In [1]:
using AutomotiveDrivingModels
# All the functions related to visualization
using AutoViz
In order to generate the road network, one first initializes a Roadway object.
In [2]:
roadway = Roadway();
In [3]:
# Define coordinates of the entry and exit points to the intersection
r = 5.0 # turn radius
A = VecSE2(0.0,DEFAULT_LANE_WIDTH,-π)
B = VecSE2(0.0,0.0,0.0)
C = VecSE2(r,-r,-π/2)
D = VecSE2(r+DEFAULT_LANE_WIDTH,-r,π/2)
E = VecSE2(2r+DEFAULT_LANE_WIDTH,0,0)
F = VecSE2(2r+DEFAULT_LANE_WIDTH,DEFAULT_LANE_WIDTH,-π)
Out[3]:
3-element VecSE2{Float64}:
13.0
3.0
-3.141592653589793
The next step consists in appending all the lanes to the road network. We can define a helper function to add a new lane to the roadway.
In [4]:
function append_to_curve!(target::Curve, newstuff::Curve)
s_end = target[end].s
for c in newstuff
push!(target, CurvePt(c.pos, c.s+s_end, c.k, c.kd))
end
return target
end
Out[4]:
append_to_curve! (generic function with 1 method)
Example of a lane that consists in 3 road segments, a straight curve (from the left to the center), a turning part (right turn) and a final straight curve. You can visualize the lane that has been added to the roadway
In [5]:
# Append right turn coming from the left
curve = gen_straight_curve(convert(VecE2, B+VecE2(-100,0)), convert(VecE2, B), 2)
append_to_curve!(curve, gen_bezier_curve(B, C, 0.6r, 0.6r, 51)[2:end])
append_to_curve!(curve, gen_straight_curve(convert(VecE2, C), convert(VecE2, C+VecE2(0,-50.0)), 2))
lane = Lane(LaneTag(length(roadway.segments)+1,1), curve)
push!(roadway.segments, RoadSegment(lane.tag.segment, [lane]))
#visualize first lane
cam = FitToContentCamera(0.0)
render(roadway, cam=cam)
Out[5]:
Let's repeat the process and complete the T-shape intersection
In [6]:
# Append straight left
curve = gen_straight_curve(convert(VecE2, B+VecE2(-100,0)), convert(VecE2, B), 2)
append_to_curve!(curve, gen_straight_curve(convert(VecE2, B), convert(VecE2, E), 2)[2:end])
append_to_curve!(curve, gen_straight_curve(convert(VecE2, E), convert(VecE2, E+VecE2(50,0)), 2))
lane = Lane(LaneTag(length(roadway.segments)+1,1), curve)
push!(roadway.segments, RoadSegment(lane.tag.segment, [lane]))
# Append straight right
curve = gen_straight_curve(convert(VecE2, F+VecE2(50,0)), convert(VecE2, F), 2)
append_to_curve!(curve, gen_straight_curve(convert(VecE2, F), convert(VecE2, A), 2)[2:end])
append_to_curve!(curve, gen_straight_curve(convert(VecE2, A), convert(VecE2, A+VecE2(-100,0)), 2))
lane = Lane(LaneTag(length(roadway.segments)+1,1), curve)
push!(roadway.segments, RoadSegment(lane.tag.segment, [lane]))
# Append left turn coming from the right
curve = gen_straight_curve(convert(VecE2, F+VecE2(50,0)), convert(VecE2, F), 2)
append_to_curve!(curve, gen_bezier_curve(F, C, 0.9r, 0.9r, 51)[2:end])
append_to_curve!(curve, gen_straight_curve(convert(VecE2, C), convert(VecE2, C+VecE2(0,-50)), 2))
lane = Lane(LaneTag(length(roadway.segments)+1,1), curve)
push!(roadway.segments, RoadSegment(lane.tag.segment, [lane]))
# Append right turn coming from below
curve = gen_straight_curve(convert(VecE2, D+VecE2(0,-50)), convert(VecE2, D), 2)
append_to_curve!(curve, gen_bezier_curve(D, E, 0.6r, 0.6r, 51)[2:end])
append_to_curve!(curve, gen_straight_curve(convert(VecE2, E), convert(VecE2, E+VecE2(50,0)), 2))
lane = Lane(LaneTag(length(roadway.segments)+1,1), curve)
push!(roadway.segments, RoadSegment(lane.tag.segment, [lane]))
# Append left turn coming from below
curve = gen_straight_curve(convert(VecE2, D+VecE2(0,-50)), convert(VecE2, D), 2)
append_to_curve!(curve, gen_bezier_curve(D, A, 0.9r, 0.9r, 51)[2:end])
append_to_curve!(curve, gen_straight_curve(convert(VecE2, A), convert(VecE2, A+VecE2(-100,0)), 2))
lane = Lane(LaneTag(length(roadway.segments)+1,1), curve)
push!(roadway.segments, RoadSegment(lane.tag.segment, [lane]))
cam = FitToContentCamera(0.0)
render(roadway, cam=cam)
Out[6]:
We can identify each lane thanks to the following user-defined functions. We define a LaneOverlay object that indicate the lane to highlight. One could implement any custom type to display other information on the lane. We then add a new method to the render! function that execute the specific action (coloring in blue). Look at Autoviz.jl for more detail on the render! function.
Use the slider to highlight each lane. The number corresponds to a road segment.
Note : In order to render the intersection, one must first initialize a Scene object.
In [7]:
using Interact
scene = Scene()
struct LaneOverlay <: SceneOverlay
lane::Lane
color::Colorant
end
function AutoViz.render!(rendermodel::RenderModel, overlay::LaneOverlay, scene::Scene, roadway::Roadway)
render!(rendermodel, overlay.lane, roadway, color_asphalt=overlay.color)
return rendermodel
end
@manipulate for i in 1 : length(roadway.segments)
render(scene, roadway, [LaneOverlay(roadway[LaneTag(i,1)], RGBA(0.0,0.0,1.0,0.5))], cam=cam)
end
Out[7]:
WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/7727d7cb3453b9ff588804f2f297360e756850e6-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/dc191505b241da77a1bd06986b7132036babe315-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/cf39e83f3445855334efae1f7d0ee012952fe319-all.js"},{"name":null,"type":"css","url":"/assetserver/495af69608d773e6cf6efd8fe98ee33ddbad0df5-style.css"},{"name":null,"type":"css","url":"/assetserver/9d22e7e1c4dccb3a3bef6ae4d24134fd256d4bfd-main.css"}],"type":"async_block"},"id":"knockout-component-fddc2108-64dc-441f-be9a-4530cb07f790","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {
ko.punches.enableAll();
ko.bindingHandlers.numericValue = {
init : function(element, valueAccessor, allBindings, data, context) {
var stringified = ko.observable(ko.unwrap(valueAccessor()));
stringified.subscribe(function(value) {
var val = parseFloat(value);
if (!isNaN(val)) {
valueAccessor()(val);
}
})
valueAccessor().subscribe(function(value) {
var str = JSON.stringify(value);
if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))
return;
if (["null", ""].indexOf(str) >= 0)
return;
stringified(str);
})
ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);
}
};
var json_data = JSON.parse("{\"changes\":0,\"value\":3}");
var self = this;
function AppViewModel() {
for (var key in json_data) {
var el = json_data[key];
this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);
}
[this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-fddc2108-64dc-441f-be9a-4530cb07f790","id":"ob_02","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-fddc2108-64dc-441f-be9a-4530cb07f790","id":"ob_01","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]
}
self.model = new AppViewModel();
self.valueFromJulia = {};
for (var key in json_data) {
self.valueFromJulia[key] = false;
}
ko.applyBindings(self.model, self.dom);
}
]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_02","value":0},"value":{"sync":true,"id":"ob_01","value":3}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["i"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":6,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-8cfbd96b-0f0a-48ef-8107-eed5c1134dca","handlers":{"obs-output":[function (updated_htmlstr) {
var el = this.dom.querySelector("#out");
WebIO.propUtils.setInnerHtml(el, updated_htmlstr);
}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_05","value":"<div class='display:none'></div><unsafe-script style='display:none'>\nWebIO.mount(this.previousSibling,{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"setInnerHtml":"<img src=''></img>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\nWebIO.mount(this.previousSibling,{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"setInnerHtml":"<img src=''></img>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})
In [8]:
scene = Scene()
vs0 = VehicleState(B + polar(50.0,-π), roadway, 8.0) # initial state of the vehicle
push!(scene, Vehicle(vs0, VehicleDef(), 1)) # add vehicle with the default type
render(scene, roadway, cam=cam)
Out[8]:
We will use lateral and longitudinal acceleration to control a car in the intersection. The first step is to define a corresponding action type that will contain the acceleration inputs.
In [9]:
struct LaneSpecificAccelLatLon
a_lat::Float64
a_lon::Float64
end
Next, add a method to the propagate function to update the state using our new action type.
Note: There is an existing propagate method to update the state using lateral and longitudinal acceleration. (it is used in line 3)
In [10]:
function AutomotiveDrivingModels.propagate(veh::Vehicle, action::LaneSpecificAccelLatLon, roadway::Roadway, Δt::Float64)
lane_tag_orig = veh.state.posF.roadind.tag
state = propagate(veh, LatLonAccel(action.a_lat, action.a_lon), roadway, Δt)
roadproj = proj(state.posG, roadway[lane_tag_orig], roadway, move_along_curves=false)
retval = VehicleState(Frenet(roadproj, roadway), roadway, state.v)
return retval
end
Driver Model:
We define a driver model, which can be seen as a distribution over actions. Here we will define the simplest model, which is to repeat the same action.
In [11]:
struct InterDriver <: DriverModel{LaneSpecificAccelLatLon}
a::LaneSpecificAccelLatLon
end
AutomotiveDrivingModels.get_name(model::InterDriver) = "InterDriver"
Base.rand(model::InterDriver) = model.a
Simulate:
First associate a model to each driver in the scene using a dictionnary. Here we only have one driver identified by its ID: 1. Then everything is ready to run the simulate! function.
In [12]:
timestep = 0.1
models = Dict{Int, DriverModel}()
# constant speed model
models[1] = InterDriver(LaneSpecificAccelLatLon(0.0,0.0))
nticks = 100
rec = SceneRecord(nticks+1, timestep)
simulate!(rec, scene, roadway, models, nticks)
# interactive visualization
@manipulate for frame_index in 1 : nframes(rec)
render(rec[frame_index-nframes(rec)], roadway, cam=cam)
end
Out[12]:
WebIO.mount(this.previousSibling,{"props":{},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"field"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[{"name":"knockout","type":"js","url":"/assetserver/7727d7cb3453b9ff588804f2f297360e756850e6-knockout.js"},{"name":"knockout_punches","type":"js","url":"/assetserver/dc191505b241da77a1bd06986b7132036babe315-knockout_punches.js"},{"name":null,"type":"js","url":"/assetserver/cf39e83f3445855334efae1f7d0ee012952fe319-all.js"},{"name":null,"type":"css","url":"/assetserver/495af69608d773e6cf6efd8fe98ee33ddbad0df5-style.css"},{"name":null,"type":"css","url":"/assetserver/9d22e7e1c4dccb3a3bef6ae4d24134fd256d4bfd-main.css"}],"type":"async_block"},"id":"knockout-component-857e5cef-49f0-43e3-bd35-33cce8254572","handlers":{"_promises":{"importsLoaded":[function (ko, koPunches) {
ko.punches.enableAll();
ko.bindingHandlers.numericValue = {
init : function(element, valueAccessor, allBindings, data, context) {
var stringified = ko.observable(ko.unwrap(valueAccessor()));
stringified.subscribe(function(value) {
var val = parseFloat(value);
if (!isNaN(val)) {
valueAccessor()(val);
}
})
valueAccessor().subscribe(function(value) {
var str = JSON.stringify(value);
if ((str == "0") && (["-0", "-0."].indexOf(stringified()) >= 0))
return;
if (["null", ""].indexOf(str) >= 0)
return;
stringified(str);
})
ko.applyBindingsToNode(element, { value: stringified, valueUpdate: allBindings.get('valueUpdate')}, context);
}
};
var json_data = JSON.parse("{\"changes\":0,\"value\":51}");
var self = this;
function AppViewModel() {
for (var key in json_data) {
var el = json_data[key];
this[key] = Array.isArray(el) ? ko.observableArray(el) : ko.observable(el);
}
[this["changes"].subscribe((function (val){!(this.valueFromJulia["changes"]) ? (WebIO.setval({"name":"changes","scope":"knockout-component-857e5cef-49f0-43e3-bd35-33cce8254572","id":"ob_07","type":"observable"},val)) : undefined; return this.valueFromJulia["changes"]=false}),self),this["value"].subscribe((function (val){!(this.valueFromJulia["value"]) ? (WebIO.setval({"name":"value","scope":"knockout-component-857e5cef-49f0-43e3-bd35-33cce8254572","id":"ob_06","type":"observable"},val)) : undefined; return this.valueFromJulia["value"]=false}),self)]
}
self.model = new AppViewModel();
self.valueFromJulia = {};
for (var key in json_data) {
self.valueFromJulia[key] = false;
}
ko.applyBindings(self.model, self.dom);
}
]},"changes":[(function (val){return (val!=this.model["changes"]()) ? (this.valueFromJulia["changes"]=true, this.model["changes"](val)) : undefined})],"value":[(function (val){return (val!=this.model["value"]()) ? (this.valueFromJulia["value"]=true, this.model["value"](val)) : undefined})]},"systemjs_options":null,"observables":{"changes":{"sync":false,"id":"ob_07","value":0},"value":{"sync":true,"id":"ob_06","value":51}}},"children":[{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"style":"text-align:right;width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"className":"interact ","style":{"padding":"5px 10px 0px 10px"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"label"},"children":["frame_index"]}]},{"props":{"attributes":{"style":"flex-grow:1; margin: 0 2%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"max":101,"min":1,"attributes":{"type":"range","data-bind":"numericValue: value, valueUpdate: 'input', event: {change : function () {this.changes(this.changes()+1)}}","orient":"horizontal"},"step":1,"className":"slider slider is-fullwidth","style":{}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"input"},"children":[]}]},{"props":{"attributes":{"style":"width:18%"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"attributes":{"data-bind":"text: value"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"p"},"children":[]}]}]}]}]},{"props":{},"nodeType":"Scope","type":"node","instanceArgs":{"imports":{"data":[],"type":"async_block"},"id":"scope-dfd24683-dde0-47fe-867b-50906a1d9e6c","handlers":{"obs-output":[function (updated_htmlstr) {
var el = this.dom.querySelector("#out");
WebIO.propUtils.setInnerHtml(el, updated_htmlstr);
}]},"systemjs_options":null,"observables":{"obs-output":{"sync":false,"id":"ob_10","value":"<div class='display:none'></div><unsafe-script style='display:none'>\nWebIO.mount(this.previousSibling,{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"setInnerHtml":"<img src=''></img>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]})</unsafe-script>"}}},"children":[{"props":{"id":"out","setInnerHtml":"<div class='display:none'></div><unsafe-script style='display:none'>\nWebIO.mount(this.previousSibling,{"props":{"attributes":{"style":"display:flex; justify-content:center; align-items:center;"}},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[{"props":{"setInnerHtml":"<img src=''></img>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]})</unsafe-script>"},"nodeType":"DOM","type":"node","instanceArgs":{"namespace":"html","tag":"div"},"children":[]}]}]})
In [ ]:
Content source: tawheeler/AutomotiveDrivingModels.jl
Similar notebooks: