim.models.keyedvectors.Vocab at 0x7fbfce655550>,
 'CHAPTER': <gensim.models.keyedvectors.Vocab at 0x7fbfce6558d0>,
 'Woodhouse': <gensim.models.keyedvectors.Vocab at 0x7fbfce655f28>,
 ',': <gensim.models.keyedvectors.Vocab at 0x7fbfce655f98>,
 'handsome': <gensim.models.keyedvectors.Vocab at 0x7fbfce655dd8>,
 'clever': <gensim.models.keyedvectors.Vocab at 0x7fbfce655e80>,
 'and': <gensim.models.keyedvectors.Vocab at 0x7fbfce655978>,
 'rich': <gensim.models.keyedvectors.Vocab at 0x7fbfce655ef0>,
 'with': <gensim.models.keyedvectors.Vocab at 0x7fbfce6559b0>,
 'a': <gensim.models.keyedvectors.Vocab at 0x7fbfce655c88>,
 'comfortable': <gensim.models.keyedvectors.Vocab at 0x7fbfce655828>,
 'home': <gensim.models.keyedvectors.Vocab at 0x7fbfce655d68>,
 'happy': <gensim.models.keyedvectors.Vocab at 0x7fbfce655588>,
 'disposition': <gensim.models.keyedvectors.Vocab at 0x7fbfce6555c0>,
 'seemed': <gensim.models.keyedvectors.Vocab at 0x7fbfce655630>,
 'to': <gensim.models.keyedvectors.Vocab at 0x7fbfce6556a0>,
 'unite': <gensim.models.keyedvectors.Vocab at 0x7fbfce655710>,
 'some': <gensim.models.keyedvectors.Vocab at 0x7fbfce657048>,
 'of': <gensim.models.keyedvectors.Vocab at 0x7fbfce6570b8>,
 'the': <gensim.models.keyedvectors.Vocab at 0x7fbfce657128>,
 'best': <gensim.models.keyedvectors.Vocab at 0x7fbfce657198>,
 'blessings': <gensim.models.keyedvectors.Vocab at 0x7fbfce6571d0>,
 'existence': <gensim.models.keyedvectors.Vocab at 0x7fbfce657208>,
 ';': <gensim.models.keyedvectors.Vocab at 0x7fbfce657240>,
 'had': <gensim.models.keyedvectors.Vocab at 0x7fbfce6572b0>,
 'lived': <gensim.models.keyedvectors.Vocab at 0x7fbfce657320>,
 'nearly': <gensim.models.keyedvectors.Vocab at 0x7fbfce657390>,
 'twenty': <gensim.models.keyedvectors.Vocab at 0x7fbfce657400>,
 '-': <gensim.models.keyedvectors.Vocab at 0x7fbfce657438>,
 'one': <gensim.models.keyedvectors.Vocab at 0x7fbfce6574a8>,
 'years': <gensim.models.keyedvectors.Vocab at 0x7fbfce657518>,
 'in': <gensim.models.keyedvectors.Vocab at 0x7fbfce657588>,
 'world': <gensim.models.keyedvectors.Vocab at 0x7fbfce6575f8>,
 'very': <gensim.models.keyedvectors.Vocab at 0x7fbfce657668>,
 'little': <gensim.models.keyedvectors.Vocab at 0x7fbfce6576d8>,
 'distress': <gensim.models.keyedvectors.Vocab at 0x7fbfce657710>,
 'or': <gensim.models.keyedvectors.Vocab at 0x7fbfce657780>,
 'vex': <gensim.models.keyedvectors.Vocab at 0x7fbfce6577f0>,
 'her': <gensim.models.keyedvectors.Vocab at 0x7fbfce657860>,
 '.': <gensim.models.keyedvectors.Vocab at 0x7fbfce657898>,
 'She': <gensim.models.keyedvectors.Vocab at 0x7fbfce657908>,
 'was': <gensim.models.keyedvectors.Vocab at 0x7fbfce657978>,
 'youngest': <gensim.models.keyedvectors.Vocab at 0x7fbfce6579b0>,
 'two': <gensim.models.keyedvectors.Vocab at 0x7fbfce657a20>,
 'daughters': <gensim.models.keyedvectors.Vocab at 0x7fbfce657a58>,
 'most': <gensim.models.keyedvectors.Vocab at 0x7fbfce657ac8>,
 'affectionate': <gensim.models.keyedvectors.Vocab at 0x7fbfce657b00>,
 'indulgent': <gensim.models.keyedvectors.Vocab at 0x7fbfce657b38>,
 'father': <gensim.models.keyedvectors.Vocab at 0x7fbfce657ba8>,
 'consequence': <gensim.models.keyedvectors.Vocab at 0x7fbfce657be0>,
 'sister': <gensim.models.keyedvectors.Vocab at 0x7fbfce657c50>,
 "'": <gensim.models.keyedvectors.Vocab at 0x7fbfce657c88>,
 's': <gensim.models.keyedvectors.Vocab at 0x7fbfce657cc0>,
 'marriage': <gensim.models.keyedvectors.Vocab at 0x7fbfce657cf8>,
 'been': <gensim.models.keyedvectors.Vocab at 0x7fbfce657d68>,
 'mistress': <gensim.models.keyedvectors.Vocab at 0x7fbfce657da0>,
 'his': <gensim.models.keyedvectors.Vocab at 0x7fbfce657e10>,
 'house': <gensim.models.keyedvectors.Vocab at 0x7fbfce657e80>,
 'from': <gensim.models.keyedvectors.Vocab at 0x7fbfce657ef0>,
 'early': <gensim.models.keyedvectors.Vocab at 0x7fbfce657f60>,
 'period': <gensim.models.keyedvectors.Vocab at 0x7fbfce657fd0>,
 'Her': <gensim.models.keyedvectors.Vocab at 0x7fbfce663080>,
 'mother': <gensim.models.keyedvectors.Vocab at 0x7fbfce6630f0>,
 'died': <gensim.models.keyedvectors.Vocab at 0x7fbfce663160>,
 'too': <gensim.models.keyedvectors.Vocab at 0x7fbfce6631d0>,
 'long': <gensim.models.keyedvectors.Vocab at 0x7fbfce663240>,
 'ago': <gensim.models.keyedvectors.Vocab at 0x7fbfce6632b0>,
 'for': <gensim.models.keyedvectors.Vocab at 0x7fbfce663320>,
 'have': <gensim.models.keyedvectors.Vocab at 0x7fbfce663390>,
 'more': <gensim.models.keyedvectors.Vocab at 0x7fbfce663400>,
 'than': <gensim.models.keyedvectors.Vocab at 0x7fbfce663470>,
 'an': <gensim.models.keyedvectors.Vocab at 0x7fbfce6634e0>,
 'remembrance': <gensim.models.keyedvectors.Vocab at 0x7fbfce663518>,
 'caresses': <gensim.models.keyedvectors.Vocab at 0x7fbfce663550>,
 'place': <gensim.models.keyedvectors.Vocab at 0x7fbfce6635c0>,
 'supplied': <gensim.models.keyedvectors.Vocab at 0x7fbfce6635f8>,
 'excellent': <gensim.models.keyedvectors.Vocab at 0x7fbfce663630>,
 'woman': <gensim.models.keyedvectors.Vocab at 0x7fbfce6636a0>,
 'as': <gensim.models.keyedvectors.Vocab at 0x7fbfce663710>,
 'governess': <gensim.models.keyedvectors.Vocab at 0x7fbfce663748>,
 'who': <gensim.models.keyedvectors.Vocab at 0x7fbfce6637b8>,
 'fallen': <gensim.models.keyedvectors.Vocab at 0x7fbfce663828>,
 'short': <gensim.models.keyedvectors.Vocab at 0x7fbfce663898>,
 'affection': <gensim.models.keyedvectors.Vocab at 0x7fbfce6638d0>,
 'Sixteen': <gensim.models.keyedvectors.Vocab at 0x7fbfce663940>,
 'Miss': <gensim.models.keyedvectors.Vocab at 0x7fbfce6639b0>,
 'Taylor': <gensim.models.keyedvectors.Vocab at 0x7fbfce663a20>,
 'Mr': <gensim.models.keyedvectors.Vocab at 0x7fbfce663a90>,
 'family': <gensim.models.keyedvectors.Vocab at 0x7fbfce663b00>,
 'less': <gensim.models.keyedvectors.Vocab at 0x7fbfce663b70>,
 'friend': <gensim.models.keyedvectors.Vocab at 0x7fbfce663be0>,
 'fond': <gensim.models.keyedvectors.Vocab at 0x7fbfce663c50>,
 'both': <gensim.models.keyedvectors.Vocab at 0x7fbfce663cc0>,
 'but': <gensim.models.keyedvectors.Vocab at 0x7fbfce663d30>,
 'particularly': <gensim.models.keyedvectors.Vocab at 0x7fbfce663d68>,
 'Between': <gensim.models.keyedvectors.Vocab at 0x7fbfce663dd8>,
 'it': <gensim.models.keyedvectors.Vocab at 0x7fbfce663e48>,
 'intimacy': <gensim.models.keyedvectors.Vocab at 0x7fbfce663e80>,
 'sisters': <gensim.models.keyedvectors.Vocab at 0x7fbfce663ef0>,
 'Even': <gensim.models.keyedvectors.Vocab at 0x7fbfce663f60>,
 'before': <gensim.models.keyedvectors.Vocab at 0x7fbfce663fd0>,
 'ceased': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703080>,
 'hold': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7030f0>,
 'office': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703160>,
 'mildness': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703198>,
 'temper': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703208>,
 'hardly': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703278>,
 'allowed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7032e8>,
 'impose': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703358>,
 'any': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7033c8>,
 'restraint': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703400>,
 'shadow': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703470>,
 'authority': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7034a8>,
 'being': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703518>,
 'now': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703588>,
 'passed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7035f8>,
 'away': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703668>,
 'they': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7036d8>,
 'living': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703748>,
 'together': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703780>,
 'mutually': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7037b8>,
 'attached': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7037f0>,
 'doing': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703860>,
 'just': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7038d0>,
 'what': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703940>,
 'she': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7039b0>,
 'liked': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703a20>,
 'highly': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703a90>,
 'judgment': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703ac8>,
 'directed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703b00>,
 'chiefly': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703b70>,
 'own': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703be0>,
 'The': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703c50>,
 'real': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703cc0>,
 'evils': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703d30>,
 'indeed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703da0>,
 'situation': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703dd8>,
 'were': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703e48>,
 'power': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703eb8>,
 'having': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703f28>,
 'rather': <gensim.models.keyedvectors.Vocab at 0x7fbfcd703f98>,
 'much': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706048>,
 'way': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7060b8>,
 'think': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706128>,
 'well': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706198>,
 'herself': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706208>,
 'these': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706278>,
 'which': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7062e8>,
 'threatened': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706320>,
 'alloy': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706390>,
