006 - LSTM CRF Tagger with Word+Character Embeddings

Thamme Gowda, April 27, 2018

With Help from http://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html#bi-lstm-conditional-random-field-discussion


In [46]:
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os

torch.manual_seed(1)

print(f'Torch Version {torch.__version__}')
assert int(torch.__version__.split('.')[1]) >= 4 # should be greater than equal to 0.4
print(f'Cuda is available: {torch.cuda.is_available()}')
print(f'CUDA_VISIBLE_DEVICES : {os.environ["CUDA_VISIBLE_DEVICES"]}')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(device)

def tensor(*args, **kwargs):
    return torch.tensor(*args, device=DEVICE, **kwargs)


Torch Version 0.4.0
Cuda is available: True
CUDA_VISIBLE_DEVICES : 0,2
cuda

In [49]:
# Helper Functions

def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return idx.item()

# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
    max_score = vec[0, argmax(vec)]
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
    return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))

In [50]:
class LSTMFeaturizer(nn.Module):
    def __init__(self, embedding_dim, hidden_dim, tok2idx, device=DEVICE,
                 num_layers=1, num_directions=2, UNK='-UNK-'):
        super(LSTMFeaturizer, self).__init__()
        self.device = device
        self.n_layers = num_layers
        self.n_dirs = num_directions
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self._feat_dim = self.n_dirs * self.hidden_dim
        assert type(tok2idx) is dict
        assert UNK in tok2idx, f'{UNK} index should be reserved for Unknown characters'
        self.unk_tok_idx = tok2idx[UNK]
        self.tok2idx = tok2idx
        self.embed = nn.Embedding(len(tok2idx), embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=self.n_layers,
                            bidirectional=self.n_dirs==2)

    def init_hidden(self, batch_size=1):
        # The axes semantics are (num_layers*directions, minibatch_size, hidden_dim)
        return (torch.zeros(self.n_layers * self.n_dirs, batch_size, self.hidden_dim, device=self.device),
                torch.zeros(self.n_layers * self.n_dirs, batch_size, self.hidden_dim, device=self.device))

    def forward(self, sequence):
        hidden = self.init_hidden()
        tok_ixs = [self.tok2idx.get(tok, self.unk_tok_idx) for tok in sequence]
        embeds = self.embed(tensor(tok_ixs, dtype=torch.long))
        seq_repr, _ = self.lstm(embeds.view(len(sequence), 1, -1), hidden)
        return seq_repr
    
    
class BiLSTM_CRF(nn.Module):

    def __init__(self, embedding_dim, hidden_dim, word_to_ix, char_to_ix, tag_to_ix, debug=True):
        super(BiLSTM_CRF, self).__init__()
        self.debug = debug
        self.tag_to_ix = tag_to_ix
        self.ix_to_tag = {ix:tag for tag,ix in tag_to_ix.items()}
        self.word_to_idx = word_to_ix
        self.tagset_size = len(tag_to_ix)
        self.hidden_dim = hidden_dim
        self.word_featurizer = LSTMFeaturizer(embedding_dim, hidden_dim //2, word_to_ix)
        self.char_featurizer = LSTMFeaturizer(embedding_dim, hidden_dim //2, char_to_ix)
        
        # TODO: Merged LSTM for word and char features
        #self.merged_lstm = nn.LSTM(2 * hidden_dim, hidden_dim, num_layers=1, bidirectional=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(2 * hidden_dim, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j.
        self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size, device=device))

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
    
    def init_hidden(self):
        return (torch.randn(2, 1, self.hidden_dim // 2, device=device),
                torch.randn(2, 1, self.hidden_dim // 2, device=device))

    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = torch.full((1, self.tagset_size), -10000., device=device)
        # START_TAG has all of the score.
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0.

        # Wrap in a variable so that we will get automatic backprop
        forward_var = init_alphas

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward tensors at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size)
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1)
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
            forward_var = torch.cat(alphas_t).view(1, -1)
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha

    def _get_lstm_features(self, sentence):
        '''
        sentence = prepare_sequence(sentence, self.word_to_idx)
        self.hidden = self.init_hidden()
        embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        '''
        word_feats = self.word_featurizer(sentence)
        word_feats = word_feats.view(len(sentence), self.hidden_dim)
        # TODO: characters in a batch
        
        char_feats = [self.char_featurizer(word)[-1] for word in sentence]
        char_feats = torch.cat(char_feats, dim=0) # cocat one below the other
        if self.debug:
            assert char_feats.size()[0] == word_feats.size()[0]
        merged_feats = torch.cat([word_feats,char_feats], dim=1) # concat side by side
        
        lstm_feats = self.hidden2tag(merged_feats)
        return lstm_feats

    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = torch.zeros(1, device=device)
        tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long, device=device), tags])
        for i, feat in enumerate(feats):
            score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
        return score

    def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        init_vvars = torch.full((1, self.tagset_size), -10000., device=device)
        init_vvars[0][self.tag_to_ix[START_TAG]] = 0

        # forward_var at step i holds the viterbi variables for step i-1
        forward_var = init_vvars
        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = forward_var + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            # Now add in the emission scores, and assign forward_var to the set
            # of viterbi variables we just computed
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag_to_ix[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):
        feats = self._get_lstm_features(sentence)
        forward_score = self._forward_alg(feats)
        gold_score = self._score_sentence(feats, tags)
        return forward_score - gold_score

    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq

    def tag(self, sentence):
        score, idx = self(sentence)
        return score.item(), [self.ix_to_tag[i] for i in idx]

In [52]:
START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4

# Make up some training data
training_data = [(
    "the wall street journal reported today that apple corporation made money".split(),
    "B I I I O O O B I O O".split()
), (
    "georgia tech is a university in georgia".split(),
    "B I O O O O B".split()
)]

word_to_ix = {'-UNK-': 0}
for sentence, tags in training_data:
    for word in sentence:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)
tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}

char_to_ix= {'-UNK-': 0}
uniq_chars = {ch for sent, _ in training_data for word in sent for ch in word}
for ch in uniq_chars:
    char_to_ix[ch] = len(char_to_ix)

model = BiLSTM_CRF(EMBEDDING_DIM, HIDDEN_DIM, word_to_ix, char_to_ix, tag_to_ix).to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)

# Check predictions before training
with torch.no_grad():
    check_sent = training_data[0][0]
    print(check_sent)
    print(model.tag(check_sent))

# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy data
    for sentence, tags in training_data:
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero_grad()

        # Step 2. Get our inputs ready for the network, that is,
        # turn them into Tensors of word indices.
        #sentence_in = prepare_sequence(sentence, word_to_ix)
        targets = tensor([tag_to_ix[t] for t in tags])

        # Step 3. Run our forward pass.
        loss = model.neg_log_likelihood(sentence, targets)

        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        loss.backward()
        optimizer.step()

# Check predictions after training
with torch.no_grad():
    print(model.tag(check_sent))
    print("Gold Tags:", training_data[0][1])


['the', 'wall', 'street', 'journal', 'reported', 'today', 'that', 'apple', 'corporation', 'made', 'money']
(15.97779369354248, ['O', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B'])
(27.202106475830078, ['B', 'I', 'I', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O'])
Gold Tags: ['B', 'I', 'I', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O']

TODO:

  1. Process Batches at a time
    a. Learn how to Mask and Pad un equal length sequences
  2. Multi GPU Training!

In [ ]: