In [0]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
In [0]:
import os
import matplotlib.pylab as plt
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
print("Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print("Hub version: ", hub.__version__)
print("GPU is", "available" if tf.test.is_gpu_available() else "NOT AVAILABLE")
In [0]:
module_selection = ("mobilenet_v2", 224, 1280) #@param ["(\"mobilenet_v2\", 224, 1280)", "(\"inception_v3\", 299, 2048)"] {type:"raw", allow-input: true}
handle_base, pixels, FV_SIZE = module_selection
MODULE_HANDLE ="https://tfhub.dev/google/tf2-preview/{}/feature_vector/4".format(handle_base)
IMAGE_SIZE = (pixels, pixels)
print("Using {} with input size {} and output dimension {}".format(
MODULE_HANDLE, IMAGE_SIZE, FV_SIZE))
Use TensorFlow Datasets to load the cats and dogs dataset.
This tfds package is the easiest way to load pre-defined data. If you have your own data, and are interested in importing using it with TensorFlow see loading image data
In [0]:
import tensorflow_datasets as tfds
tfds.disable_progress_bar()
The tfds.load method downloads and caches the data, and returns a tf.data.Dataset object. These objects provide powerful, efficient methods for manipulating data and piping it into your model.
Since "cats_vs_dog" doesn't define standard splits, use the subsplit feature to divide it into (train, validation, test) with 80%, 10%, 10% of the data respectively.
In [0]:
(train_examples, validation_examples, test_examples), info = tfds.load(
'cats_vs_dogs',
split=['train[80%:]', 'train[80%:90%]', 'train[90%:]'],
with_info=True,
as_supervised=True,
)
num_examples = info.splits['train'].num_examples
num_classes = info.features['label'].num_classes
In [0]:
def format_image(image, label):
image = tf.image.resize(image, IMAGE_SIZE) / 255.0
return image, label
Now shuffle and batch the data
In [0]:
BATCH_SIZE = 32 #@param {type:"integer"}
In [0]:
train_batches = train_examples.shuffle(num_examples // 4).map(format_image).batch(BATCH_SIZE).prefetch(1)
validation_batches = validation_examples.map(format_image).batch(BATCH_SIZE).prefetch(1)
test_batches = test_examples.map(format_image).batch(1)
Inspect a batch
In [0]:
for image_batch, label_batch in train_batches.take(1):
pass
image_batch.shape
In [0]:
do_fine_tuning = False #@param {type:"boolean"}
Load TFHub Module
In [0]:
feature_extractor = hub.KerasLayer(MODULE_HANDLE,
input_shape=IMAGE_SIZE + (3,),
output_shape=[FV_SIZE],
trainable=do_fine_tuning)
In [0]:
print("Building model with", MODULE_HANDLE)
model = tf.keras.Sequential([
feature_extractor,
tf.keras.layers.Dense(num_classes)
])
model.summary()
In [0]:
#@title (Optional) Unfreeze some layers
NUM_LAYERS = 7 #@param {type:"slider", min:1, max:50, step:1}
if do_fine_tuning:
feature_extractor.trainable = True
for layer in model.layers[-NUM_LAYERS:]:
layer.trainable = True
else:
feature_extractor.trainable = False
In [0]:
if do_fine_tuning:
model.compile(
optimizer=tf.keras.optimizers.SGD(lr=0.002, momentum=0.9),
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
else:
model.compile(
optimizer='adam',
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
In [0]:
EPOCHS = 5
hist = model.fit(train_batches,
epochs=EPOCHS,
validation_data=validation_batches)
In [0]:
CATS_VS_DOGS_SAVED_MODEL = "exp_saved_model"
Export the SavedModel
In [0]:
tf.saved_model.save(model, CATS_VS_DOGS_SAVED_MODEL)
In [0]:
%%bash -s $CATS_VS_DOGS_SAVED_MODEL
saved_model_cli show --dir $1 --tag_set serve --signature_def serving_default
In [0]:
loaded = tf.saved_model.load(CATS_VS_DOGS_SAVED_MODEL)
In [0]:
print(list(loaded.signatures.keys()))
infer = loaded.signatures["serving_default"]
print(infer.structured_input_signature)
print(infer.structured_outputs)
Load the TFLiteConverter with the SavedModel
In [0]:
converter = tf.lite.TFLiteConverter.from_saved_model(CATS_VS_DOGS_SAVED_MODEL)
The simplest form of post-training quantization quantizes weights from floating point to 8-bits of precision. This technique is enabled as an option in the TensorFlow Lite converter. At inference, weights are converted from 8-bits of precision to floating point and computed using floating-point kernels. This conversion is done once and cached to reduce latency.