 'many': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706400>,
 'enjoyments': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706438>,
 'danger': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7064a8>,
 'however': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706518>,
 'at': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706588>,
 'present': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7065f8>,
 'so': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706668>,
 'unperceived': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7066a0>,
 'that': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706710>,
 'did': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706780>,
 'not': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7067f0>,
 'means': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706860>,
 'rank': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7068d0>,
 'misfortunes': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706908>,
 'Sorrow': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706978>,
 'came': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7069e8>,
 '--': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706a58>,
 'gentle': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706ac8>,
 'sorrow': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706b38>,
 'all': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706ba8>,
 'shape': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706c18>,
 'disagreeable': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706c50>,
 'consciousness': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706c88>,
 '.--': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706cf8>,
 'married': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706d68>,
 'It': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706dd8>,
 'loss': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706e48>,
 'first': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706eb8>,
 'brought': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706f28>,
 'grief': <gensim.models.keyedvectors.Vocab at 0x7fbfcd706f98>,
 'on': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c048>,
 'wedding': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c0b8>,
 'day': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c128>,
 'this': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c198>,
 'beloved': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c208>,
 'sat': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c278>,
 'mournful': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c2b0>,
 'thought': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c320>,
 'continuance': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c358>,
 'over': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c3c8>,
 'bride': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c438>,
 'people': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c4a8>,
 'gone': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c518>,
 'left': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c588>,
 'dine': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c5f8>,
 'no': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c668>,
 'prospect': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c6a0>,
 'third': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c710>,
 'cheer': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c780>,
 'evening': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c7f0>,
 'composed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c828>,
 'himself': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c898>,
 'sleep': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c908>,
 'after': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c978>,
 'dinner': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70c9e8>,
 'usual': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70ca58>,
 'then': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cac8>,
 'only': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cb38>,
 'sit': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cba8>,
 'lost': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cc18>,
 'event': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cc88>,
 'every': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70ccf8>,
 'promise': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cd68>,
 'happiness': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cda0>,
 'Weston': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70ce10>,
 'man': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70ce80>,
 'unexceptionable': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70ceb8>,
 'character': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cef0>,
 'easy': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cf60>,
 'fortune': <gensim.models.keyedvectors.Vocab at 0x7fbfcd70cfd0>,
 'suitable': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713048>,
 'age': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7130b8>,
 'pleasant': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7130f0>,
 'manners': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713160>,
 'there': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7131d0>,
 'satisfaction': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713208>,
 'considering': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713240>,
 'self': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7132b0>,
 'denying': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713320>,
 'generous': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713358>,
 'friendship': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713390>,
 'always': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713400>,
 'wished': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713470>,
 'promoted': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7134a8>,
 'match': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713518>,
 'black': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713588>,
 'morning': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7135f8>,
 'work': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713668>,
 'want': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7136d8>,
 'would': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713748>,
 'be': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7137b8>,
 'felt': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713828>,
 'hour': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713898>,
 'recalled': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7138d0>,
 'past': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713940>,
 'kindness': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713978>,
 'sixteen': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7139e8>,
 'how': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713a58>,
 'taught': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713ac8>,
 'played': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713b38>,
 'five': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713ba8>,
 'old': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713c18>,
 'devoted': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713c88>,
 'powers': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713cf8>,
 'attach': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713d68>,
 'amuse': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713dd8>,
 'health': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713e48>,
 'nursed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713eb8>,
 'through': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713f28>,
 'various': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713f98>,
 'childhood': <gensim.models.keyedvectors.Vocab at 0x7fbfcd713fd0>,
 'A': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a048>,
 'large': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a0b8>,
 'debt': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a128>,
 'gratitude': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a160>,
 'owing': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a1d0>,
 'here': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a240>,
 'intercourse': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a278>,
 'last': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a2e8>,
 'seven': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a358>,
 'equal': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a3c8>,
 'footing': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a438>,
 'perfect': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a4a8>,
 'unreserve': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a4e0>,
 'soon': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a550>,
 'followed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a588>,
 'Isabella': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a5c0>,
 'their': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a630>,
 'each': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a6a0>,
 'other': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a710>,
 'yet': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a780>,
 'dearer': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a7f0>,
 'recollection': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a828>,
 'companion': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a860>,
 'such': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a8d0>,
 'few': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a940>,
 'possessed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a978>,
 ':': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a9b0>,
 'intelligent': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71a9e8>,
 'informed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71aa20>,
 'useful': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71aa90>,
 'knowing': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ab00>,
 'ways': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ab70>,
 'interested': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71aba8>,
 'its': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ac18>,
 'concerns': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ac50>,
 'peculiarly': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ac88>,
 'pleasure': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71acc0>,
 'scheme': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ad30>,
 'hers': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ada0>,
 'whom': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ae10>,
 'could': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71ae80>,
 'speak': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71aef0>,
 'arose': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71af60>,
 'never': <gensim.models.keyedvectors.Vocab at 0x7fbfcd71afd0>,
 'find': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724080>,
 'fault': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7240f0>,
 'How': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724160>,
 'bear': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7241d0>,
 'change': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724240>,
 '?--': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7242b0>,
 'true': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724320>,
 'going': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724390>,
 'half': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724400>,
 'mile': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724470>,
 'them': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7244e0>,
 'aware': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724550>,
 'great': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7245c0>,
 'must': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724630>,
 'difference': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724668>,
 'between': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7246d8>,
 'Mrs': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724748>,
 'advantages': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724780>,
 'natural': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7247f0>,
 'domestic': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724828>,
 'suffering': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724860>,
 'intellectual': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724898>,
 'solitude': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7248d0>,
 'dearly': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724940>,
 'loved': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7249b0>,
 'he': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724a20>,
 'He': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724a90>,
 'meet': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724b00>,
 'conversation': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724b38>,
 'rational': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724b70>,
 'playful': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724be0>,
 'evil': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724c50>,
 'actual': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724cc0>,
 'disparity': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724cf8>,
 'ages': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724d68>,
 '(': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724da0>,
 ')': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724dd8>,
 'increased': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724e10>,
 'constitution': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724e48>,
 'habits': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724eb8>,
 'life': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724f28>,
 'without': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724f98>,
 'activity': <gensim.models.keyedvectors.Vocab at 0x7fbfcd724fd0>,
 'mind': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723080>,
 'body': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7230f0>,
 'older': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723160>,
 'though': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7231d0>,
 'everywhere': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723208>,
 'friendliness': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723240>,
 'heart': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7232b0>,
 'amiable': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723320>,
 'talents': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723390>,
 'recommended': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7233c8>,
 'him': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723438>,
 'time': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7234a8>,
 'comparatively': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7234e0>,
 'removed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723550>,
 'matrimony': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723588>,
 'settled': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7235f8>,
 'London': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723668>,
 'miles': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7236d8>,
 'off': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723748>,
 'beyond': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7237b8>,
 'daily': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723828>,
 'reach': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723898>,
 'October': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723908>,
 'November': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723940>,
 'struggled': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723978>,
 'Hartfield': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7239b0>,
 'Christmas': <gensim.models.keyedvectors.Vocab at 0x7fbfcd7239e8>,
 'next': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723a58>,
 'visit': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723ac8>,
 'husband': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723b38>,
 'children': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723b70>,
 'fill': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723be0>,
 'give': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723c50>,
 'society': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723cc0>,
 'again': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723d30>,
 'Highbury': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723d68>,
 'populous': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723da0>,
 'village': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723e10>,
 'almost': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723e80>,
 'town': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723ef0>,
 'spite': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723f60>,
 'separate': <gensim.models.keyedvectors.Vocab at 0x7fbfcd723f98>,
 'lawn': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d048>,
 'shrubberies': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d080>,
 'name': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d0f0>,
 'really': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d160>,
 'belong': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d1d0>,
 'afforded': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d208>,
 'equals': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d278>,
 'All': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d2e8>,
 'looked': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d358>,
 'up': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d3c8>,
 'acquaintance': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d400>,
 'universally': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d438>,
 'civil': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d4a8>,
 'among': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d518>,
 'accepted': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d550>,
 'even': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d5c0>,
 'melancholy': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d5f8>,
 'sigh': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d668>,
 'wish': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d6d8>,
 'impossible': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d710>,
 'things': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d780>,
 'till': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d7f0>,
 'awoke': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d860>,
 'made': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d8d0>,
 'necessary': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d908>,
 'cheerful': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d940>,
 'His': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72d9b0>,
 'spirits': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72da20>,
 'required': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72da58>,
 'support': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dac8>,
 'nervous': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72db38>,
 'easily': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dba8>,
 'depressed': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dbe0>,
 'used': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dc50>,
 'hating': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dcc0>,
 'part': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dd30>,
 'kind': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dda0>,
 'origin': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72de10>,
 'reconciled': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72de48>,
 'daughter': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72de80>,
