In [ ]:
import numpy as np
from matplotlib import pyplot as plt
plt.style.use('ggplot')
%matplotlib inline
In [ ]:
import pandas as pd
In [ ]:
A = np.array([[1,2,3,4,5], [10,20,30,40,50], [11,22,33,44,55]])
A
In [ ]:
index = ['a','b','c']
cols = ['A','B','C','D','E']
In [ ]:
df = pd.DataFrame(data=A, index=index, columns=cols)
df
In [ ]:
df['B']
In [ ]:
df.loc['a']
In [ ]:
df.iloc[1]
In [ ]:
df.ix['a',1]
In [ ]:
df.loc['a','B']
In [ ]:
df.iloc[0,1]
In [ ]:
df.at['a','C']
In [ ]:
df.iat[0,2]
In [ ]:
df.iloc[:,0:3]
In [ ]:
df.iloc[::2,:]
In [ ]:
df[['A','C']]>10
In [ ]:
df_g2 = df[df[['A','B']]>2]
df_g2
In [ ]:
df_g2.dropna( axis=0, how='all')
In [ ]:
df_g2.dropna( axis=1, how='any')
In [ ]:
df[ df["A"].isin([1, 11]) ]
In [ ]:
df.values
In [ ]:
df.sort_values(by="A", ascending=False)
In [ ]:
df2 = pd.DataFrame( np.random.rand(3,5), columns=df.columns )
pd.concat( [df, df2])
In [ ]:
df2 = pd.DataFrame( [[50, 'eins'], [5, 'zwei'], [55, 'drei']], columns=["E2", "no"])
df3 = pd.merge(df, df2, left_on="E", right_on="E2")
df3.drop("E2", axis=1, inplace=True)
df3
In [ ]:
diamonds = pd.read_csv('diamonds.csv',index_col=0)
In [ ]:
diamonds.head()
In [ ]:
diamonds.tail()
In [ ]:
diamonds.info()
In [ ]:
diamonds.describe()
In [ ]:
diamonds.corr()
In [ ]:
diamonds.groupby("cut").mean()
In [ ]:
x = np.linspace(0, 6, 100)
a = np.array( [x, np.sin(x), x*x] ).transpose()
df = pd.DataFrame( a, columns=["x", "sinx", "sqx"] )
df.plot(x="x", y=["sinx", "sqx"])
In [ ]:
diamonds.plot(x="carat", y="price", kind='scatter')
In [ ]:
diamonds["price"].plot(kind="hist")
In [ ]:
diamonds.groupby("cut")["price"].sum().plot(kind="barh")
In [ ]:
price_per_color = diamonds.groupby( ["cut", "color"] )["price"].sum().unstack()
price_per_color.plot(kind="barh", stacked=True)
#price_per_color
In [ ]:
price_per_color = diamonds.groupby( ["cut", "color"] )["price"].sum().unstack()
price_per_color
In [ ]: