after(eight, nine)chase(dogs, cats)knows(Anne, thinks(Bill, likes(Charlie, Dave)))[number:eight next:nine][subject:dogs action:chase object:cats][subject:Anne action:knows object:[subject:Bill action:thinks object:[subject:Charlie action:likes object:Dave]]]Problems
Implementing Symbol Systems in Neurons
Based on vectors and functions on those vectors
Example
BLUE $\circledast$ SQUARE + RED $\circledast$ CIRCLELots of nice properties
[number:eight next:nine]NUMBER $\circledast$ EIGHT + NEXT $\circledast$ NINE[subject:Anne action:knows object:[subject:Bill action:thinks object:[subject:Charlie action:likes object:Dave]]] SUBJ $\circledast$ ANNE + ACT $\circledast$ KNOWS + OBJ $\circledast$ (SUBJ $\circledast$ BILL + ACT $\circledast$ THINKS + OBJ $\circledast$ (SUBJ $\circledast$ CHARLIE + ACT $\circledast$ LIKES + OBJ $\circledast$ DAVE))RED is similar to PINK then RED $\circledast$ CIRCLE is similar to PINK $\circledast$ CIRCLEBut rather complicated
In [2]:
import nengo
import nengo.spa as spa
D=64
model = spa.SPA(label='Binding')
with model:
model.a = spa.Buffer(D)
model.b = spa.Buffer(D)
model.c = spa.Buffer(D)
model.q = spa.Buffer(D)
model.r = spa.Buffer(D)
model.cortical = spa.Cortical(spa.Actions(
'c = a*b',
'c = c',
'r = c*~q'), synapse=0.1)
nengo.Probe(model.a.state.output)
nengo.Probe(model.b.state.output)
nengo.Probe(model.c.state.output)
nengo.Probe(model.q.state.output)
nengo.Probe(model.r.state.output)
This is not an actual question on the test
How can we model people doing this task?
A fair number of different attempts
Does this vector approach offer an alternative?
First we need to represent the different patterns as a vector
How do we represent a picture?
SHAPE $\circledast$ ARROW + NUMBER $\circledast$ ONE + DIRECTION $\circledast$ UPWe have shown that it's possible to build these sorts of representations up directly from visual stimuli
The memory of the list is built up by using a basal ganglia action selection system to control feeding values into an integrator
The same system can be used to do a version of the Raven's Matrices task
S1 = ONE $\circledast$ P1S2 = ONE $\circledast$ P1 + ONE $\circledast$ P2S3 = ONE $\circledast$ P1 + ONE $\circledast$ P2 + ONE $\circledast$ P3S4 = FOUR $\circledast$ P1S5 = FOUR $\circledast$ P1 + FOUR $\circledast$ P2S6 = FOUR $\circledast$ P1 + FOUR $\circledast$ P2 + FOUR $\circledast$ P3S7 = FIVE $\circledast$ P1S8 = FIVE $\circledast$ P1 + FIVE $\circledast$ P2
what is S9?
T1 = S2 $\circledast$ S1'T2 = S3 $\circledast$ S2'T3 = S5 $\circledast$ S4'T4 = S6 $\circledast$ S5'T5 = S8 $\circledast$ S7'
T = (T1 + T2 + T3 + T4 + T5)/5
S9 = S8 $\circledast$ T
S9 = FIVE $\circledast$ P1 + FIVE $\circledast$ P2 + FIVE $\circledast$ P3
This becomes a novel way of manipulating structured information
thalamus has routing connections between cortical areas
good timing data
In [ ]:
import nengo
import nengo.spa as spa
model = spa.SPA(label="SPA1")
with model:
model.state = spa.Buffer(16)
model.motor = spa.Buffer(16)
actions = spa.Actions(
'dot(state, DOG) --> motor=BARK',
'dot(state, CAT) --> motor=MEOW',
'dot(state, RAT) --> motor=SQUEAK',
'dot(state, COW) --> motor=MOO',
)
model.bg = spa.BasalGanglia(actions)
model.thalamus = spa.Thalamus(model.bg)
nengo.Probe(model.state.state.output)
nengo.Probe(model.motor.state.output)
nengo.Probe(model.bg.input)
nengo.Probe(model.thalamus.actions.output)
In [ ]:
import nengo
import nengo.spa as spa
model = spa.SPA(label="SPA2")
with model:
model.state = spa.Buffer(16)
actions = spa.Actions(
'dot(state, A) --> state=B',
'dot(state, B) --> state=C',
'dot(state, C) --> state=D',
'dot(state, D) --> state=E',
'dot(state, E) --> state=A',
)
model.bg = spa.BasalGanglia(actions)
model.thalamus = spa.Thalamus(model.bg)
nengo.Probe(model.state.state.output)
nengo.Probe(model.bg.input)
nengo.Probe(model.thalamus.actions.output)
In [ ]:
import nengo
import nengo.spa as spa
model = spa.SPA(label="SPA1")
with model:
model.state = spa.Buffer(16)
actions = spa.Actions(
'dot(state, A) --> state=B',
'dot(state, B) --> state=C',
'dot(state, C) --> state=D',
'dot(state, D) --> state=E',
'dot(state, E) --> state=A',
)
model.bg = spa.BasalGanglia(actions)
model.thalamus = spa.Thalamus(model.bg)
def state_in(t):
if t<0.1:
return 'C'
else:
return '0'
model.input = spa.Input(state=state_in)
nengo.Probe(model.state.state.output)
nengo.Probe(model.bg.input)
nengo.Probe(model.thalamus.actions.output)
In [ ]:
import nengo
import nengo.spa as spa
model = spa.SPA(label="SPA1")
with model:
model.vision = spa.Buffer(16)
model.state = spa.Buffer(16)
actions = spa.Actions(
'dot(vision, A+B+C+D+E) --> state=vision',
'dot(state, A) --> state=B',
'dot(state, B) --> state=C',
'dot(state, C) --> state=D',
'dot(state, D) --> state=E',
'dot(state, E) --> state=A',
)
model.bg = spa.BasalGanglia(actions)
model.thalamus = spa.Thalamus(model.bg)
def vision_in(t):
if t<0.1:
return 'C'
else:
return '0'
model.input = spa.Input(vision=vision_in)
nengo.Probe(model.state.state.output)
nengo.Probe(model.vision.state.output)
nengo.Probe(model.bg.input)
nengo.Probe(model.thalamus.actions.output)