 'marrying': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72deb8>,
 'nor': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72df28>,
 'ever': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72df98>,
 'compassion': <gensim.models.keyedvectors.Vocab at 0x7fbfcd72dfd0>,
 'entirely': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd048>,
 'when': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd0b8>,
 'obliged': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd128>,
 'selfishness': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd160>,
 'able': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd1d0>,
 'suppose': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd240>,
 'feel': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd2b0>,
 'differently': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd2e8>,
 'disposed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd320>,
 'done': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd390>,
 'sad': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd400>,
 'thing': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd470>,
 'deal': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd4e0>,
 'happier': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd550>,
 'if': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd5c0>,
 'spent': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd630>,
 'rest': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd6a0>,
 'smiled': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd710>,
 'cheerfully': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd748>,
 'keep': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd7b8>,
 'thoughts': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd7f0>,
 'tea': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd860>,
 'say': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd8d0>,
 'exactly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd940>,
 'said': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd9b0>,
 '"': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfd9e8>,
 'Poor': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfda58>,
 '!--': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdac8>,
 'What': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdb38>,
 'pity': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdba8>,
 'is': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdc18>,
 '!"': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdc88>,
 'cannot': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdcf8>,
 'agree': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdd68>,
 'you': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfddd8>,
 'papa': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfde48>,
 'know': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdeb8>,
 'good': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdf28>,
 'humoured': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdf60>,
 'thoroughly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdf98>,
 'deserves': <gensim.models.keyedvectors.Vocab at 0x7fbfcfcfdfd0>,
 'wife': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01080>,
 ';--': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd010f0>,
 'live': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01160>,
 'us': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd011d0>,
 'my': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01240>,
 'odd': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd012b0>,
 'humours': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01320>,
 'might': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01390>,
 '?"': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01400>,
 'But': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01470>,
 'where': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd014e0>,
 'advantage': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01518>,
 '?': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01550>,
 'This': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd015c0>,
 'three': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01630>,
 'times': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd016a0>,
 'And': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01710>,
 'dear': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01780>,
 '."': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd017f0>,
 'often': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01860>,
 'we': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd018d0>,
 'shall': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01940>,
 'see': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd019b0>,
 'coming': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01a20>,
 'We': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01a90>,
 'meeting': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01b00>,
 '!': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01b38>,
 'begin': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01ba8>,
 'go': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01c18>,
 'pay': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01c88>,
 'My': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01cf8>,
 'am': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01d68>,
 'get': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01dd8>,
 'far': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01e48>,
 'Randalls': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01e80>,
 'distance': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01eb8>,
 'walk': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01f28>,
 'No': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd01f98>,
 'nobody': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04048>,
 'your': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd040b8>,
 'walking': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04128>,
 'carriage': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04160>,
 'sure': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd041d0>,
 'James': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04240>,
 'will': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd042b0>,
 'like': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04320>,
 'put': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04390>,
 'horses': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04400>,
 'are': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04470>,
 'poor': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd044e0>,
 'while': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04550>,
 'paying': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd045c0>,
 'our': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04630>,
 'They': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd046a0>,
 'into': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04710>,
 'stable': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04780>,
 'You': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd047f0>,
 'already': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04860>,
 'talked': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd048d0>,
 'night': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04940>,
 'may': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd049b0>,
 'because': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04a20>,
 'doubt': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04a90>,
 'whether': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04b00>,
 'take': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04b70>,
 'anywhere': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04ba8>,
 'else': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04c18>,
 'That': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04c88>,
 'got': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04cf8>,
 'Hannah': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04d68>,
 'Nobody': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04dd8>,
 'mentioned': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04e10>,
 'glad': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04e80>,
 'lucky': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04ef0>,
 'slighted': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04f28>,
 'upon': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd04f98>,
 'account': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a048>,
 'make': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a0b8>,
 'servant': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a128>,
 'pretty': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a198>,
 'spoken': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a208>,
 'girl': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a278>,
 'opinion': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a2e8>,
 'Whenever': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a320>,
 'asks': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a390>,
 'me': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a400>,
 'do': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a470>,
 'manner': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a4e0>,
 'needlework': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a518>,
 'observe': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a588>,
 'turns': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a5f8>,
 'lock': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a668>,
 'door': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a6d8>,
 'right': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a748>,
 'comfort': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a7b8>,
 'somebody': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a7f0>,
 'about': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a860>,
 'goes': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a8d0>,
 'hearing': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a940>,
 'tell': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0a9b0>,
 'spared': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0aa20>,
 'exertions': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0aa58>,
 'maintain': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0aa90>,
 'flow': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ab00>,
 'ideas': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ab70>,
 'hoped': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0abe0>,
 'help': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ac50>,
 'tolerably': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ac88>,
 'attacked': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0acc0>,
 'regrets': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ad30>,
 'table': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ada0>,
 'placed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ae10>,
 'visitor': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0ae80>,
 'immediately': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0aeb8>,
 'afterwards': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0aef0>,
 'walked': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0af60>,
 'unnecessary': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0af98>,
 'Knightley': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd0afd0>,
 'sensible': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11048>,
 'eight': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd110b8>,
 'thirty': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11128>,
 'intimate': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11160>,
 'connected': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11198>,
 'elder': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11208>,
 'brother': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11278>,
 'frequent': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd112b0>,
 'welcome': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11320>,
 'directly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11358>,
 'mutual': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd113c8>,
 'connexions': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11400>,
 'returned': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11438>,
 'late': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd114a8>,
 'days': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11518>,
 'absence': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11588>,
 'Brunswick': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd115c0>,
 'Square': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11630>,
 'circumstance': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11668>,
 'animated': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd116a0>,
 'inquiries': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd116d8>,
 'answered': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11710>,
 'When': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11780>,
 'gratefully': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd117b8>,
 'observed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd117f0>,
 'come': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11860>,
 'out': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd118d0>,
 'call': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11940>,
 'afraid': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd119b0>,
 'shocking': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd119e8>,
 'Not': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11a58>,
 'sir': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11ac8>,
 'beautiful': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11b00>,
 'moonlight': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11b38>,
 'mild': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11ba8>,
 'draw': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11c18>,
 'back': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11c88>,
 'fire': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11cf8>,
 'found': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11d68>,
 'damp': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11dd8>,
 'dirty': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11e48>,
 'catch': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11eb8>,
 'cold': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11f28>,
 'Look': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd11f98>,
 'shoes': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16048>,
 'Well': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd160b8>,
 'quite': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16128>,
 'surprising': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16160>,
 'vast': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd161d0>,
 'rain': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16240>,
 'rained': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd162b0>,
 'dreadfully': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd162e8>,
 'hard': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16358>,
 'breakfast': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16390>,
 'wanted': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16400>,
 'By': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16470>,
 'bye': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd164e0>,
 'joy': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16550>,
 'Being': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd165c0>,
 'sort': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16630>,
 'feeling': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd166a0>,
 'hurry': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16710>,
 'congratulations': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16748>,
 'hope': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd167b8>,
 'went': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16828>,
 'behave': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16898>,
 'Who': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16908>,
 'cried': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16978>,
 'Ah': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd169e8>,
 'Tis': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16a58>,
 'business': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16a90>,
 'please': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16b00>,
 'possibly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16b38>,
 '`': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16b70>,
 ".'": <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16be0>,
 'regard': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16c50>,
 'comes': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16cc0>,
 'question': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16cf8>,
 'dependence': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16d30>,
 'independence': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16d68>,
 'At': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16dd8>,
 'rate': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16e48>,
 'better': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16eb8>,
 '_one_': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16f28>,
 'those': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16f98>,
 'fanciful': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd16fd0>,
 'troublesome': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e048>,
 'creature': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e080>,
 'playfully': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e0b8>,
 'head': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e128>,
 'certainly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e160>,
 'believe': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e1d0>,
 ',"': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e240>,
 'sometimes': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e278>,
 'dearest': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e2e8>,
 'mean': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e358>,
 '_you_': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e3c8>,
 'horrible': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e400>,
 'idea': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e470>,
 'Oh': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e4e0>,
 'meant': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e550>,
 'myself': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e5c0>,
 'loves': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e630>,
 'joke': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e6a0>,
 'another': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e710>,
 'fact': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e780>,
 'faults': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e7f0>,
 'told': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e860>,
 'agreeable': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e898>,
 'knew': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e908>,
 'suspect': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e978>,
 'knows': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1e9e8>,
 'flatter': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ea58>,
 'reflection': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ea90>,
 'has': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1eb00>,
 'persons': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1eb70>,
 'chances': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ebe0>,
 'willing': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ec50>,
 'let': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ecc0>,
 'pass': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ed30>,
