__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 32) 864 input_1[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalization) (None, 416, 416, 32) 128 conv_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 416, 416, 32) 0 norm_1[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 208, 208, 32) 0 leaky_re_lu_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 64) 18432 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalization) (None, 208, 208, 64) 256 conv_2[0][0]
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 208, 208, 64) 0 norm_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 104, 104, 64) 0 leaky_re_lu_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 128 73728 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalization) (None, 104, 104, 128 512 conv_3[0][0]
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, 104, 104, 128 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 104, 104, 64) 8192 leaky_re_lu_3[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalization) (None, 104, 104, 64) 256 conv_4[0][0]
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, 104, 104, 64) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 104, 104, 128 73728 leaky_re_lu_4[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalization) (None, 104, 104, 128 512 conv_5[0][0]
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU) (None, 104, 104, 128 0 norm_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 52, 52, 128) 0 leaky_re_lu_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 52, 52, 256) 294912 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalization) (None, 52, 52, 256) 1024 conv_6[0][0]
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU) (None, 52, 52, 256) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 52, 52, 128) 32768 leaky_re_lu_6[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalization) (None, 52, 52, 128) 512 conv_7[0][0]
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU) (None, 52, 52, 128) 0 norm_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 52, 52, 256) 294912 leaky_re_lu_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalization) (None, 52, 52, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU) (None, 52, 52, 256) 0 norm_8[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 26, 26, 256) 0 leaky_re_lu_8[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 26, 26, 512) 1179648 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalization) (None, 26, 26, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
leaky_re_lu_9 (LeakyReLU) (None, 26, 26, 512) 0 norm_9[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 26, 26, 256) 131072 leaky_re_lu_9[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalization) (None, 26, 26, 256) 1024 conv_10[0][0]
__________________________________________________________________________________________________
leaky_re_lu_10 (LeakyReLU) (None, 26, 26, 256) 0 norm_10[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 26, 26, 512) 1179648 leaky_re_lu_10[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalization) (None, 26, 26, 512) 2048 conv_11[0][0]
__________________________________________________________________________________________________
leaky_re_lu_11 (LeakyReLU) (None, 26, 26, 512) 0 norm_11[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 131072 leaky_re_lu_11[0][0]
__________________________________________________________________________________________________
norm_12 (BatchNormalization) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
leaky_re_lu_12 (LeakyReLU) (None, 26, 26, 256) 0 norm_12[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 512) 1179648 leaky_re_lu_12[0][0]
__________________________________________________________________________________________________
norm_13 (BatchNormalization) (None, 26, 26, 512) 2048 conv_13[0][0]
__________________________________________________________________________________________________
leaky_re_lu_13 (LeakyReLU) (None, 26, 26, 512) 0 norm_13[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 leaky_re_lu_13[0][0]
__________________________________________________________________________________________________
conv_14 (Conv2D) (None, 13, 13, 1024) 4718592 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_14 (BatchNormalization) (None, 13, 13, 1024) 4096 conv_14[0][0]
__________________________________________________________________________________________________
leaky_re_lu_14 (LeakyReLU) (None, 13, 13, 1024) 0 norm_14[0][0]
__________________________________________________________________________________________________
conv_15 (Conv2D) (None, 13, 13, 512) 524288 leaky_re_lu_14[0][0]
__________________________________________________________________________________________________
norm_15 (BatchNormalization) (None, 13, 13, 512) 2048 conv_15[0][0]
__________________________________________________________________________________________________
leaky_re_lu_15 (LeakyReLU) (None, 13, 13, 512) 0 norm_15[0][0]
__________________________________________________________________________________________________
conv_16 (Conv2D) (None, 13, 13, 1024) 4718592 leaky_re_lu_15[0][0]
__________________________________________________________________________________________________
norm_16 (BatchNormalization) (None, 13, 13, 1024) 4096 conv_16[0][0]
__________________________________________________________________________________________________
leaky_re_lu_16 (LeakyReLU) (None, 13, 13, 1024) 0 norm_16[0][0]
__________________________________________________________________________________________________
conv_17 (Conv2D) (None, 13, 13, 512) 524288 leaky_re_lu_16[0][0]
__________________________________________________________________________________________________
norm_17 (BatchNormalization) (None, 13, 13, 512) 2048 conv_17[0][0]
__________________________________________________________________________________________________
leaky_re_lu_17 (LeakyReLU) (None, 13, 13, 512) 0 norm_17[0][0]
__________________________________________________________________________________________________
conv_18 (Conv2D) (None, 13, 13, 1024) 4718592 leaky_re_lu_17[0][0]
__________________________________________________________________________________________________
norm_18 (BatchNormalization) (None, 13, 13, 1024) 4096 conv_18[0][0]
__________________________________________________________________________________________________
leaky_re_lu_18 (LeakyReLU) (None, 13, 13, 1024) 0 norm_18[0][0]
__________________________________________________________________________________________________
conv_19 (Conv2D) (None, 13, 13, 1024) 9437184 leaky_re_lu_18[0][0]
__________________________________________________________________________________________________
norm_19 (BatchNormalization) (None, 13, 13, 1024) 4096 conv_19[0][0]
__________________________________________________________________________________________________
conv_21 (Conv2D) (None, 26, 26, 64) 32768 leaky_re_lu_13[0][0]
__________________________________________________________________________________________________
leaky_re_lu_19 (LeakyReLU) (None, 13, 13, 1024) 0 norm_19[0][0]
__________________________________________________________________________________________________
norm_21 (BatchNormalization) (None, 26, 26, 64) 256 conv_21[0][0]
__________________________________________________________________________________________________
conv_20 (Conv2D) (None, 13, 13, 1024) 9437184 leaky_re_lu_19[0][0]
__________________________________________________________________________________________________
leaky_re_lu_21 (LeakyReLU) (None, 26, 26, 64) 0 norm_21[0][0]
__________________________________________________________________________________________________
norm_20 (BatchNormalization) (None, 13, 13, 1024) 4096 conv_20[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 13, 13, 256) 0 leaky_re_lu_21[0][0]
__________________________________________________________________________________________________
leaky_re_lu_20 (LeakyReLU) (None, 13, 13, 1024) 0 norm_20[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 13, 13, 1280) 0 lambda_1[0][0]
leaky_re_lu_20[0][0]
__________________________________________________________________________________________________
conv_22 (Conv2D) (None, 13, 13, 1024) 11796480 concatenate_1[0][0]
__________________________________________________________________________________________________
norm_22 (BatchNormalization) (None, 13, 13, 1024) 4096 conv_22[0][0]
__________________________________________________________________________________________________
leaky_re_lu_22 (LeakyReLU) (None, 13, 13, 1024) 0 norm_22[0][0]
__________________________________________________________________________________________________
conv_23 (Conv2D) (None, 13, 13, 425) 435625 leaky_re_lu_22[0][0]
__________________________________________________________________________________________________
reshape_1 (Reshape) (None, 13, 13, 5, 85 0 conv_23[0][0]
__________________________________________________________________________________________________
input_2 (InputLayer) (None, 1, 1, 1, 50, 0
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 13, 13, 5, 85 0 reshape_1[0][0]
input_2[0][0]
==================================================================================================
Total params: 50,983,561
Trainable params: 50,962,889
Non-trainable params: 20,672
__________________________________________________________________________________________________