To further improve latency, hybrid operators dynamically quantize activations to 8-bits and perform computations with 8-bit weights and activations. This optimization provides latencies close to fully fixed-point inference. However, the outputs are still stored using floating point, so that the speedup with hybrid ops is less than a full fixed-point computation.
In [0]:
converter.optimizations = [tf.lite.Optimize.DEFAULT]
We can get further latency improvements, reductions in peak memory usage, and access to integer only hardware accelerators by making sure all model math is quantized. To do this, we need to measure the dynamic range of activations and inputs with a representative data set. You can simply create an input data generator and provide it to our converter.
In [0]:
def representative_data_gen():
for input_value, _ in test_batches.take(100):
yield [input_value]
In [0]:
converter.representative_dataset = representative_data_gen
The resulting model will be fully quantized but still take float input and output for convenience.
Ops that do not have quantized implementations will automatically be left in floating point. This allows conversion to occur smoothly but may restrict deployment to accelerators that support float.
In [0]:
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
In [0]:
tflite_model = converter.convert()
tflite_model_file = 'converted_model.tflite'
with open(tflite_model_file, "wb") as f:
f.write(tflite_model)
In [0]:
# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path=tflite_model_file)
interpreter.allocate_tensors()
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
In [0]:
from tqdm import tqdm
# Gather results for the randomly sampled test images
predictions = []
test_labels, test_imgs = [], []
for img, label in tqdm(test_batches.take(10)):
interpreter.set_tensor(input_index, img)
interpreter.invoke()
predictions.append(interpreter.get_tensor(output_index))
test_labels.append(label.numpy()[0])
test_imgs.append(img)
In [0]:
#@title Utility functions for plotting
# Utilities for plotting
class_names = ['cat', 'dog']
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
img = np.squeeze(img)
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'green'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
NOTE: Colab runs on server CPUs. At the time of writing this, TensorFlow Lite doesn't have super optimized server CPU kernels. For this reason post-training full-integer quantized models may be slower here than the other kinds of optimized models. But for mobile CPUs, considerable speedup can be observed.
In [0]:
#@title Visualize the outputs { run: "auto" }
index = 0 #@param {type:"slider", min:0, max:9, step:1}
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(index, predictions, test_labels, test_imgs)
plt.show()
Download the model.
NOTE: You might have to run to the cell below twice
In [0]:
labels = ['cat', 'dog']
with open('labels.txt', 'w') as f:
f.write('\n'.join(labels))
try:
from google.colab import files
files.download('converted_model.tflite')
files.download('labels.txt')
except:
pass
This part involves downloading additional test images for the Mobile Apps only in case you need to try out more samples
In [0]:
!mkdir -p test_images
In [0]:
from PIL import Image
for index, (image, label) in enumerate(test_batches.take(50)):
image = tf.cast(image * 255.0, tf.uint8)
image = tf.squeeze(image).numpy()
pil_image = Image.fromarray(image)
pil_image.save('test_images/{}_{}.jpg'.format(class_names[label[0]], index))
In [0]:
!ls test_images
In [0]:
!zip -qq cats_vs_dogs_test_images.zip -r test_images/
In [0]:
try:
files.download('cats_vs_dogs_test_images.zip')
except:
pass