Benchmark Results


In [16]:
import pandas as pd
data = open('results.csv').read()
commit, timestamp, measurements = data.split(',', 2)
measurements = map(float, measurements.split(','))

# Drop the first 10 measurements
df = pd.DataFrame([[i] for i in measurements[10:]], columns=['runtime'])
df.head()


Out[16]:
runtime
0 1.390475
1 1.423340
2 1.392797
3 1.446573
4 1.424568

5 rows × 1 columns


In [17]:
df.boxplot(vert=False)


Out[17]:
{'boxes': [<matplotlib.lines.Line2D at 0x54d0410>],
 'caps': [<matplotlib.lines.Line2D at 0x54e8750>,
  <matplotlib.lines.Line2D at 0x54e8d90>],
 'fliers': [<matplotlib.lines.Line2D at 0x54d40d0>,
  <matplotlib.lines.Line2D at 0x54d46d0>],
 'medians': [<matplotlib.lines.Line2D at 0x54d0a50>],
 'whiskers': [<matplotlib.lines.Line2D at 0x54fae10>,
  <matplotlib.lines.Line2D at 0x54e80d0>]}

In [18]:
df.describe()


Out[18]:
runtime
count 30.000000
mean 1.430240
std 0.032587
min 1.353380
25% 1.417872
50% 1.432993
75% 1.446338
max 1.502575

8 rows × 1 columns