In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

预创建的 Estimators

Note: 我们的 TensorFlow 社区翻译了这些文档。因为社区翻译是尽力而为, 所以无法保证它们是最准确的,并且反映了最新的 官方英文文档。如果您有改进此翻译的建议, 请提交 pull request 到 tensorflow/docs GitHub 仓库。要志愿地撰写或者审核译文,请加入 docs-zh-cn@tensorflow.org Google Group

本教程将向您展示如何使用 Estimators 解决 Tensorflow 中的鸢尾花(Iris)分类问题。Estimator 是 Tensorflow 完整模型的高级表示,它被设计用于轻松扩展和异步训练。更多细节请参阅 Estimators

请注意,在 Tensorflow 2.0 中,Keras API 可以完成许多相同的任务,而且被认为是一个更易学习的API。如果您刚刚开始入门,我们建议您从 Keras 开始。有关 Tensorflow 2.0 中可用高级API的更多信息,请参阅 Keras标准化

首先要做的事

为了开始,您将首先导入 Tensorflow 和一系列您需要的库。


In [ ]:
import tensorflow as tf

import pandas as pd

数据集

本文档中的示例程序构建并测试了一个模型,该模型根据花萼花瓣的大小将鸢尾花分成三种物种。

您将使用鸢尾花数据集训练模型。该数据集包括四个特征和一个标签。这四个特征确定了单个鸢尾花的以下植物学特征:

  • 花萼长度
  • 花萼宽度
  • 花瓣长度
  • 花瓣宽度

根据这些信息,您可以定义一些有用的常量来解析数据:


In [ ]:
CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']
SPECIES = ['Setosa', 'Versicolor', 'Virginica']

接下来,使用 Keras 与 Pandas 下载并解析鸢尾花数据集。注意为训练和测试保留不同的数据集。


In [ ]:
train_path = tf.keras.utils.get_file(
    "iris_training.csv", "https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv")
test_path = tf.keras.utils.get_file(
    "iris_test.csv", "https://storage.googleapis.com/download.tensorflow.org/data/iris_test.csv")

train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)

通过检查数据您可以发现有四列浮点型特征和一列 int32 型标签。


In [ ]:
train.head()

对于每个数据集都分割出标签,模型将被训练来预测这些标签。


In [ ]:
train_y = train.pop('Species')
test_y = test.pop('Species')

# 标签列现已从数据中删除
train.head()

Estimator 编程概述

现在您已经设定好了数据,您可以使用 Tensorflow Estimator 定义模型。Estimator 是从 tf.estimator.Estimator 中派生的任何类。Tensorflow提供了一组tf.estimator(例如,LinearRegressor)来实现常见的机器学习算法。此外,您可以编写您自己的自定义 Estimator。入门阶段我们建议使用预创建的 Estimator。

为了编写基于预创建的 Estimator 的 Tensorflow 项目,您必须完成以下工作:

  • 创建一个或多个输入函数
  • 定义模型的特征列
  • 实例化一个 Estimator,指定特征列和各种超参数。
  • 在 Estimator 对象上调用一个或多个方法,传递合适的输入函数以作为数据源。

我们来看看这些任务是如何在鸢尾花分类中实现的。

创建输入函数

您必须创建输入函数来提供用于训练、评估和预测的数据。

输入函数是一个返回 tf.data.Dataset 对象的函数,此对象会输出下列含两个元素的元组:

  • features——Python字典,其中:
    • 每个键都是特征名称
    • 每个值都是包含此特征所有值的数组
  • label 包含每个样本的标签的值的数组。

为了向您展示输入函数的格式,请查看下面这个简单的实现:


In [ ]:
def input_evaluation_set():
    features = {'SepalLength': np.array([6.4, 5.0]),
                'SepalWidth':  np.array([2.8, 2.3]),
                'PetalLength': np.array([5.6, 3.3]),
                'PetalWidth':  np.array([2.2, 1.0])}
    labels = np.array([2, 1])
    return features, labels

您的输入函数可以以您喜欢的方式生成 features 字典与 label 列表。但是,我们建议使用 Tensorflow 的 Dataset API,该 API 可以用来解析各种类型的数据。

Dataset API 可以为您处理很多常见情况。例如,使用 Dataset API,您可以轻松地从大量文件中并行读取记录,并将它们合并为单个数据流。

为了简化此示例,我们将使用 pandas 加载数据,并利用此内存数据构建输入管道。


In [ ]:
def input_fn(features, labels, training=True, batch_size=256):
    """An input function for training or evaluating"""
    # 将输入转换为数据集。
    dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))

    # 如果在训练模式下混淆并重复数据。
    if training:
        dataset = dataset.shuffle(1000).repeat()
    
    return dataset.batch(batch_size)

定义特征列(feature columns)

特征列(feature columns)是一个对象,用于描述模型应该如何使用特征字典中的原始输入数据。当您构建一个 Estimator 模型的时候,您会向其传递一个特征列的列表,其中包含您希望模型使用的每个特征。tf.feature_column 模块提供了许多为模型表示数据的选项。

对于鸢尾花问题,4 个原始特征是数值,因此我们将构建一个特征列的列表,以告知 Estimator 模型将 4 个特征都表示为 32 位浮点值。故创建特征列的代码如下所示:


In [ ]:
# 特征列描述了如何使用输入。
my_feature_columns = []
for key in train.keys():
    my_feature_columns.append(tf.feature_column.numeric_column(key=key))

特征列可能比上述示例复杂得多。您可以从指南获取更多关于特征列的信息。

我们已经介绍了如何使模型表示原始特征,现在您可以构建 Estimator 了。

实例化 Estimator

鸢尾花为题是一个经典的分类问题。幸运的是,Tensorflow 提供了几个预创建的 Estimator 分类器,其中包括:

  • tf.estimator.DNNClassifier 用于多类别分类的深度模型
  • tf.estimator.DNNLinearCombinedClassifier 用于广度与深度模型
  • tf.estimator.LinearClassifier 用于基于线性模型的分类器

对于鸢尾花问题,tf.estimator.DNNClassifier 似乎是最好的选择。您可以这样实例化该 Estimator:


In [ ]:
# 构建一个拥有两个隐层,隐藏节点分别为 30 和 10 的深度神经网络。
classifier = tf.estimator.DNNClassifier(
    feature_columns=my_feature_columns,
    # 隐层所含结点数量分别为 30 和 10.
    hidden_units=[30, 10],
    # 模型必须从三个类别中做出选择。
    n_classes=3)

训练、评估和预测

我们已经有一个 Estimator 对象,现在可以调用方法来执行下列操作:

  • 训练模型。
  • 评估经过训练的模型。
  • 使用经过训练的模型进行预测。

训练模型

通过调用 Estimator 的 Train 方法来训练模型,如下所示:


In [ ]:
# 训练模型。
classifier.train(
    input_fn=lambda: input_fn(train, train_y, training=True),
    steps=5000)

注意将 input_fn 调用封装在 lambda 中以获取参数,同时提供不带参数的输入函数,如 Estimator 所预期的那样。step 参数告知该方法在训练多少步后停止训练。

评估经过训练的模型

现在模型已经经过训练,您可以获取一些关于模型性能的统计信息。代码块将在测试数据上对经过训练的模型的准确率(accuracy)进行评估:


In [ ]:
eval_result = classifier.evaluate(
    input_fn=lambda: input_fn(test, test_y, training=False))

print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))

与对 train 方法的调用不同,我们没有传递 steps 参数来进行评估。用于评估的 input_fn 只生成一个 epoch 的数据。

eval_result 字典亦包含 average_loss(每个样本的平均误差),loss(每个 mini-batch 的平均误差)与 Estimator 的 global_step(经历的训练迭代次数)值。

利用经过训练的模型进行预测(推理)

我们已经有一个经过训练的模型,可以生成准确的评估结果。我们现在可以使用经过训练的模型,根据一些无标签测量结果预测鸢尾花的品种。与训练和评估一样,我们使用单个函数调用进行预测:


In [ ]:
# 由模型生成预测
expected = ['Setosa', 'Versicolor', 'Virginica']
predict_x = {
    'SepalLength': [5.1, 5.9, 6.9],
    'SepalWidth': [3.3, 3.0, 3.1],
    'PetalLength': [1.7, 4.2, 5.4],
    'PetalWidth': [0.5, 1.5, 2.1],
}

def input_fn(features, batch_size=256):
    """An input function for prediction."""
    # 将输入转换为无标签数据集。
    return tf.data.Dataset.from_tensor_slices(dict(features)).batch(batch_size)

predictions = classifier.predict(
    input_fn=lambda: input_fn(predict_x))

predict 方法返回一个 Python 可迭代对象,为每个样本生成一个预测结果字典。以下代码输出了一些预测及其概率:


In [ ]:
for pred_dict, expec in zip(predictions, expected):
    class_id = pred_dict['class_ids'][0]
    probability = pred_dict['probabilities'][class_id]

    print('Prediction is "{}" ({:.1f}%), expected "{}"'.format(
        SPECIES[class_id], 100 * probability, expec))