 '--"': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1eda0>,
 'hear': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ee10>,
 'behaved': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ee80>,
 'charmingly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1eeb8>,
 'Every': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ef28>,
 'punctual': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1ef60>,
 'looks': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd1efd0>,
 'tear': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24080>,
 'face': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd240f0>,
 'seen': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24160>,
 'apart': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd241d0>,
 'Dear': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24240>,
 'bears': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd242b0>,
 'sorry': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24320>,
 'lose': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24390>,
 'miss': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24400>,
 'thinks': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24470>,
 'turned': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd244e0>,
 'divided': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24550>,
 'tears': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd245c0>,
 'smiles': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24630>,
 'should': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd246a0>,
 'acceptable': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd246d8>,
 'important': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24710>,
 'secure': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24780>,
 'provision': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd247b8>,
 'therefore': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd247f0>,
 'allow': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24860>,
 'pain': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd248d0>,
 'happily': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24940>,
 'forgotten': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24978>,
 'matter': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd249e8>,
 'considerable': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24a20>,
 'four': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24a90>,
 'proved': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24b00>,
 'marry': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24b70>,
 'shook': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24be0>,
 'fondly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24c50>,
 'replied': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24cc0>,
 'matches': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24d30>,
 'foretell': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24d68>,
 'whatever': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24da0>,
 'Pray': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24e10>,
 'none': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24e80>,
 'greatest': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24eb8>,
 'amusement': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24ef0>,
 'success': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24f60>,
 'widower': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd24fd0>,
 'perfectly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a048>,
 'constantly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a080>,
 'occupied': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a0b8>,
 'either': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a128>,
 'friends': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a198>,
 'wherever': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a1d0>,
 'need': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a240>,
 'spend': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a2b0>,
 'single': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a320>,
 'year': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a390>,
 'alone': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a400>,
 'Some': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a470>,
 'others': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a4e0>,
 'son': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a550>,
 'uncle': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a5c0>,
 'letting': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a630>,
 'solemn': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a6a0>,
 'nonsense': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a6d8>,
 'subject': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a748>,
 'believed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a780>,
 'Ever': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a7f0>,
 'since': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a860>,
 'met': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a8d0>,
 'Broadway': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a908>,
 'Lane': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a978>,
 'began': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2a9e8>,
 'darted': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2aa58>,
 'gallantry': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2aa90>,
 'borrowed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2aac8>,
 'Farmer': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ab38>,
 'planned': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2aba8>,
 'blessed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ac18>,
 'instance': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ac50>,
 'leave': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2acc0>,
 'making': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ad30>,
 'understand': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ad68>,
 ',\'"': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2add8>,
 'supposes': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ae10>,
 'endeavour': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ae48>,
 'Your': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2aeb8>,
 'properly': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2aef0>,
 'delicately': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2af28>,
 'endeavouring': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2af60>,
 'bring': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2afd0>,
 'worthy': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c080>,
 'employment': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c0b8>,
 'young': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c128>,
 'lady': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c198>,
 'imagine': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c208>,
 'planning': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c240>,
 'saying': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c2b0>,
 'yourself': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c2e8>,
 'idle': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c358>,
 ",'": <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c3c8>,
 'why': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c438>,
 'talk': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c4a8>,
 'Where': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c518>,
 'merit': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c588>,
 'proud': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c5f8>,
 'guess': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c668>,
 '_that_': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c6d8>,
 'can': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c748>,
 'known': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c7b8>,
 'triumph': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c828>,
 'cleverer': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c860>,
 'depend': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c8d0>,
 'merely': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c940>,
 'luck': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2c9b0>,
 'There': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ca20>,
 'talent': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ca90>,
 'word': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cb00>,
 'quarrel': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cb70>,
 'claim': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cbe0>,
 'drawn': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cc50>,
 'pictures': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cc88>,
 'something': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ccc0>,
 'nothing': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cd30>,
 'If': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cda0>,
 'visits': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ce10>,
 'given': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ce80>,
 'smoothed': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2ceb8>,
 'matters': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cf28>,
 'enough': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cf98>,
 'comprehend': <gensim.models.keyedvectors.Vocab at 0x7fbfcfd2cfd0>,
 'open': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca400>,
 'hearted': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cac50>,
 'unaffected': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cae10>,
 'safely': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cab70>,
 'manage': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca940>,
 'likely': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca550>,
 'harm': <gensim.models.keyedvectors.Vocab at 0x7fbfce9caf28>,
 'interference': <gensim.models.keyedvectors.Vocab at 0x7fbfce9caac8>,
 'rejoined': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cae48>,
 'understanding': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca828>,
 'pray': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca1d0>,
 'silly': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca390>,
 'break': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca5c0>,
 'circle': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca2e8>,
 'grievously': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca320>,
 'Only': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca978>,
 'Elton': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca6d8>,
 ',--': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca240>,
 'look': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca080>,
 'whole': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca780>,
 'fitted': <gensim.models.keyedvectors.Vocab at 0x7fbfce9caa58>,
 'comfortably': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca7f0>,
 'shame': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca668>,
 'longer': <gensim.models.keyedvectors.Vocab at 0x7fbfce9caa20>,
 'joining': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca4e0>,
 'hands': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cad68>,
 'same': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca8d0>,
 'service': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca4a8>,
 'shew': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cab38>,
 'attention': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca630>,
 'ask': <gensim.models.keyedvectors.Vocab at 0x7fbfce9caeb8>,
 'dare': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cad30>,
 'With': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cada0>,
 'laughing': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca3c8>,
 'fish': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cac18>,
 'chicken': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca208>,
 'chuse': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ca748>,
 'Depend': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cafd0>,
 'six': <gensim.models.keyedvectors.Vocab at 0x7fbfce9cab00>,
 'care': <gensim.models.keyedvectors.Vocab at 0x7fbfce9caba8>,
 'II': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc080>,
 'native': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc0f0>,
 'born': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc160>,
 'respectable': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc198>,
 'generations': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc1d0>,
 'rising': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc240>,
 'gentility': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc278>,
 'property': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc2b0>,
 'received': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc2e8>,
 'education': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc320>,
 'succeeding': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc358>,
 'small': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc3c8>,
 'become': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc438>,
 'indisposed': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc470>,
 'homely': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc4e0>,
 'pursuits': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc518>,
 'brothers': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc550>,
 'engaged': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc5c0>,
 'satisfied': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc5f8>,
 'active': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc668>,
 'social': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc6d8>,
 'entering': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc710>,
 'militia': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc780>,
 'county': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc7f0>,
 'embodied': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc828>,
 'Captain': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc898>,
 'general': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc908>,
 'favourite': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc940>,
 'military': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc978>,
 'introduced': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc9b0>,
 'Churchill': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dc9e8>,
 'Yorkshire': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dca20>,
 'fell': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dca90>,
 'love': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcb00>,
 'surprized': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcb38>,
 'except': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcba8>,
 'full': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcc18>,
 'pride': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcc88>,
 'importance': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dccc0>,
 'connexion': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dccf8>,
 'offend': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcd68>,
 'command': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcdd8>,
 'bore': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dce48>,
 'proportion': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dce80>,
 'estate': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcef0>,
 'took': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcf60>,
 'infinite': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcf98>,
 'mortification': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dcfd0>,
 'threw': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de080>,
 'due': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de0f0>,
 'decorum': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de160>,
 'unsuitable': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de198>,
 'produce': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de208>,
 'ought': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de278>,
 'whose': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de2e8>,
 'warm': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de358>,
 'sweet': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de3c8>,
 'return': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de438>,
 'goodness': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de470>,
 'spirit': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de4e0>,
 'resolution': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de518>,
 'pursue': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de588>,
 'refrain': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de5f8>,
 'unreasonable': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de630>,
 'anger': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de6a0>,
 'missing': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de710>,
 'former': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de780>,
 'income': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de7f0>,
 'still': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de860>,
 'comparison': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de898>,
 'Enscombe': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de8d0>,
 'cease': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de940>,
 'once': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de9b0>,
 'considered': <gensim.models.keyedvectors.Vocab at 0x7fbfce9de9e8>,
 'especially': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dea20>,
 'Churchills': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dea58>,
 'amazing': <gensim.models.keyedvectors.Vocab at 0x7fbfce9deac8>,
 'worst': <gensim.models.keyedvectors.Vocab at 0x7fbfce9deb38>,
 'bargain': <gensim.models.keyedvectors.Vocab at 0x7fbfce9deba8>,
 'poorer': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dec18>,
 'child': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dec88>,
 'From': <gensim.models.keyedvectors.Vocab at 0x7fbfce9decf8>,
 'expense': <gensim.models.keyedvectors.Vocab at 0x7fbfce9ded68>,
 'relieved': <gensim.models.keyedvectors.Vocab at 0x7fbfce9deda0>,
 'boy': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dee10>,
 'additional': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dee48>,
 'softening': <gensim.models.keyedvectors.Vocab at 0x7fbfce9dee80>,
 'lingering': <gensim.models.keyedvectors.Vocab at 0x7fbfce9deeb8>,
 'illness': <gensim.models.keyedvectors.Vocab at 0x7fbfce9def28>,
 'reconciliation': <gensim.models.keyedvectors.Vocab at 0x7fbfce9def60>,
 'kindred': <gensim.models.keyedvectors.Vocab at 0x7fbfce9defd0>,
 'offered': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7080>,
 'charge': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b70f0>,
 'Frank': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7160>,
 'decease': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b71d0>,
 'scruples': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7208>,
 'reluctance': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7240>,
 'supposed': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7278>,
 'overcome': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b72b0>,
 'considerations': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b72e8>,
 'wealth': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7358>,
 'seek': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b73c8>,
 'improve': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7438>,
 'complete': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7470>,
 'became': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b74e0>,
 'desirable': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7518>,
 'quitted': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7588>,
 'trade': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b75f8>,
 'established': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7630>,
 'favourable': <gensim.models.keyedvectors.Vocab at 0x7fbfce9b7668>,
 ...}

In [36]:
len(model.wv.vocab)


Out[36]:
17011

In [37]:
X = model[model.wv.vocab]

In [38]:
tsne = TSNE(n_components=2, n_iter=1000) # 200 is minimum iter; default is 1000

In [39]:
X_2d = tsne.fit_transform(X)

In [40]:
X_2d[0:5]


Out[40]:
array([[ 3.93104606, -3.94591487],
       [ 3.72858522, -3.21834929],
       [ 3.11308347, -3.13188365],
       [ 5.1765412 ,  2.32805661],
       [ 3.92752917, -3.95470727]])

In [41]:
# create DataFrame for storing results and plotting
coords_df = pd.DataFrame(X_2d, columns=['x','y'])
coords_df['token'] = model.wv.vocab.keys()

In [42]:
coords_df.head()


Out[42]:
x y token
0 3.931046 -3.945915 [
1 3.728585 -3.218349 Emma
2 3.113083 -3.131884 by
3 5.176541 2.328057 Jane
4 3.927529 -3.954707 ]

In [43]:
# coords_df.to_csv('raw_gutenberg_tsne.csv', index=False)

Visualize 2D representation of word vectors


In [44]:
coords_df = pd.read_csv('raw_gutenberg_tsne.csv')

In [45]:
_ = coords_df.plot.scatter('x', 'y', figsize=(12,12), marker='.', s=10, alpha=0.2)



In [46]:
output_notebook() # output bokeh plots inline in notebook


Loading BokehJS ...

In [47]:
subset_df = coords_df.sample(n=5000)

In [48]:
p = figure(plot_width=800, plot_height=800)
_ = p.text(x=subset_df.x, y=subset_df.y, text=subset_df.token)

In [49]:
show(p)



In [ ]: