In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" }
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Note: This is an archived TF1 notebook. These are configured to run in TF2's compatbility mode but will run in TF1 as well. To use TF1 in Colab, use the magic.
AutoGraph helps you write complicated graph code using normal Python. Behind the scenes, AutoGraph automatically transforms your code into the equivalent TensorFlow graph code. AutoGraph already supports much of the Python language, and that coverage continues to grow. For a list of supported Python language features, see the Autograph capabilities and limitations.
In [ ]:
import tensorflow.compat.v1 as tf
In [ ]:
layers = tf.keras.layers
import numpy as np
import matplotlib.pyplot as plt
We'll enable eager execution for demonstration purposes, but AutoGraph works in both eager and graph execution environments:
Note: AutoGraph converted code is designed to run during graph execution. When eager exectuon is enabled, use explicit graphs (as this example shows) or tf.contrib.eager.defun
.
AutoGraph will convert much of the Python language into the equivalent TensorFlow graph building code.
Note: In real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the batch level. If making decisions at the individual example level, you must index and batch the examples to maintain performance while applying the control flow logic.
AutoGraph converts a function like:
In [ ]:
def square_if_positive(x):
if x > 0:
x = x * x
else:
x = 0.0
return x
To a function that uses graph building:
In [ ]:
print(tf.autograph.to_code(square_if_positive))
Code written for eager execution can run in a tf.Graph
with the same results, but with the benefits of graph execution:
In [ ]:
print('Eager results: %2.2f, %2.2f' % (square_if_positive(tf.constant(9.0)),
square_if_positive(tf.constant(-9.0))))
Generate a graph-version and call it:
In [ ]:
tf_square_if_positive = tf.autograph.to_graph(square_if_positive)
with tf.Graph().as_default():
# The result works like a regular op: takes tensors in, returns tensors.
# You can inspect the graph using tf.get_default_graph().as_graph_def()
g_out1 = tf_square_if_positive(tf.constant( 9.0))
g_out2 = tf_square_if_positive(tf.constant(-9.0))
with tf.Session() as sess:
print('Graph results: %2.2f, %2.2f\n' % (sess.run(g_out1), sess.run(g_out2)))
AutoGraph supports common Python statements like while
, for
, if
, break
, and return
, with support for nesting. Compare this function with the complicated graph verson displayed in the following code blocks:
In [ ]:
# Continue in a loop
def sum_even(items):
s = 0
for c in items:
if c % 2 > 0:
continue
s += c
return s
print('Eager result: %d' % sum_even(tf.constant([10,12,15,20])))
tf_sum_even = tf.autograph.to_graph(sum_even)
with tf.Graph().as_default(), tf.Session() as sess:
print('Graph result: %d\n\n' % sess.run(tf_sum_even(tf.constant([10,12,15,20]))))
In [ ]:
print(tf.autograph.to_code(sum_even))
In [ ]:
@tf.function(
experimental_autograph_options=tf.autograph.experimental.Feature.EQUALITY_OPERATORS)
def fizzbuzz(i, n):
while i < n:
msg = ''
if i % 3 == 0:
msg += 'Fizz'
if i % 5 == 0:
msg += 'Buzz'
if msg == '':
msg = tf.as_string(i)
tf.print(msg)
i += 1
return i
with tf.Graph().as_default():
final_i = fizzbuzz(tf.constant(10), tf.constant(16))
# The result works like a regular op: takes tensors in, returns tensors.
# You can inspect the graph using tf.get_default_graph().as_graph_def()
with tf.Session() as sess:
sess.run(final_i)
In [ ]:
@tf.function(
experimental_autograph_options=(
tf.autograph.experimental.Feature.ASSERT_STATEMENTS,
tf.autograph.experimental.Feature.EQUALITY_OPERATORS))
def inverse(x):
assert x != 0.0, 'Do not pass zero!'
return 1.0 / x
with tf.Graph().as_default(), tf.Session() as sess:
try:
print(sess.run(inverse(tf.constant(0.0))))
except tf.errors.InvalidArgumentError as e:
print('Got error message:\n %s' % e.message)
In [ ]:
@tf.function(
experimental_autograph_options=tf.autograph.experimental.Feature.BUILTIN_FUNCTIONS)
def count(n):
i = 0
while i < n:
print(i)
i += 1
return n
with tf.Graph().as_default(), tf.Session() as sess:
sess.run(count(tf.constant(5)))
In [ ]:
@tf.function(
experimental_autograph_options=tf.autograph.experimental.Feature.LISTS)
def arange(n):
z = tf.TensorArray(tf.int32, size=0, dynamic_size=True)
for i in tf.range(n):
z.append(i)
return z.stack()
with tf.Graph().as_default(), tf.Session() as sess:
print(sess.run(arange(tf.constant(10))))
In [ ]:
@tf.function(
experimental_autograph_options=tf.autograph.experimental.Feature.EQUALITY_OPERATORS)
def nearest_odd_square(x):
if x > 0:
x = x * x
if x % 2 == 0:
x = x + 1
return x
with tf.Graph().as_default():
with tf.Session() as sess:
print(sess.run(nearest_odd_square(tf.constant(4))))
print(sess.run(nearest_odd_square(tf.constant(5))))
print(sess.run(nearest_odd_square(tf.constant(6))))
In [ ]:
@tf.function
def square_until_stop(x, y):
while x < y:
x = x * x
return x
with tf.Graph().as_default():
with tf.Session() as sess:
print(sess.run(square_until_stop(tf.constant(4), tf.constant(100))))
In [ ]:
@tf.function(
experimental_autograph_options=tf.autograph.experimental.Feature.LISTS)
def squares(nums):
result = tf.TensorArray(tf.int64, size=0, dynamic_size=True)
for num in nums:
result.append(num * num)
return result.stack()
with tf.Graph().as_default():
with tf.Session() as sess:
print(sess.run(squares(tf.constant(np.arange(10)))))
In [ ]:
@tf.function
def argwhere_cumsum(x, threshold):
current_sum = 0.0
idx = 0
for i in tf.range(len(x)):
idx = i
if current_sum >= threshold:
break
current_sum += x[i]
return idx
N = 10
with tf.Graph().as_default():
with tf.Session() as sess:
idx = argwhere_cumsum(tf.ones(N), tf.constant(float(N/2)))
print(sess.run(idx))
In [ ]:
import numpy as np
@tf.function(
experimental_autograph_options=(
tf.autograph.experimental.Feature.ASSERT_STATEMENTS,
tf.autograph.experimental.Feature.EQUALITY_OPERATORS,
))
def collatz(x):
x = tf.reshape(x,())
assert x > 0
n = tf.convert_to_tensor((0,))
while x != 1:
n += 1
if x % 2 == 0:
x = x // 2
else:
x = 3 * x + 1
return n
with tf.Graph().as_default():
model = tf.keras.Sequential([
tf.keras.layers.Lambda(collatz, input_shape=(1,), output_shape=())
])
result = model.predict(np.array([6171]))
print(result)
For subclasses of Keras models, the easiest way is to convert their call
method. See the TensorFlow Keras guide for details on how to build on these classes.
Here is a simple example of the stochastic network depth technique :
In [ ]:
# `K` is used to check if we're in train or test mode.
K = tf.keras.backend
class StochasticNetworkDepth(tf.keras.Sequential):
def __init__(self, layers, pfirst=1.0, plast=0.5,**kwargs):
self.pfirst = pfirst
self.plast = plast
super(StochasticNetworkDepth, self).__init__(layers,**kwargs)
def build(self, input_shape):
self.depth = len(self.layers)
self.plims = np.linspace(self.pfirst, self.plast, self.depth + 1)[:-1]
super(StochasticNetworkDepth, self).build(input_shape.as_list())
def call(self, inputs):
training = tf.cast(K.learning_phase(), dtype=bool)
if not training:
count = self.depth
return super(StochasticNetworkDepth, self).call(inputs), count
p = tf.random_uniform((self.depth,))
keeps = (p <= self.plims)
x = inputs
count = tf.reduce_sum(tf.cast(keeps, tf.int32))
for i in range(self.depth):
if keeps[i]:
x = self.layers[i](x)
# return both the final-layer output and the number of layers executed.
return x, count
StochasticNetworkDepth.call = tf.autograph.to_graph(StochasticNetworkDepth.call)
Let's try it on mnist-shaped data:
In [ ]:
train_batch = np.random.randn(64, 28, 28, 1).astype(np.float32)
Build a simple stack of conv
layers, in the stochastic depth model:
In [ ]:
with tf.Graph().as_default() as g:
model = StochasticNetworkDepth(
[
layers.Conv2D(filters=16, activation=tf.nn.relu,
kernel_size=(3, 3), padding='same')
for n in range(20)
],
pfirst=1.0, plast=0.5
)
model.build(tf.TensorShape((None, None, None, 1)))
init = tf.global_variables_initializer()
Now test it to ensure it behaves as expected in train and test modes:
In [ ]:
# Use an explicit session here so we can set the train/test switch, and
# inspect the layer count returned by `call`
with tf.Session(graph=g) as sess:
init.run()
for phase, name in enumerate(['test','train']):
K.set_learning_phase(phase)
result, count = model(tf.convert_to_tensor(train_batch, dtype=tf.float32))
result1, count1 = sess.run((result, count))
result2, count2 = sess.run((result, count))
delta = (result1 - result2)
print(name, "sum abs delta: ", abs(delta).mean())
print(" layers 1st call: ", count1)
print(" layers 2nd call: ", count2)
print()
The previous section showed that AutoGraph can be used inside Keras layers and models. Keras models can also be used in AutoGraph code.
Since writing control flow in AutoGraph is easy, running a training loop in a TensorFlow graph should also be easy.
This example shows how to train a simple Keras model on MNIST with the entire training process—loading batches, calculating gradients, updating parameters, calculating validation accuracy, and repeating until convergence—is performed in-graph.
In [ ]:
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
In [ ]:
def mlp_model(input_shape):
model = tf.keras.Sequential((
tf.keras.layers.Dense(100, activation='relu', input_shape=input_shape),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')))
model.build()
return model
def predict(m, x, y):
x = tf.to_float(x) / 255.0
y = tf.one_hot(tf.squeeze(y), 10)
y_p = m(tf.reshape(x, (-1, 28 * 28)))
losses = tf.keras.losses.categorical_crossentropy(y, y_p)
l = tf.reduce_mean(losses)
accuracies = tf.keras.metrics.categorical_accuracy(y, y_p)
accuracy = tf.reduce_mean(accuracies)
return l, accuracy
def fit(m, x, y, opt):
l, accuracy = predict(m, x, y)
# Autograph automatically adds the necessary `tf.control_dependencies` here.
# (Without them nothing depends on `opt.minimize`, so it doesn't run.)
# This makes it much more like eager-code.
opt.minimize(l)
return l, accuracy
def setup_mnist_data(is_training, batch_size):
if is_training:
ds = tf.data.Dataset.from_tensor_slices((train_images, train_labels))
ds = ds.shuffle(batch_size * 10)
else:
ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels))
ds = ds.repeat()
ds = ds.batch(batch_size)
return ds
In [ ]:
def train(train_ds, test_ds, learning_rate, max_steps):
m = mlp_model((28 * 28,))
opt = tf.train.AdamOptimizer(learning_rate)
train_losses = tf.TensorArray(tf.float32, size=0, dynamic_size=True, element_shape=())
test_losses = tf.TensorArray(tf.float32, size=0, dynamic_size=True, element_shape=())
train_accuracies = tf.TensorArray(tf.float32, size=0, dynamic_size=True, element_shape=())
test_accuracies = tf.TensorArray(tf.float32, size=0, dynamic_size=True, element_shape=())
# This entire training loop will be run in-graph.
i = tf.constant(0)
for (train_x, train_y), (test_x, test_y) in tf.data.Dataset.zip((train_ds, test_ds)):
step_train_loss, step_train_accuracy = fit(m, train_x, train_y, opt)
step_test_loss, step_test_accuracy = predict(m, test_x, test_y)
if i % 50 == 0:
print('Step', i, 'train loss:', step_train_loss, 'test loss:',
step_test_loss, 'train accuracy:', step_train_accuracy,
'test accuracy:', step_test_accuracy)
train_losses.append(step_train_loss)
test_losses.append(step_test_loss)
train_accuracies.append(step_train_accuracy)
test_accuracies.append(step_test_accuracy)
i += 1
if i >= max_steps:
break
# We've recorded our loss values and accuracies
# to a list in a graph with AutoGraph's help.
# In order to return the values as a Tensor,
# we need to stack them before returning them.
return (train_losses.stack(), test_losses.stack(),
train_accuracies.stack(), test_accuracies.stack())
train = tf.autograph.to_graph(
train,
experimental_optional_features=(
tf.autograph.experimental.Feature.LISTS,
tf.autograph.experimental.Feature.BUILTIN_FUNCTIONS,
tf.autograph.experimental.Feature.EQUALITY_OPERATORS,
tf.autograph.experimental.Feature.AUTO_CONTROL_DEPS))
Now build the graph and run the training loop:
In [ ]:
with tf.Graph().as_default() as g:
learning_rate = 0.005
max_steps=500
train_ds = setup_mnist_data(True, 50)
test_ds = setup_mnist_data(False, 1000)
(train_losses, test_losses, train_accuracies,
test_accuracies) = train(train_ds, test_ds, learning_rate, max_steps)
init = tf.global_variables_initializer()
with tf.Session(graph=g) as sess:
sess.run(init)
(train_losses, test_losses, train_accuracies,
test_accuracies) = sess.run([train_losses, test_losses, train_accuracies,
test_accuracies])
In [ ]:
plt.title('MNIST train/test losses')
plt.plot(train_losses, label='train loss')
plt.plot(test_losses, label='test loss')
plt.legend()
plt.xlabel('Training step')
plt.ylabel('Loss')
plt.show()
plt.title('MNIST train/test accuracies')
plt.plot(train_accuracies, label='train accuracy')
plt.plot(test_accuracies, label='test accuracy')
plt.legend(loc='lower right')
plt.xlabel('Training step')
plt.ylabel('Accuracy')
plt.show()