Hello intrepid reader! In this notebook, we'll will add a function that uses tf.layers
to build a vanilla CNN. This should achieve around 99% accuracy on MNIST (there is still plenty of room to improve). Have a look at the build_cnn
function where we define the model. Aside from that (and changing our preprocessing to no longer 'flatten' the images, and to add a color channel dimension), the code otherwise remains unchanged.
In [ ]:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import tensorflow as tf
Import the dataset. Here, we'll need to convert the labels to a one-hot encoding, and we'll reshape the MNIST images to (784,).
In [ ]:
# We'll use Keras (included with TensorFlow) to import the data
# I figured I'd do all the preprocessing and reshaping here,
# rather than in the model.
(x_train, y_train), (x_test, y_test) = tf.contrib.keras.datasets.mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = y_train.astype('int32')
y_test = y_test.astype('int32')
# Normalize the color values to 0-1
# (as imported, they're 0-255)
x_train /= 255
x_test /= 255
# The CNN we'll use later expects a color channel dimension
# Let's add this here
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
# Convert to one-hot.
y_train = tf.contrib.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.contrib.keras.utils.to_categorical(y_test, num_classes=10)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
This function that defines our CNN.
In [ ]:
def build_cnn(features, mode):
image_batch = features['x']
with tf.name_scope("conv1"):
conv1 = tf.layers.conv2d(inputs=image_batch, filters=32, kernel_size=[3, 3],
padding='same', activation=tf.nn.relu)
with tf.name_scope("pool1"):
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
with tf.name_scope("conv2"):
conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[3, 3],
padding='same', activation=tf.nn.relu)
with tf.name_scope("pool2"):
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
with tf.name_scope("dense"):
# The 'images' are now 7x7 (28 / 2 / 2), and we have 64 channels per image
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=128, activation=tf.nn.relu)
with tf.name_scope("dropout"):
# Add dropout operation; 0.8 probability that a neuron will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.2, training = mode == tf.estimator.ModeKeys.TRAIN)
logits = tf.layers.dense(inputs=dropout, units=10)
return logits
To write a Custom Estimator we'll specify our own model function. Here, we'll use tf.layers
to replicate the model from the third notebook.
In [ ]:
def model_fn(features, labels, mode):
logits = build_cnn(features, mode)
# Generate Predictions
classes = tf.argmax(logits, axis=1)
predictions = {
'classes': classes,
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
# Return an EstimatorSpec for prediction
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Compute the loss, per usual.
loss = tf.losses.softmax_cross_entropy(
onehot_labels=labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
# Configure the Training Op
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.train.get_global_step(),
learning_rate=1e-3,
optimizer='Adam')
# Return an EstimatorSpec for training
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions,
loss=loss, train_op=train_op)
assert mode == tf.estimator.ModeKeys.EVAL
# Configure the accuracy metric for evaluation
metrics = {'accuracy': tf.metrics.accuracy(classes, tf.argmax(labels, axis=1))}
return tf.estimator.EstimatorSpec(mode=mode,
predictions=predictions,
loss=loss,
eval_metric_ops=metrics)
Input functions, as before.
In [ ]:
train_input = tf.estimator.inputs.numpy_input_fn(
{'x': x_train},
y_train,
num_epochs=None, # repeat forever
shuffle=True #
)
test_input = tf.estimator.inputs.numpy_input_fn(
{'x': x_test},
y_test,
num_epochs=1, # loop through the dataset once
shuffle=False # don't shuffle the test data
)
In [ ]:
estimator = tf.estimator.Estimator(model_fn=model_fn)
In [ ]:
# If you are running on a machine without a GPU, this can take some time to train.
estimator.train(input_fn=train_input, steps=2000)
In [ ]:
# Evaluate the estimator using our input function.
# We should see our accuracy metric below
# Tweaking with the params of the model, you can get >99% accuracy
evaluation = estimator.evaluate(input_fn=test_input)
print(evaluation)
In [ ]:
# Here's how to print predictions on a few examples
MAX_TO_PRINT = 5
# This returns a generator object
predictions = estimator.predict(input_fn=test_input)
i = 0
for p in predictions:
true_label = np.argmax(y_test[i])
predicted_label = p['classes']
print("Example %d. True: %d, Predicted: %s" % (i, true_label, predicted_label))
i += 1
if i == MAX_TO_PRINT: break